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1. INTRODUCTION

In [5], Heath-Brown investigated the distributions (and moments) of some error

terms including the error term ∆(t) in the Dirichlet divisor problem. Actually, he

considered a general class of functions which satisfy the following hypothesis.

Hypothesis (H): Let a1(t), a2(t), . . . be continuous real-valued periodic function

of period 1. Suppose that there are non-zero constants γ1, γ2, . . . such that

lim
N→∞

lim sup
T→∞

1
T

∫ T

1
min(1, |F (t)−

∑
n≤N

an(γnt)|) dt = 0.

Under the hypothesis and some other conditions, Heath-Brown proved that the

limit of T−1µ{t ∈ [1, T ] : F (t) ≤ u} exists as T → ∞, where µ is the Lebesgue

measure. Obviously, T−1µ{t ∈ [1, T ] : F (t) ≤ u} can be written into the form

T−1
∫ T
1 ψ(−∞,u](F (t)) dt where ψ(−∞,u] is the characteristic function over the set

(−∞, u]. In this paper, we extend his studies by considering a vector-valued func-

tion F (t) and its ‘weighted’ distribution, for instance, κ(T )−1
∫ T
1 ψ(−∞,u](F (t))k(t) dt

when F is real-valued. (k satisfies some conditions of regularity.) Such a generaliza-

tion has practical uses, for example, the case k(t) = t−1 is considered in [8]. Here,

we are concerned with the existence of the limiting distribution of F (t) only. It will

be shown that a similar hypothesis (hypothesis (Hk) in Section 2) together with a

condition on the L1-norm of ‖F (t)‖ can yield the existence. This is our main result,

Theorem 1. These weak conditions cannot give results as precise and informative

as those of Heath-Brown such as [5, Theorem 3]. However, it provides us a unified

approach for the existence of limiting distributions of different error terms. This

is revealed through Examples 1-3 in Section 5. Results in Examples 1 and 2 are

known while Example 3 seems to be new. Moreover, it is interesting to note that
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the limiting distribution is independent of the weight function k. The ingredients of

the proof of Theorem 1 are the Continuity Theorem in Probability Theory and some

lemmas analogous to those in [5]. The quantitative version of Continuity Theorem

enables us to discuss the rate of convergence in some cases. This is not done in [5].

An illustration (Theorem 2) for ∆(t) will be given in Example 4 of Section 5.

2. DEFINITIONS AND STATEMENT OF RESULTS

Let P : Rn −→ [0,∞) satisfy the following conditions:

(i) P (x1, . . . , xn) → 1 as min{x1, . . . , xn} → ∞,

(ii) for each i, P (x1, . . . , xn) → 0 as xi → −∞,

(iii) limε→0+ P (x1, . . . , xi + ε, . . . , xn) = P (x1, . . . , xn) for each i, (i.e. P is contin-

uous from right in each argument),

(iv)
∑n

r=0(−1)r∑
δ∈∆r,n

P (δ) ≥ 0 for any (a, b] ⊂ Rn,

where (a, b] =
∏n

i=1(ai, bi] and ∆r,n is a set which contains points of the form

(z1, . . . , zn) with zi = ai or bi, and exactly r of zi’s equals ai (i.e. vertices of (a, b]).

Then P is called a (joint) distribution. Define Pj(xj) = limxi→∞,i6=j P (x1, . . . , xn)

(j = 1, . . . , n). Pj is called the marginal distribution of P . Consider the set

C(P ) = {(x1, . . . , xn) : Pj(xj+) = Pj(xj−) for all 1 ≤ j ≤ n},

then C(P ) is a subset of the set of points of continuity of P . When n = 1, these

two sets trivially coincide. Suppose {Pn} is a sequence of distributions. We say that

Pn converges weakly if there is a distribution P such that limn→∞ Pn(x) = P (x)

for any x ∈ C(P ). P induces a measure, called n-dimensional Lebesgue-Stieltjes

measure, defined on the σ-algebra consisting of all borel sets of Rn. Hence we can
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define the integral
∫
Rn f(x) dP (x) for any borel measurable function f , starting with∫

Rn ψb(x) dP (x) = P (b). Here we denote ψS to be the characteristic function over

the set S and write ψb for ψ(a,b] when a = (−∞, . . . ,−∞). In particular, we have

∫
Rn

ψ(a,b](x) dP (x) =
n∑

r=0

(−1)r
∑

δ∈∆r,n

P (δ). (2.1)

(A geometrical picture for the case n = 2 will be illustrative for its validity.)

Suppose P is a distribution. We define χ(u) =
∫
Rn e(u · x) dP (x) and call it

the characteristic function of P . There is an one-to-one correspondence between

characteristic functions and distributions. Besides, the weak convergence is almost

equivalent to the convergence of characteristic functions. This is the continuity

theorem.

Continuity Theorem Suppose {Pn} is a sequence of distributions, and let χn

be the associated characteristic function of Pn. If χn converges to a function χ

pointwisely and χ is continuous at 0, then Pn converges weakly and vice versa.

(For more details, one can refer to [7, Section 1.1 and Appendices A and B] or

[1, Sections 6.3 and 8.5]. Note that left-continuity is adopted in [1] instead.)

Let k : [1,∞) −→ [0,∞) be a continuous, piecewisely continuously differentiable

function which satisfies

(a) κ(T ) =
∫ T
1 k(t) dt→∞,

(b)
∫ T
1 |k′(t)| dt = o(κ(T )),

as T →∞. We denote this class of functions by W.

Suppose F : [1,∞)n −→ R is (Lebesgue) measurable, and let u = (u1, . . . , un) ∈

Rn. Then, define

DF ,T (u) =
1

κ(T )

∫ T

1
ψ∩n

i=1F−1
i (−∞,ui]

(t)k(t) dt
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=
1

κ(T )

∫ T

1
ψu(F (t))k(t) dt (2.2)

where F = (F1, . . . , Fn). (Recall ψu = ψ(a,u] with a = (−∞, . . . ,−∞).) We some-

times write DF ,k,T (u) for DF ,T (u) in order to emphasize the weight k. We can

verify that DF ,T is a distribution. Conditions (i), (ii) and (iii) can be seen by the

dominated convergence theorem. For (iv), we note that

ψ(a,b] =
n∑

r=0

(−1)r
∑

δ∈∆r,n

ψδ, (2.3)

then

n∑
r=0

(−1)r
∑

δ∈∆r,n

DF ,T (δ) =
1

κ(T )

∫ T

1
ψ(a,b](F (t))k(t) dt ≥ 0.

If DF ,T converges weakly to DF , we call DF the limiting distribution of F .

Besides, we say that F satisfies hypothesis (Hk) if it has the following property.

Hypothesis (Hk): Let arm(t) (r = 1, . . . , n; m = 1, 2, . . .) be (Lebesgue) measur-

able, real-valued periodic functions of period 1. Suppose that there exist non-zero

constants γrm such that

lim
N→∞

lim sup
T→∞

1
κ(T )

∫ T

1
min(1, |Fr(t)−

∑
m≤N

arm(γrmt)|)k(t) dt = 0

for r = 1, . . . , n and k ∈ W.

Remark One can observe that for α > 1, Hölder’s inequality yields

∫ T

1
min(1, | · |)k(t) dt ≤ κ(T )1−1/α

(∫ T

1
min(1, | · |)αk(t) dt

)1/α

;

while for 0 < α < 1, we have min(1, | · |) ≤ min(1, | · |)α. Hence there is no loss of

generality in choosing min(1, | · |) in the hypothesis among all measures min(1, | · |)α,

and min(1, | · |α) with α > 0. (Note that min(1, | · |)α = min(1, | · |α).)
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Theorem 1 Suppose F satisfies hypothesis (Hk), and
∫ T
1 ‖F (t)‖k(t) dt � κ(T )

where ‖ · ‖ is the usual Euclidean norm. Then, DF ,T converges weakly as T → ∞.

Moreover, the limiting distribution is independent of k. (i.e. If F can satisfy both

(Hk1) and (Hk2) with the same choices of arm(t) and γrm, then the two limiting dis-

tributions are identical.) If the sequence {γrm} r=1,...,n
m=1,2,...

is linearly independent over

Q, then the characteristic function of the limiting distribution is given by

χ(α1, . . . , αn) =
n∏

r=1

∞∏
m=1

∫ 1

0
e(αrarm(t)) dt.

Remark It is clear from the proof that the limiting distribution is characterized

by arm(t) and γrm but not the weight function k(t). More precisely, if F1 and F2

satisfy (Hk1) and (Hk2) with the same set of arm(t) and γrm and
∫ T
1 ‖Fi(t)‖ki(t) dt�

κi(T ), then both DF1,k1,T and DF2,k2,T converge to the same distribution function.

An immediate consequence is the following Corollary.

Corollary 1 Suppose arm(t) is periodic of period 1 and integrable on [0, 1], and

lim
N→∞

lim sup
T→∞

1
κ(T )

∫ T

1
|Fr(t)−

∑
m≤N

arm(γrmt)|k(t) dt = 0

for r = 1, . . . , N . Then, DF ,T converges weakly as T →∞.

Under some circumstances, F (t) can satisfy the hypothesis only after a transfor-

mation.

Corollary 2 Let a ∈ R and α : [a,∞) −→ [1,∞) be surjective, strictly increasing

and continuously differentiable. Suppose F ◦ α satisfies hypothesis (Hk) and condi-

tions in Theorem 1 or Corollary 1. Then, DF ,h,T converges weakly as T →∞ where

h = (κ ◦ α−1)′.
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Sometimes, we are interested in the limiting distribution which counts on integers

only. In particular, we can have the following result, which is a case of n = 1 and

k(t) = 1.

Corollary 3 Let F (t) satisfy the conditions in Theorem 1 or Corollary 1. Suppose

that for t ∈ [n, n+ 1),

F (t) = F (n) + C({t} − 1
2
)− λ+ o(1) as n→∞

where C and λ are absolute constants. Define

DF,X(u) =
1
X

Card{1 ≤ n ≤ X : F (n) ≤ u}.

Then, DF,X converges weakly as X →∞.

Remark: We can make use of DF,X with some other properties to investigate the

sign-changes (including zeros perhaps) of F (t) on integers, see [6] for example.

3. SOME PREPARATIONS

Lemma 3.1 Let h : R −→ C be an integrable periodic function of period 1. Then

1
κ(T )

∫ T

1
|h(γt)|k(t) dt ≤ 2

(
1 + (γκ(T ))−1

∫ T

1
|k′(u)| du

)∫ 1

0
|h(u)| du

if T ≥ 1 + |γ|−1, where γ 6= 0 is real.

Proof We may assume γ > 0; for otherwise, we consider h−(|γ|t) where h−(t) =

h(−t). Choose an integer m0 such that γ(T − 1) − 2 < m0 ≤ γ(T − 1) − 1, then

after a change of variable, we have

∫ T

1
|h(γt)|k(t) dt
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= γ−1(
∫ γT−m0−1

γ
+

m0∑
m=0

∫ γT−m

γT−m−1
)|h(u)|k(γ−1u) du

≤ γ−1( sup
γ≤u≤γT−m0−1

k(γ−1u)
∫ γT−m0−1

γ

+
m0∑

m=0

sup
γT−m−1≤u≤γT−m

k(γ−1u)
∫ γT−m

γT−m−1
)|h(u)| du

≤ γ−1( sup
1≤u≤T−(m0+1)/γ

k(u) +
m0∑

m=0

sup
T−(m+1)/γ≤u≤T−m/γ

k(u))
∫ 1

0
|h(u)| du.

Since

sup
a≤u≤b

k(u) = ( sup
a≤u≤b

− inf
a≤u≤b

)k(u) + inf
a≤u≤b

k(u)

≤ sup
a≤v1≤v2≤b

∣∣∣∣∫ v2

v1

k′(u) du
∣∣∣∣+ 1

b− a

∫ b

a
k(u) du

≤
∫ b

a
(|k′(u)|+ (b− a)−1k(u)) du,

we have, as T ≥ 1 + γ−1,

∫ T

1
|h(γt)|k(t) dt

≤ γ−1(
∫ 1+1/γ

1
+

m0∑
m=0

∫ T−m/γ

T−(m+1)/γ
)(|k′(u)|+ γk(u)) du

∫ 1

0
|h(u)| du

≤ 2(κ(T ) + γ−1
∫ T

1
|k′(u)| du)

∫ 1

0
|h(u)| du.

Lemma 3.2 Let p : Rn −→ R be uniformly continuous and bounded. Then,

∫
Rn

p(u) dDF ,T (u) =
1

κ(T )

∫ T

1
p(F (t))k(t) dt.

Proof As every uniformly continuous function can be approximated by step

functions of the form
∑

i ciψ(ai,bi]
in supremum norm, it suffices to consider the

discontinuous case p = ψ(a,b]. Now, by (2.1) and (2.3),

∫
Rn

ψ(a,b](u) dDF ,T (u) =
n∑

r=0

(−1)r
∑

δ∈∆r,n

DF ,T (δ)

=
1

κ(T )

∫ T

1
ψ(a,b](F (t))k(t) dt.
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Lemma 3.3 Let bi : R −→ C (1 ≤ i ≤ l) be measurable functions of period 1.

Suppose that |bi(t)| ≤ 1, then the limit

Lk = lim
T→∞

1
κ(T )

∫ T

1
e(γt)b1(γ1t) · · · bl(γlt)k(t) dt

exists for any real γ, γ1, . . . , γl. The limit is independent of k, i.e. Lk1 = Lk2.

Proof When l = 0, we have
∫ T
1 e(γt)k(t) dt = κ(T ) if γ = 0. Otherwise,

∫ T

1
e(γt)k(t) dt =

1
2πiγ

{e(γt)k(t)|T1 −
∫ T

1
k′(t)e(γt) dt}

� γ−1
∫ T

1
|k′(t)| dt = o(κ(T )).

Thus, the lemma holds for this case. Suppose it holds for some l ≥ 0. Write f(t) =

e(γt)b1(γ1t) . . . bl(γlt) and let γl+1 6= 0 (otherwise it goes back to the case l), then fol-

lowing Heath-Brown[5, Lemma 1], we pick a Fourier series SN (t) =
∑
|n|≤N cne(nt)

for bl+1(t) which converges to it in the mean. This can be done as bl+1 is square-

integrable. Thus, we have limN→∞
∫ 1
0 |bl+1(t)−SN (t)| dt = 0. Applying Lemma 3.1,

we get

1
κ(T )

∫ T

1
|bl+1(γl+1t)− SN (γl+1t)|k(t) dt ≤ 3

∫ 1

0
|bl+1(t)− SN (t)| dt

for all T ≥ T0(γl+1, k). Hence, as |f(t)| ≤ 1,∣∣∣∣∣κ(T )−1
∫ T

1
f(t)bl+1(γl+1t) dt− κ(T )−1

∫ T

1
f(t)SN (t) dt

∣∣∣∣∣
≤ 3

∫ 1

0
|bl+1(t)− SN (t)| dt

< ε

for any N ≥ N0(ε) and for all T ≥ T0(γl+1, k). Induction assumption yields that

LN = limT→∞ κ(T )−1
∫ T
1 f(t)SN (t) dt exists and its value is independent of k. Par-

allel to the argument in [5, Lemma1], Cauchy criterion shows the convergence for

the case l + 1.
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Suppose Lk1 and Lk2 are the limits corresponding to two different weight func-

tions k1 and k2 respectively. Then for any ε > 0, we have, by taking sufficiently

large N , that

|Lk1 − Lk2 | ≤ |Lk1 − LN |+ |Lk2 − LN | < ε.

Our assertion follows.

Lemma 3.4 Let bi : R −→ C be measureable periodic functions of period 1, and

|bi(t)| ≤ 1. Then limT→∞ κ(T )−1
∫ T
1 b1(γ1t) · · · bl(γlt)k(t) dt exists and the limit is

independent of k. Moreover, if {γ1, . . . , γl} is linearly independent over Q, then the

limit is equal to
l∏

i=1

∫ 1

0
bi(t) dt.

The proof follows closely the argument in Heath-Brown[5, Lemma 2], with

Lemma 3.3.

4. PROOFS OF RESULTS

We begin to prove Theorem 1. From Lemma 3.2, we see that the characteristic

function of DF ,T is

χT (α) =
∫
Rn

e(α · u) dDF ,T (u) =
1

κ(T )

∫ T

1
e(α · F (t))k(t) dt.

Define

χN,T (α) =
1

κ(T )

∫ T

1
e(

n∑
r=1

αr

∑
m≤N

arm(γrmt))k(t) dt

We divide our proof into the following steps:

Step 1. χN (α) = limT→∞ χN,T (α) exists.

The existence follows from Lemma 3.4.
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Step 2. χ(α) = limN→∞ χN (α) exists. Using |
∏
wi−

∏
zi| ≤

∑
|wi−zi| for |wi|, |zi| ≤

1, |e(u) − 1| ≤ 2πmin(1, |u|) and min(1, |a||b|) ≤ (|a| + 1) min(1, |b|), we have

for any N and N ′,

|χN (α)− χN ′(α)|

≤
∑

M=N,N ′

lim sup
T→∞

∣∣∣∣∣∣κ(T )−1
∫ T

1
(e(

n∑
r=1

αr

∑
m≤M

arm(γrmt))− e(α · F (t)))k(t) dt

∣∣∣∣∣∣
≤ 2π

∑
M=N,N ′

n∑
r=1

lim sup
T→∞

κ(T )−1
∫ T

1
min(1, |αr||Fr(t)−

∑
m≤M

arm(γrmt)|)k(t) dt

≤ 2π
∑

M≤N,N ′

n∑
r=1

(|αr|+ 1) lim sup
T→∞

κ(T )−1
∫ T

1
min(1, |Fr(t)−

∑
m≤M

arm(γrmt)|)k(t) dt.

This tends to zero as N , N ′ −→∞ by hypothesis (Hk). By Cauchy criterion,

χN (α) −→ χ(α) pointwisely for some function χ.

Step 3. limT→∞ χT (α) = χ(α).

For each fixed α and for any ε > 0, we have

|χT (α)− χ(α)|

≤ |χT (α)− χN,T (α)|+ |χN,T (α)− χN (α)|+ |χN (α)− χ(α)|

≤ 2π
n∑

r=1

(|αr|+ 1)κ(T )−1
∫ T

1
min(1, |Fr(t)−

∑
m≤N

arm(γrmt)|)k(t) dt

+ |χN,T (α)− χN (α)|+ |χN (α)− χ(α)|

≤
n∑

r=1

(|αr|+ 1)ε

whenever T ≥ T (N, ε, α) and N ≥ N(ε, α).

If {γrm} r=1,...,n
m=1,2,...

is linearly independent over Q, then we have from Lemma 3.4

that

χ(α1, . . . , αn) =
n∏

r=1

∞∏
m=1

∫ 1

0
e(αrarm(t)) dt.

Step 4. χ(α) is continuous at α = 0.
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Here we use the condition
∫ T
1 ‖F (t)‖k(t) dt � κ(T ). The continuity at α = 0

follows from

|χT (α)− χT (0)| =

∣∣∣∣∣κ(T )−1
∫ T

1
(e(α · F (t))− 1)k(t) dt

∣∣∣∣∣
≤ 2π

n∑
r=1

|αr|
κ(T )

∫ T

1
|Fr(t)|k(t) dt

� ‖α‖κ(T )−1
∫ T

1
‖F (t)‖k(t) dt� ‖α‖

where the implied constants are independent of α.

This completes the proof of Theorem 1 by Continuity Theorem.

To prove Corollary 1, it suffices to show κ(T )−1
∫ T
1 ‖F (t)‖k(t) dt� 1 in view of

Theorem 1. This follows from

κ(T )−1
∫ T

1
‖F (t)‖k(t) dt

≤
n∑

r=1

κ(T )−1
∫ T

1
|Fr(t)|k(t) dt

≤
n∑

r=1

 ∑
m≤N

κ(T )−1
∫ T

1
|arm(γrmt)|k(t) dt+ κ(T )−1

∫ T

1
|Fr(t)−

∑
m≤N

arm(γrmt)|k(t) dt


�

n∑
r=1

 ∑
m≤N

∫ 1

0
|arm(t)| dt+ κ(T )−1

∫ T

1
|Fr(t)−

∑
m≤N

arm(γrmt)|k(t) dt

� 1

for all sufficiently large T , by using the conditions in Corollary 1 and Lemma 3.1.

Now we prove Corollary 2. Write H(T ) =
∫ T
1 h(t) dt, then

1
H(T )

∫ T

1
ψu(F (t))h(t) dt =

1
κ(α−1(T ))

∫ α−1(T )

a
ψu(F (α(v)))k(v) dv

after a change of variable. Since α−1(T ) → ∞ as T → ∞, the result follows from

Theorem 1 or Corollary 1 accordingly.

Finally we prove Corollary 3 and suppose that F (t) satisfies the conditions in

Theorem 1. Define F ∗(t) = F (n)−λ if t ∈ [n, n+1). By taking a0(t) = −C({t}−1/2)
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and γ0 = 1, we see that

lim
N→∞

lim sup
T→∞

1
T

∫ T

1
min(1, |F ∗(t)−

∑
0≤n≤N

an(γnt)|) dt = 0

and ∫ T

1
|F ∗(t)| dt� T.

Our assertion follows from Theorem 1. The case that F (t) satisfies conditions in

Corollary 1 can be proved similarly.

5. APPLICATIONS

Example 1. Let q be a natural number and (a, q) = 1. We denote π(x, q, a) to be

the number of primes p ≤ x with p ≡ a (mod q). Write E(x, q, a) = (φ(q)π(x, q, a)−

π(x))x−1/2 log x, and

Eq;a1,...,an(x) = (E(x, q, a1), . . . , E(x, q, an)),

we have by [8, (2.5) and Lemma 2.2] and assuming G.R.H.,

E(x, q, a) = −c(q, a)−
∑

χ6=χ0

χ(a)
∑

|γχ|≤N

xiγχ

1/2 + iγχ
+ εa(x,N,X)

and
∫ Y
log 2 |εa(ey, N, eY )|2 dy �q Y N

−1 log2N + N−1 log3N where c(q, a) is a con-

stant,
∑

χ6=χ0
and

∑
γχ

sum over the non-principal Dirichlet characters modulo q

and zeros of the corresponding L-functions respectively.

We apply Corollary 2 by taking Fr(x) = E(x, q, ar) + c(q, a), α(t) = et, k(t) =

1 (so h(t) = 1/t) and −<e χ(a)eit/(1/2 + iγ) to be arm(t). Then DF ,h,T con-

verges weakly. This gives back the result of [8, Theorem 1.1] after a translation of

(c(q, a1), . . . , c(q, an)).

Let Eq;N,R(x) = (πN (x, q)−πR(x, q))x−1/2 log x where πR(x, q) (and πN (x, q)) is

the number of prime quadratic residues (and nonresidues respectively) not exceeding
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x. Applying the same argument and assuming G.R.H., we can show the existence

of the limiting distribution of Eq;N,R too.

Example 2. Let φ(n) be the Euler function (i.e. φ(n) denotes the number of

integers less than n which are relatively prime to n). Define

E(x) =
∑
n≤x

φ(n)− 3
π2
x2 and H(x) =

∑
n≤x

φ(n)
n

− 6
π2
x.

From Chowla[1, Lemma 2], we have

H(u) = −
∑

n≤u/ log5 u

µ(n)
n

ψ(
u

n
) +O(

1
log20 u

)

where µ(n) is the Möbius function and ψ(x) = {x}− 1/2 ({x} is the fractional part

of x). This yields (see [6, Main Lemma] for more details) that for 1 ≤ N ≤ T/ log5 T ,

∫ T

1
(H(x) +

∑
n≤N

µ(n)
n

ψ(
x

n
))2 dx� TN−1 + T log−4 T.

Besides, Chowla[2, Lemma 13] gives us x−1E(x) = H(x) +O((log x)−4). By Corol-

laries 2 and 3 with an(t) = µ(n)n−1ψ(t) and γn = n−1, we see that all DH(u),

DH(u), DR(u) and DR(u) exist where R(x) = E(x)/x. It should be remarked that

Erdös and Shapiro[4] had proved the existence of DH(u) by a different argument,

and their argument can show that DH(u) is continuous.

Example 3. Let σa(n) =
∑

d|n d
a and define

∆a(t) =
∑
n≤t

σa(n)− ζ(1− a)t− ζ(1 + a)
1 + a

t1+a +
1
2
ζ(−a).

We shall consider the case −1 ≤ a < −1/2. (The case a = −1 is defined by taking

a −→ −1+.) It is known (see [2, Lemma 15]) that

∆a(t) = −
∑

n≤
√

t

naψ(
t

n
)− ta

∑
n≤

√
t

n|a|ψ(
t

n
) +O(ta/2)

13



where ψ(x) is defined as in Example 2. Using this formula, one can show (with the

argument in [6, Main Lemma] again) that for N ≤
√
T ,

∫ T

1
|∆a(t) +

∑
n≤N

naψ(
t

n
)|2 dt� TN1+2a + T 3/2+a log T.

Hence, we can conclude the existence of the limiting distribution of ∆a(t) by Corol-

lary 1.

Example 4. Let d(n) =
∑

d|n 1 and define

∆(t) =
∑
n≤t

d(n)− t(log t+ 2γ − 1)

where γ is the Euler constant. Taking G(t) = ∆(t)/t1/4, then Heath-Brown[5]

showed that DG(u) exists and possesses a (probability) density function f(α). Here,

we focus on the rate of convergence and obtain the following result.

Theorem 2 Let DG,T = T−1µ{t ∈ [1, T ] : t−1/4∆(t) ≤ u}, and DG(u) be its limit.

Then, for all u ∈ R,

DG(u) = DG,T (u) +O((log log T )−1/8(log log log T )3/4)

as T →∞.

We denote F (t) = t−1/2∆(t2) and ψu(t) = ψF−1(−∞,u](t), the characteristic

function over the set F−1(−∞, u]. Then,

DG,T (u) =
1
T
µ{t ∈ [1, T ] : G(t) ≤ u} =

1
T

∫ T

1
ψu(

√
t) dt.

Integration by parts yieldsDG,T (u) = 2(DF,
√

T (u)−T−1
∫√T
1 vDF,v(u) dv) asDF,v(u) =

v−1
∫ v
1 ψu(w) dw. We have for any r > 2,

DG,T (u)−DG(u)

� sup
T 1/r≤v≤T 1/2

|DF,v(u)−DG(u)|+ T 2/r−1. (5.1)

14



Hence it suffices to consider DG(u) − DF,T (u). By Berry-Esseen Theorem (see [3,

Lemma 1.47]) and supα∈R |f(α)| � 1 (see [5]),

DG(u)−DF,T (u) � 1
R

+
∫ R

−R
|χF,T (α)− χ(α)

α
| dα (5.2)

where χF,T (α) and χ(α) are characteristic functions of DF,T and DG respectively.

We define χN,T and χN to be those characteristic functions in the proof of

Theorem 1, and take

an(t) =
1

π
√

2
µ(n)2

n3/4

∞∑
r=1

d(nr2)
r3/2

cos(2πrt− π

4
),

and γn = 2
√
n if n is squarefree, and any suitable value otherwise. Then one can

see that

χN,T (α) =
1
T

∫ T

1

N∏
n=1

e(αan(γnt)) dt and χN (α) =
N∏

n=1

∫ 1

0
e(αan(t)) dt

as {γn} is linearly independent over Q (see [5, Lemma 2 and (3.4)]). We consider

χF,T (α)− χ(α)

= χF,T (α)− χN,T (α) + χN,T (α)− χN (α) + χN (α)− χ(α). (5.3)

Recalling that χF,T (α) = T−1
∫ T
1 e(αF (t)) dt, we have

χF,T (α)− χN,T (α) � |α| 1
T

∫ T

1
|F (t)−

∑
n≤N

an(γnt)| dt

by using e(u) − 1 � |u|. Suppose N ≤ log T . Using [5, (5.2)] with the estimate∑
n≥N d(n)2n−3/2 � N−1/2 log3N (instead of N ε−1/2), we obtain

∫ 2T

T
|F (t)−

∑
n≤N

an(γnt)|2 dt� TN−1/2 log3N,

and from (5.2) and (5.3),

DG(u)−DF,T (u)

15



� 1
R

+
∫ R

−R

1
T

∫ T

1
|F (t)−

∑
n≤N

an(γnt)| dt dα

+
∫ R

−R
lim sup
T→∞

1
T

∫ T

1
|F (t)−

∑
n≤N

an(γnt)| dt dα

+
∫ R

−R
|χN,T (α)− χN (α)

α
| dα

� 1
R

+RN−1/4(logN)3/2 +
∫ R

−R
|χN,T (α)− χN (α)

α
| dα. (5.4)

We shall take N = 2[(log log T )/4], R = N1/8(logN)−3/4. Let

KM (x) =
M∑

k=−M

(1− |k|
M

)e(kx) =
1
M

(
sinπMx

sinπx
)2.

Then,

|χN,T (α)− χN (α)|

≤ 1
T

∫ T

1

∣∣∣∣∣
N∏

n=1

e(αan(γnt))−
N∏

n=1

∫ 1

0
e(αan(u))KM (γnt− u) du

∣∣∣∣∣ dt
+

∣∣∣∣∣ 1T
∫ T

1

N∏
n=1

∫ 1

0
e(αan(u))KM (γnt− u) du dt−

N∏
n=1

∫ 1

0
e(αan(t)) dt

∣∣∣∣∣
= IT + |JT |, say. (5.5)

Noting that KM (u) is periodic of period 1, KM (u) > 0 and
∫ 1
0 KM (u) du = 1, we

have

IT =
1
T

∫ T

1

∣∣∣∣∣
N∏

n=1

e(αan(γnt))−
N∏

n=1

∫ 1

0
e(αan(u))KM (γnt− u) du

∣∣∣∣∣ dt
≤

∑
n≤N

1
T

∫ T

1

∣∣∣∣e(αan(γnt))−
∫ 1

0
e(αan(u))KM (γnt− u) du

∣∣∣∣ dt
�

∑
n≤N

∫ 1

0

∣∣∣∣∫ 1

0
(e(αan(t))− e(αan(t− u)))KM (u) du

∣∣∣∣ dt
�

∑
n≤N

|α|
∫ 1

0

∫ δ

0
|an(t)− an(t− u)|KM (u) du dt+

∑
n≤N

∫
δ<u≤1

KM (u) du

� |α|
∑
n≤N

∫ 1

0

∫ δ

0

1
n3/4

∞∑
r=1

d(nr2)
r3/2

| sin(2πr(t− u

2
)− π

4
) sin(πru)|KM (u) du dt

+
1
M

∑
n≤N

∫
δ<u≤1

du

u2
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� |α|
∑
n≤N

1
n3/4−ε

(
∑

r≤1/δ

rδ

r3/2−ε
+
∑

r>1/δ

1
r3/2−ε

) +
N

Mδ

� |α|δ1/2−εN1/4+ε +
N

Mδ
.

Taking M = [(log T )3/4] and δ = (log T )−1/2, we get

IT � (|α|+ 1)(log T )ε−1/4. (5.6)

Now,

JT =
1
T

∫ T

1

N∏
n=1

∫ 1

0
e(αan(u))KM (γnt− u) du dt−

N∏
n=1

∫ 1

0
e(αan(t)) dt

=
∑

|k1|≤M

· · ·
∑

|kN |≤M

|k1|+···+|kN |6=0

N∏
n=1

(
(1− |kn|

M
)
∫ 1

0
e(αan(un))e(−knun) dun

)

× 1
T

∫ T

1
e((k1γ1 + · · ·+ kNγN )t) dt

≤ 2T−1
∑

|k1|≤M

· · ·
∑

|kN |≤M

|k1|+···+|kN |6=0

|k1γ1 + · · ·+ kNγN |−1

� MN

T
(M

√
N)2

N � (log T )ε−1/4 (5.7)

by [5, Lemma 5]. (Note that (5.7) determines our choice of the order of magnitude

of N .) Hence, |χN,T (α)− χN (α)| � (|α|+ 1)(log T )ε−1/4 by putting (5.6) and (5.7)

into (5.5).

On the other hand, suppose |α| ≤ (log T )−1,

|χN,T (α)− χN (α)|

� | 1
T

∫ T

1
(e(α

∑
n≤N

an(γnt))− 1) dt|+ |
∫ 1

0
· · ·
∫ 1

0
(e(α

∑
n≤N

an(un))− 1) du1 · · · duN |

� |α|
T

∫ T

1
|
∑
n≤N

an(γnt)| dt+ |α|
∑
n≤N

∫ 1

0
|an(u)| du

� |α|N1/4+ε

since an(u) � n−3/4+ε. Therefore,∫ R

−R
|χN,T (α)− χa(α)

α
| dα

17



� N1/4+ε
∫
|α|≤(log T )−1

dα+
∫
(log T )−1≤|α|≤R

(|α|+ 1)(log T )ε−1/4 dα

|α|

� (log T )ε−1/4

and this yields our result with (5.4) and (5.1).
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