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Abstract

Let f be a holomorphic Hecke eigenform for Γ0(N ) of weight k, or a Maass eigenform
for Γ0(N ) with Laplace eigenvalue 1/4 + k2. Let g be a fixed holomorphic or Maass
cusp form for Γ0(N ). A subconvexity bound for central values of the Rankin-Selberg
L-function L(s, f ⊗ g) is proved in the k-aspect: L(1/2 + it, f ⊗ g) �N ,g,t,ε k

2/3+ε, while
a convexity bound is only � k1+ε. This new bound improves earlier subconvexity bounds
for these Rankin-Selberg L-functions by Sarnak, the authors, and Blomer. Techniques
used include a result of Good, spectral large sieve, meromorphic continuation of a shifted
convolution sum to <e s > −1/2 passing through all Laplace eigenvalues, and a weighted
stationary phase argument.
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1. Introduction

A central problem in the theory of L-functions is to investigate their sizes on the critical

line. Following from the Phragmén-Lindelöf principle with the functional equation, one can
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obtain an estimate referred as a convexity bound. For example, the convexity bound of the

Riemann zeta-function is

ζ(1/2 + it) � |t|1/4+ε.

Any improvement of the exponent 1/4, referred as a subconvexity estimate, is interesting

and significant. The method of Weyl on exponential sums improves 1/4 to 1/6, which is

apparently a great progress. Weyl’s method has been sharpened many times to-date, with

important ideas and machineries introduced. Numerically, though, the improvement seems

rather small. The Riemann zeta-function is only a classic example of GL1 functions. The

subconvexity estimate of general L-functions in various aspects is of great interest and im-

portance, with many applications, for instance, to equidistribution problems. For a Dirichlet

L-function L(s, χ), Burgess established the subconvexity estimate L(1/2 + it, χ) �t q
3/16+ε

on the conductor aspect, where q denotes the modulus of the character χ. (The exponent of

the convexity bound is 1/4.) A bound analogous to Weyl’s (i.e. replacing 3/16 by 1/6) for

real characters χ was only achieved recently by Conrey and Iwaniec [5].

In the same paper [5], Conrey and Iwaniec actually derived subconvexity estimates for

the central values of some GL2 L-functions attached to Maass or holomorphic Hecke eigen-

forms on the level aspect. They proved Lf (1/2, χ) � q1/3+ε for real characters χ and for

self-dual forms f , which is of the same quality as Weyl’s in view of the convexity bound

O(q1/2+ε).3 An analogous bound k1/3+ε was done in Ivić [16] for a Maass Hecke eigenform f

with eigenvalue 1/4 + k2, and in Peng’s dissertation [27] for holomorphic forms of weight k

respectively. Recently, Jutila and Motohashi [18] obtained a beautiful uniform bound in both

the weight (or eigenvalue) and t aspects with the same exponent 1/3 for the full modular

group. The subconvexity problem for higher rank cases is plausibly difficult; still some results

are currently known for Rankin-Selberg L-functions L(s, f ⊗ g) which are in the GL4 case.

A challenge is to establish the desirable subconvexity estimate whose quality is comparable

to the generic results in GL1 and GL2 cases.

Let f be a holomorphic Hecke eigenform for Γ0(N ) of weight k, and g a fixed holomorphic

or Maass cusp form for Γ0(N ). Or, we may let g be a cusp form for Γ0(N ′) with (N ,N ′) = 1.

The Rankin-Selberg L-function L(s, f ⊗ g) is an Euler product of degree 4 and satisfies a

functional equation. The convexity bound is L(1/2 + it, f ⊗ g) � k1+ε and the subconvexity

estimate

L(1/2 + it, f ⊗ g) �N ,g,t,ε k
576/601+ε. (1.1)

3For general f and χ, the best known exponent is 3/8 + θ/4 with θ = 7/64 by Blomer, Harcos, and Michel
[4].
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on weight aspect was firstly obtained in Sarnak [29]. The proof of this subconvexity bound

made use of a bound toward the Ramanujan conjecture with θ = 7/64 (Kim and Sarnak

[19]):

|α(j)
π (p)| ≤ pθ for p at which π is unramified,

|<eµ(j)
π (∞)| ≤ θ if π is unramified at ∞,

(1.2)

where π is an automorphic cuspidal representation of GL2(QA) with unitary central character

and local Hecke eigenvalues α(j)
π (p) for p < ∞ and µ

(j)
π (∞) for p = ∞, j = 1, 2. In terms of

(1.2), the exponent in Sarnak’s bound (1.1) is 18/(19− 2θ) + ε.

If f is a Maass Hecke eigenform for Γ0(N ) with Laplace eigenvalue 1/4 + k2, Liu and Ye

[23] proved a similar subconvexity bound (cf. Liu and Ye [24])

L(1/2 + it, f ⊗ g) �N ,g,t,ε k
(15+2θ)/16+ε, (1.3)

When θ = 7/64, this is � k487/512+ε.

Here both results in (1.1) and (1.3) depend crucially on the value of θ. In fact, if we take

the trivial estimate θ = 1/2, no subconvexity bound will be concluded in either case. This

phenomenon is somewhat unexpected, as was explained in Sarnak [30]. Recently we showed

in [22] that such a heavy dependence on nontrivial θ can be avoided, and our result gives the

exponent 1−1/(8+4θ)+ε for both holomorphic or Maass f , which still yields a subconvexity

bound k9/10+ε even for θ = 1/2. Using θ = 7/64, it is sharper than (1.1) and (1.3). On the

other hand, a recent work of Blomer [3] gave a new bound k(6−2θ)/(7−4θ)+ε. This superseded

our result in [22], although it does require a nontrivial θ to produce a subconvexity bound.

The goal of this paper is to produce a better bound which corresponds to the important

exponent 1/6 in GL1 case.

Theorem 1 Let f be a holomorphic Hecke eigenform for Γ0(N ) of weight k, or a Maass

Hecke eigenform for Γ0(N ) with Laplace eigenvalue 1/4+k2, and let g be a fixed holomorphic

or Maass cusp form for Γ0(N ), or for Γ0(N ′) with (N ,N ′) = 1. Then for any small ε > 0,

we have ∑
K−L≤k≤K+L

|L(1/2 + it, f ⊗ g)|2 �N ,g,t,ε (KL)1+ε (1.4)

whenever K1/3+ε ≤ L ≤ K1−ε. The implied constant in �N ,g,t,ε can be made explicity into

NA(ε)(|t| + 1)3/2C(g, ε) where A(ε) > 0 depends only on ε and C(g, ε) > 0 is a constant

depending on g and ε
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Corollary 2 Let f and g be defined as in Theorem 1. Then

L(1/2 + it, f ⊗ g) �N ,g,t,ε k
2/3+ε, (1.5)

where the implied constant takes an explicit form as in Theorem 1.

Remark 0. The polynomial growth of the level N of f and |t| for fixed g is useful in

applications. We are unable to keep track on the dependence of the implied constants on g

due to the lack of such information in Good’s estimate.

The proof starts with the approximate functional equations, an averaging process with

Kuznetsov formula (or Petersson trace formula), and an application of a Voronoi summation

formula. This will be sketched in Section 4, and full details can be found in [29] and [23].

The core part is the estimation of a shifted convolution sum. We follow Sarnak [29] to apply

the spectral theory to transform the shifted sum into a series, whose summands are products

of gamma functions and the Fourier coefficients of the form g.

A key feature in the present paper is to provide the analytic continuation of the shifted

convolution sum to a bigger region. In [29] and [23], the shifted convolution sum was holo-

morphically continued to the half plane <e s > 1/2+ θ. In [22], this same sum was meromor-

phically extended to the half plane <e s > 1/2, with possible poles in the interval [1/2, 1/2+θ]

associated with possible exceptional Laplace eigenvalues. We found that their contribution

is controllable and indeed negligible in this problem. In the present paper, we will further

extend this shifted sum meromorphically to the left of <e s = 1/2.

The poles due to the non-exceptional eigenvalues come into play. To handle them we

apply a substantial estimate of Good, which is also applied in our work [22]. However,

we control the Fourier coefficients of g(z) and some exponential integrals with the trivial

pointwise bound there, and hence, waste their oscillatory properties and cause great losses.

The spectral large sieve inequality due to Deshouillers and Iwaniec [6] is an effective tool to

exploit the cancellation of the Fourier coefficients. Blomer [2] made use of this large sieve

to derive cancellation among the shifted convolution sums, which were, unlike our approach,

treated by the δ-method there.

In order to fit the spectral large sieve into our context, we need to bypass a technicality

of separating the two intertwined parameters h and tj appropriately. To this end, we provide

an asymptotic formula with an admissible error term for the exponential integrals, which will

be done in Section 5. This process also enables us to utilize the cancellation in the sum over

h, so that we exploit the cancellations in various parts to yield our result. In short, here we

extend our method in [22] and utilize, inspired by [3], the spectral large sieve but the way of
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using it is different from Blomer. Among other things, we need some results on exponential

integrals in Huxley [14] (or see [13]) to complete the delicate analysis.

Remark 1. In [18], Jutila and Motohashi pointed out that their method might be gener-

alized to get a subconvexity bound for our Rankin-Selberg L-functions for the full modular

group in the k aspect with the merit of being uniform in small |t|.
Remark 2. We have not discussed the vital and novel development of the subconvexity

estimate for Rankin-Selberg L-functions on level aspects. Interested readers are referred to

the important works of Kowalski, Michel and VanderKam [20], Michel [26], and Harcos and

Michel [11].

Arguments in Ye [32] are applicable to the present paper, and yield the following improved

result on the fourth power moment of a GL2 L-function over a short interval.

Theorem 3 Let g be a fixed self-contragredient holomorphic or Maass Hecke eigenform for

Γ0(N ), and χ a real, primitive character mod Q with N|Q. Then∫ K+L

K

∣∣∣L(1
2

+ it, g ⊗ χ
)∣∣∣4 dt�N ,g,Q,ε (KL)1+ε

for L = K1/3+ε.

By a standard argument (cf. Ivic [15, p.197]), our Theorem 3 further implies

Corollary 4 Let g and χ be defined as in Theorem 3. Then for any real t,

L
(1

2
+ it, g ⊗ χ

)
�N ,g,Q,ε (1 + |t|)1/3+ε.

This is of the same strength as the classical results of Good for holomorphic cusp form g in

[8], [9], and [10], and of Meurman for Maass g in [25].

Notation. The Vinogradov symbol� is, as usual, defined as |A| ≤ CB for some constant

C when we write A� B. Sometimes, we write �∗ to emphasize that the implied constant C

depends on ∗. The symbol A � B represents both A� B and B � A. Finally a ∼ A means

the set of integers a for which A ≤ a < 2A. In the sequel, ε > 0 is arbitrarily small but fixed.

We write ε = Cε where C is an unspecified absolute positive constant. The implicit constant

C may differ at each occurrence of ε.

2. Spectral theory on L2(Γ \H) and large sieve inequalities

Let Γ be a congruence subgroup of SL2(Z) and H the upper half-plane. Then Γ \ H
is a hyperbolic Riemannian manifold of curvature −1, equipped with a measure dxdy/y2.
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Automorphic functions (defined on H) of weight 0 for Γ are regarded as functions on Γ \H.

Introducing the Petersson inner product

〈f1, f2〉 =
∫

Γ\H
f1(z)f2(z)

dxdy

y2
,

the space L2(Γ \H) of all square integrable functions forms a Hilbert space. We denote the

non-Euclidean Laplacian (the Laplacian on this manifold) by

∆ = −y2
( ∂2

∂x2
+

∂2

∂y2

)
.

By Maass-Selberg theory (see Deshouillers and Iwaniec [6, p.227]), L2(Γ\H) admits a spectral

decomposition with respect to ∆. The spectrum of ∆ consists of two components: the discrete

spectrum 0 = λ0 < λ1 ≤ λ2 ≤ · · · , and the continuous spectrum covering the segment

[1/4,∞). Each eigenvalue in the discrete spectrum has finite order, and λj →∞ as j →∞.

The value of the first non-zero eigenvalue remains an unsettled problem to-date. Selberg

conjectured that λ1 ≥ 1/4 for congruence groups, however, the currently best known result

is λ1 ≥ 1/4 − θ2, where θ is the value in (1.2), due to Kim and Sarnak [19]. Hence the

eigenvalues are divided into two types. Writing λj = sj(1 − sj) and sj = 1/2 + itj , we may

assume

0 < itj ≤ θ if 1
4 − θ2 ≤ λj <

1
4 , or tj ∈ [0,∞) otherwise.

We call the corresponding eigenvalues exceptional and non-exceptional respectively. Con-

cerning the number of eigenvalues, we have Weyl’s law

#{j : tj ≤ T} = cT 2 +O(T log T )

for some constant c > 0.

Let {φ0, φ1, · · · } be an orthonormal basis of the eigenfunctions for the discrete spectrum,

and simultaneously the eigenfunctions of the reflection operators, i.e. φj(−z) = εjφj(z) where

εj = ±1. Besides, for a cusp a we denote by {Ea(z, 1/2 + iτ) : τ ∈ R} the corresponding

Eisenstein series which composes the eigenpacket for the continuous part. Then for any

f ∈ L2(Γ \H), we can expand it into an infinite series

f(z) =
∑
j≥0

〈f, φj〉φj(z) +
1
4π

∑
a

∫ ∞

−∞
〈f,Ea(·, 1/2 + iτ)〉Ea(z, 1/2 + iτ) dτ

convergent in L2 sense. Here the summation
∑

a runs over all cusps of Γ, and there are OΓ(1)

cusps. Both φj(z) and Ea(z, s) have Fourier series expansions: for z = x+ iy,

φj(z) =
√
y
∑
m6=0

ρj(m)Kitj (2π|m|y)e(mx),
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and

Ea(z, s) = δa∞y
s +

√
π

Γ(s− 1/2)
Γ(s)

ρa(s, 0)y1−s

+
2πs√y
Γ(s)

∑
m6=0

|m|s−1/2ρa(s,m)Ks−1/2(2π|m|y)e(mx),

where δa∞ = 1 if a = ∞ and 0 otherwise. As Ea(z, s) = Ea(z, s), it follows that

ρa(s,m) = ρa(s,−m) (2.1)

and also,

ρj(m) = εjρj(−m) (2.2)

by the property of being an eigenfunction of the reflection operator.

To give a pointwise bound to the Fourier coefficients, we can proceed, as in Sarnak [29,

(A.16)], by taking {φj} to be the Hecke eigenforms which are assumed from now on. Then

we have

ρj(m) �ε
(mN tj)ε

√
N

cosh
(πtj

2

)
mθ (2.3)

and by Blomer [2, Lemma 3.4],∑
a

∣∣ρa(1/2 + it,m)
∣∣2 �ε

(
(|t|+ 1)mN

)ε
. (2.4)

However, in order to make use of the cancellation among the Fourier coefficients, we need the

large sieve inequality.

Lemma 2.1 Let T,M ≥ 1. Then for any sequence {bm} of complex numbers, we have

∑
|tj |≤T

1
coshπtj

∣∣∣ ∑
m≤M

bmρj(m)
∣∣∣2 �ε M

ε
(
T 2 +M

) M∑
m=1

|bm|2, (2.5)

∑
a

∫ T

−T

∣∣∣ ∑
m≤M

bmm
irρa(

1
2

+ ir,m)
∣∣∣2 dr �ε M

ε
(
T 2 +M

) M∑
m=1

|bm|2. (2.6)

See [2, Lemma 3.3] or [6, Theorem 2].

3. Spectral decomposition of a shifted sum

Let g ∈ Sl(Γ0(N )) or in Sl(Γ0(N ′)) be a holomorphic cusp form of weight l with Fourier

expansion

g(z) =
∑
n≥1

n(l−1)/2λg(n)e(nz);
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or let g be a Maass cusp form with Laplace eigenvalue 1/4 + l2 and Fourier expansion

g(z) =
√
y
∑
n6=0

λg(n)Kil(2π|n|y)e(nx).

Assume that ν1, ν2, and h are positive integers, and let s = σ+ it with σ > 1 and |t| ≤ T for

any T � 1. We consider the shifted convolution sums

Dg(s, ν1, ν2, h) =
∑

m,n>0
ν1m−ν2n=h

λg(n)λg(m)
( √ν1ν2mn

ν1m+ ν2n

)l−1
(ν1m+ ν2n)−s (3.1)

when g is a holomorphic cusp form, and

Dg(s, ν1, ν2, h) =
∑

m,n6=0
ν1m−ν2n=h

λg(n)λg(m)
( √ν1ν2|mn|
ν1|m|+ ν2|n|

)2il
(ν1|m|+ ν2|n|)−s

when g is a Maass form.

We follow the argument in Sarnak [29, Appendix] to give a spectral decomposition of

Dg(s, ν1, ν2, h) for holomorphic g. We will only consider the case of Γ0(N ). Write Γ =

Γ0(Nν1ν2) and

V (z) = ylg(ν1z)g(ν2z).

Then V is a Γ-invariant function rapidly decreasing at the cusps of Γ, and V ∈ L2(Γ \ H).

Define the Poincaré series Uh(z, s) for Γ by

Uh(z, s) =
∑

γ∈Γ∞\Γ

=m (γz)se(−h<e (γz)),

where h is a positive integer, and e(x) = e2πix. The standard unfolding method expresses

Dg(s, ν1, ν2, h) in terms of the inner product (see [29, p.444])

Dg(s, ν1, ν2, h) =
(2π)s+l−1(ν1ν2)(l−1)/2

Γ(s+ l − 1)
〈Uh(·, s), V 〉. (3.2)

Using the square-integrability of V and the fact that the volume of Γ \ H is finite, we

apply Parseval’s identity to deduce that

〈Uh(·, s), V 〉 =
∑
j≥1

〈Uh(·, s), φj〉〈V, φj〉

+
1
4π

∑
a

∫ ∞

−∞
〈Uh(·, s), Ea(·, 1/2 + iτ)〉〈V,Ea(·, 1/2 + iτ)〉 dτ. (3.3)

The first sum begins with j ≥ 1 since 〈Uh, φ0〉 = 0.
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Now we evaluate the inner products. Let us write

Bj(s) = (ν1ν2)(l−1)/2 2s+l−3πl−1/2

Γ(s+ l − 1)
Γ
(s− 1/2 + itj

2

)
Γ
(s− 1/2− itj

2

)
, (3.4)

Ca(s, τ) = (ν1ν2)(l−1)/2 2s+l−2πl−iτ

Γ(s+ l − 1)
Γ
(s− 1/2 + iτ

2

)
Γ
(s− 1/2− iτ

2

)
. (3.5)

To evaluate the first factor in each summand on the right side of (3.3), we follow [29, (A12)]

and use the formula ∫ ∞

0
Kν(t)tµ−1 dt = 2µ−2Γ

(µ− ν

2

)
Γ
(µ+ ν

2

)
for <eµ > |<e ν|, by Watson [31, p.388(8)]. We have

(2π)s+l−1(ν1ν2)(l−1)/2

Γ(s+ l − 1)
〈Uh(·, s), φj〉 =

ρj(−h)
|h|s−1/2

Bj(s),

and

(2π)s+l−1(ν1ν2)(l−1)/2

Γ(s+ l − 1)
〈Uh(·, s), Ea(·, 1/2 + iτ)〉 =

ρa(1/2 + iτ,−h)
|h|s−1/2+iτ

Ca(s, τ)
Γ(1/2− iτ)

.

Then from (3.2) and (3.3) we have

Dg(s, ν1, ν2, h)

=
∑
j≥1

ρj(−h)
|h|s−1/2

Bj(s)〈V, φj〉

+
1
4π

∑
a

∫ ∞

−∞

ρa(1/2 + iτ,−h)
|h|s−1/2+iτ

Ca(s, τ)
Γ(1/2− iτ)

〈V,Ea(·, 1/2 + iτ)〉 dτ. (3.6)

To control the inner products against V , we invoke Good [7], Theorem 1, for the case of

l ≥ 4, and use Krötz and Stanton [21] for other cases. More precisely, we need a modified

version of their results, for our function V is different from the form of f there. However,

this does not cause big change and we just apply his proof to fl(z) = ykF (z)Pl(z) where F

and Pl are a cusp form and a Poincaré series for Γ, respectively; see [7, (3.2)] and [7, §4].

The main point one should note is that g(ν1z) and g(ν2z) are cusp forms for Γ, and therefore

g(ν2z) is a linear combination of the Poincaré series. Hence,∑
tj≤T

|〈V, φj〉|2eπtj +
1
4π

∑
a

∫ T

−T
|〈V,Ea(·, 1/2 + iτ)〉|2eπ|τ | dτ � T 2l. (3.7)

¿From the fact that Γ(s) has no zero but poles at nonpositive integers and the formula

|Γ(σ + it)| �A0 |t|σ−1/2e−π|t|/2
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for |σ| ≤ A0 and |t| ≥ 1, we have

|Γ(σ + it)−1| �A0 (1 + |t|)1/2−σeπ|t|/2 (|σ| ≤ A0, t ∈ R),

|Γ(σ + it)| �A0,ε (1 + |t|)σ−1/2e−π|t|/2 (|σ| ≤ A0, |σ + it+ n| ≥ ε

for every n = 0, 1, 2, · · · ).
(3.8)

It follows that for s = σ+ it with |σ| ≤ A0 and |s+2n−1/2± iτ | ≥ ε for all n ∈ {0, 1, 2, · · · },

Γ
(s− 1/2 + iτ

2

)
Γ
(s− 1/2− iτ

2

)
�A0,ε

(
(1 + |t− τ |)(1 + |t+ τ |)

)σ/2−3/4
e−π(|t−τ |+|t+τ |)/4. (3.9)

Therefore from (3.4), (3.8), and (3.9) for tj ≥ 2T and |t| ≤ T , we get

Bj(s) �l,ν1,ν2 Γ(s+ l − 1)−1Γ
(s− 1/2 + itj

2

)
Γ
(s− 1/2− itj

2

)
�l,ν1,ν2

t
σ−3/2
j

(1 + |t|)σ+l−3/2
e−πtj/4. (3.10)

Similarly from (3.5), (3.8), and (3.9) for |τ | ≥ 2T and |t| ≤ T , we get

Ca(s, τ) �l,ν1,ν2 Γ(s+ l − 1)−1Γ
(s− 1/2 + iτ

2

)
Γ
(s− 1/2− iτ

2

)
�l,ν1,ν2

|τ |σ−3/2

(1 + |t|)σ+l−3/2
e−π|τ |/4. (3.11)

To estimate the contribution of large tjs, we divide the interval [T,∞) dyadically, and

use (2.3) and the Cauchy-Schwarz inequality:∑
tj>2T

∣∣∣ ρj(−h)
|h|s−1/2

Bj(s)〈V, φj〉
∣∣∣

≤ |h|1/2−σ+θ+ε
∑
r≥1

∑
j: 2rT<tj≤2r+1T

tεj |Bj(s)||〈V, φj〉|eπtj/2

≤ |h|1/2−σ+θ+ε
∑
r≥1

( ∑
2rT<tj≤2r+1T

tεj |Bj(s)|2
)1/2( ∑

2rT<tj≤2r+1T

eπtj |〈V, φj〉|2
)1/2

. (3.12)

For σ > 1, we have, by (3.10) and Weyl’s law,∑
2rT<tj≤2r+1T

tεj |Bj(s)|2

�
(
2r+1T

)2σ−3+ε
e−π2rT/2#{tj : 2rT < tj ≤ 2r+1T}

�
(
2r+1T

)2σ−1+ε
e−π2rT/2 � e−2rT .
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With (3.7), the last line of (3.12) is plainly∑
tj>2T

∣∣∣ ρj(−h)
|h|s−1/2

Bj(s)〈V, φj〉
∣∣∣

� |h|1/2−σ+θ+ε
∑
r≥1

T le−2rT/2 � |h|1/2−σ+θ+εe−T/4. (3.13)

Similarly by (3.11)∫
2rT≤|τ |≤2r+1T

|τ |ε|Ca(s, τ)|2 dτ �
∫

2rT≤|τ |≤2r+1T
|τ |2σ−3+εe−π|τ |/2 dτ

�
(
2rT

)2σ−2+ε
e−π2rT/2 � e−2rT . (3.14)

By a dyadic subdivision and using (2.4) and the Cauchy-Schwarz inequality, we get∑
a

∫
|τ |≥2T

∣∣∣Ca(s, τ)
ρa(1/2 + iτ,−h)
|h|s−1/2+iτ

〈V,Ea(·, 1/2 + iτ)〉
Γ(1/2− iτ)

∣∣∣ dτ
� |h|1/2−σ+ε

∑
r≥1

∫
2rT≤|τ |≤2r+1T

|τ |ε
∣∣Ca(s, τ)

∣∣eπ|τ |/2
∣∣〈V,Ea(·, 1/2 + iτ)〉

∣∣ dτ
� |h|1/2−σ+ε

∑
r≥1

∫
2rT≤|τ |≤2r+1T

(∫
2rT≤|τ |≤2r+1T

|τ |ε|Ca(s, τ)|2 dτ
)1/2

×
(∫

2rT≤|τ |≤2r+1T
eπ|τ ||〈V,Ea(·, 1/2 + iτ)〉|2 dτ

)1/2
.

By (3.7) and (3.14), we have∑
a

∫
|τ |≥2T

∣∣∣Ca(s, τ)
ρa(1/2 + iτ,−h)
|h|s−1/2+iτ

〈V,Ea(·, 1/2 + iτ)〉
Γ(1/2− iτ)

∣∣∣ dτ � |h|1/2−σ+εe−T/4. (3.15)

Using (3.6), (3.13), and (3.15), we conclude that for σ > 1 and |t| ≤ T ,

Dg(s, ν1, ν2, h) = Rh(s) +
∑

j: 0<tj≤2T

ρj(−h)
|h|s−1/2

Bj(s)〈V, φj〉

+
1
4π

∑
a

∫ 2T

−2T

ρa(1/2 + iτ,−h)
|h|s−1/2+iτ

Ca(s, τ)
Γ(1/2− iτ)

〈V,Ea(·, 1/2 + iτ)〉 dτ

+O
(
|h|1/2−σ+θ+εe−T/4

)
(3.16)

where Rh(s) is the sum over all exceptional eigenvalues and the possible eigenvalue λ = 1/4,4

Rh(s) =
(ν1ν2)(l−1)/22s+l−3πl−1/2

Γ(s+ l − 1)

∑
1/2≤sj≤1/2+θ

ρj(−h)
|h|s−1/2

×Γ
(s− sj

2

)
Γ
(s− (1− sj)

2

)
〈V, φj〉. (3.17)

4We include the possible non-exceptional eigenvalue 1/4 just for technical simplicity.
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For later use we record a few notes and estimates. As Rh(s) is a finite sum and

〈V, φj〉 � ‖V ‖‖φj‖ �ν1,ν2,g 1,

Rh(s) is analytic in the complex plane except for poles lying on the real axis, due to the two

gamma functions. In particular, on the half-plane σ > 0, there are only finitely many poles

at sj and 1 − sj lying in the interval [1/2 − θ, 1/2 + θ] ⊂ [0, 1]. Using (3.8), we have, for

|σ| ≤ A0 and |t| ≥ 1,

Γ
(s− sj

2

)
Γ
(s− (1− sj)

2

)
�A0 |t|σ−3/2e−π|t|/2

as sj ∈ R. We get with (2.3), for |σ| ≤ A0 and |t| ≥ 1,

Rh(σ + it) �A0

|ρj(−h)
|h|σ−1/2|Γ(σ + l − 1 + it)|

∣∣∣Γ(s− sj

2

)
Γ
(s− (1− sj)

2

)∣∣∣∣∣〈V, φj〉
∣∣

� |h|1/2−σ+θ+ε|t|−l � |h|1/2−σ+θ+ε. (3.18)

Here we have used (3.8) and assumed l ≥ 0 to cater for the Maass form case.

On the other hand, the functions Bj(s) (when tj ≥ 0) and Ca(s, τ) are holomorphic in

σ > 1/2, and meromorphic on the whole C. Let v ∈ [−2T, 2T ] where T � 1. One derives

easily with (3.8) and (3.9) that for −3/2 + ε ≤ σ ≤ 3/2 with |s− (1/2± iv)| ≥ ε,

Γ(s+ l − 1)−1Γ
(s− 1/2 + iv

2

)
Γ
(s− 1/2− iv

2

)
� (1 + |t|)−(σ+l−3/2)

(
(1 + |t− v|)(1 + |t+ v|)

)σ/2−3/4
e−π(|t−v|+|t+v|−2|t|)/4

� (1 + |t|)−(σ+l−3/2)
(
(1 + ||t| − |v||)(1 + ||t|+ |v||)

)σ/2−3/4
e−π(|t−v|+|t+v|−2|t|)/4

� (1 + |t|)−(σ/2+l−3/4)(1 +
∣∣|t| − |v|∣∣)σ/2−3/4,

since |t − v| + |t + v| − 2|t| ≥ 0, and (1 + |t| + |v|)σ/2−3/4 ≤ (1 + |t|)σ/2−3/4 for σ ≤ 3/2.

Moreover, we have for σ = 1/2 + ε or σ = −1/2,∫
|t|�T

∣∣∣∣Γ(s+ l − 1)−1Γ
(s− 1/2 + iv

2

)
Γ
(s− 1/2− iv

2

)∣∣∣∣2 |ds|
�
∫
|t|�T

(1 + |t|)−(σ+2l−3/2)(1 +
∣∣|t| − |v|∣∣)σ−3/2 dt

� T−(σ+2l−3/2)

∫
|t|�T

(1 + |t|)σ−3/2 dt

�

{
T 1−2l for σ = 1/2 + ε,
T 2−2l for σ = −1/2.

The implied constant in the first case depends on ε.
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Hence, in case 0 ≤ tj ≤ 2T and respectively |τ | ≤ 2T , we get with (3.4) and (3.5) the

crude bounds,

Bj(s) and Ca(s, τ) �l,ν1,ν2,ε T (3.19)

for −1/2 ≤ σ ≤ 3/2 and |s− (1/2± itj)| ≥ ε or |s− (1/2± iτ)| ≥ ε. Besides, we deduce that∫
|t|�T

∣∣∣Bj

(1
2

+ ε+ it
)∣∣∣2 dt and

∫
|t|�T

∣∣∣Ca

(1
2

+ ε+ it, τ
)∣∣∣2 dt�l,ν1,ν2,ε T

1−2l, (3.20)

and ∫
|t|�T

∣∣∣Bj

(
−1

2
+ it

)∣∣∣2 dt and
∫
|t|�T

∣∣∣Ca(−
1
2

+ it, τ
)∣∣∣2 dt�l,ν1,ν2 T

2−2l. (3.21)

4. Outline of the approach

To fix ideas, we consider the case of Maass Hecke eigenform f for Γ0(N ) with Laplace

eigenvalue 1/4 + k2 (but the argument works for holomorphic case as well). Given a holo-

morphic or Maass cusp form g for Γ0(N ), or for Γ0(N ′) with (N ,N ′) = 1, we can express,

via the approximate functional equation, L(1/2 + it, f ⊗ g) as a rapidly convergent series.

We repeat below the argument in [23, Sections 2 and 5] and explain the polynomial growth

of the conductor and |t|.
The Rankin-Selberg L-function satisfies the functional equation

L(s, f ⊗ g) = εf⊗gQ
1/2−s
f⊗g γ(s)L(1− s, f ⊗ g)

where εf⊗g of modulus one is the root number, Qf⊗g ≤ (NN ′)2 is the conductor and

γ(s) =
∏4

i=1 ΓR(1− s+ µi)∏4
i=1 ΓR(s+ µi)

comes from the archimedean factors, with ΓR(s) := π−s/2Γ(s/2) and µi ∈ C. Since g is fixed

and the eigenvalue 1/4 + k2 (or the weight k) of f is large, each parameter |µi| is � k, and

hence the convexity bound is

L(1/2 + it, f ⊗ g) �g,ε N 1/2+ε
(
k + |t|

)1+ε
. (4.1)

(In fact, one can show the explicit dependence on g in the convexity.)
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In view of (4.1), we may assume |t| < k2/3+ε, for otherwise, L(1/2 + it, f ⊗ g) �
N 1/2+ε|t|3/2 and Theorem 1 follows. As in [23, p.1300], we get for |s| ≤ k1−ε,

ΓR(s+ µ)

=
√

2π(1−s−µ)/2 exp
(
−s+ µ

2
+
s+ µ− 1

2
log

s+ µ

2

)(
1 +O

(
1

|s+ µ|

))
=

√
2π(1−s−µ)/2 exp

(
−s+ µ

2
+
s+ µ− 1

2
log

µ

2

)
× exp

(
s+ µ− 1

2

(
s

µ
− 1

2

(
s

µ

)2

+O

((
|s|
|µ|

)3)))(
1 +O

(
1

|s+ µ|

))
=

√
2π(1−s−µ)/2 exp

(
−µ

2
+
s+ µ− 1

2
log

µ

2
+
s2 − 2s

4µ

)(
1 +O

(
|s|3

|µ|2

))
.

Applying to ΓR(1− s+ µ) and ΓR(s+ µ), it follows that

ΓR(1− s+ µ)
ΓR(s+ µ)

= πs−1/2 exp
(

(
1
2
− s)

(
log

µ

2
− 1

2µ

))(
1 +O

(
|s|3

|µ|2

))

=

(
2πe1/(2µ)

µ

)s−1/2(
1 +O

(
|s|3

|µ|2

))
.

Let

X =
4∏

i=1

( µi

2πe1/(2µi)

)1/2
.

Then X is a positive real number about the size of k2 and for |s| ≤ k1−ε,

γ(s) = X1−2s

(
1 +O

(
|s|3

k2

))
. (4.2)

Next, we write s0 = 1/2 + it (with |t| ≤ k2/3+ε) and apply the argument in [23, p.1301],

L(s0, f ⊗ g)

=
1

2πi

∫
<e s=2

XsL(s0 + s, f ⊗ g)G(s)
ds

s

+
εf⊗g

2πi

∫
<e s=2

Q
1/2−s0+s
f⊗g Xsγ(s0 − s)L(1− s0 + s, f ⊗ g)G(s)

ds

s

= J1(X) + J2(X), say,

where G(s) is holomorphic in some vertical strip and decays rapidly as |=m s| → +∞.

Due to (4.2) and the decay rate of G(s), we infer, like [23, (2,2)], that

J2(X) =
εf⊗gQ

1/2−s0

f⊗g X1−2s0

2πi

∫
<e s=2

Qs
f⊗gX

sL(s0 + s, f ⊗ g)G(s)
ds

s

+O

(
1
k2

∫
<e s=1/2+ε

∣∣Qs
f⊗gX

sL(s0 + s, f ⊗ g)G(s)
∣∣ |s− s0|3

|ds|
|s|

)
.
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The integrand in the O-term is � Q
1/2+2ε
f⊗g k1+3ε(1 + |t|)3|s2G(s)| � N 1+ε(1 + |t|)3/2k2+ε, by

|t| ≤ k2/3+ε. Therefore,

J2(X) = ωf⊗g(X, t)
∑
b≥1

1
b

∑
a≥1

λf (a)λg(a)√
a

V
(
ab2

X

)
+O(N 1+ε(1 + |t|)3/2kε), (4.3)

where |ωf⊗g(X, t)| = |εf⊗gQ
1/2−s0

f⊗g X1−2s0 | = 1 and

V(y) :=
1

2πi

∫
<e s=2

Qs
f⊗gG(s)y−s ds

s
.

From the estimate of V (y) in [23, p.1302], we have

V(y) �B

(
1 +

|y|
Qf⊗g

)−B

.

When ab2/X ≥ Xε/2, we choose B(ε) = 2 + 4/ε so that

V
(
ab2

X

)
� Q

B(ε)
f⊗g

(
X

ab2

)2( X

ab2

)B(ε)−2

� Q
B(ε)
f⊗g

(
X

ab2

)2

X−(B(ε)−2)ε/2 �
Q

B(ε)
f⊗g

(ab2)2
.

Hence, the tail part is ∑∑
ab2≥X1+ε/2

1
b

λf (a)λg(a)√
a

V
(
ab2

X

)
�ε Q

B(ε)
f⊗g . (4.4)

Using a partition of unity

∞∑
α=−∞

p(
x

2α/2
) = 1, for x > 0,

with a smooth function p compactly supported in [1, 2], the initial section of the double sum

over ab < X1+ε/2 in (4.3) can be written as

∑
Y =2α/2, α≥−1

Y≤X1+ε/2

Y −1/2
∑

a

λf (a)λg(a)
p(a/Y )√
a/Y

∑
b2≤X1+ε/2/Y

1
b
V
(
ab2

X

)

Shifting the line of integration to <e s = ε and differentiating r times, we see that for
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y ∈ (1, 2),

V(r)

(
y
Y b2

X

)
=

(−1)r

2πi

∫
<e s=ε

Qs
f⊗gG(s)s(s+ 1) · · · (s+ r − 1)y−s−r

(
X

Y b2

)s ds

s

�
(
Qf⊗gX

Y b2

)ε

y−2−r

∫
<e s=ε

|G(s)s(s+ 1) · · · (s+ r − 1)| |ds|
|s|

�ε,r

(
Qf⊗gX

Y b2

)ε

� Qε
f⊗gk

2εb−2ε.

Note that the exponent is independent of r. Therefore, we can write

p(y)
√
y

∑
b2≤X1+ε/2/Y

1
b
V
(
y
Y b2

X

)
= Qε

f⊗gk
2εH(y)

where H(·) is smooth function of compact support in [1, 2] and its rth derivative is Or,ε(1).

Consequently, with (4.3) and (4.4), we deduce that

J2(X) �
∑

Y =2α/2, α≥−1

Y≤X1+ε/2

(Nk)2εY −1/2|SY (f)|+N 2B(ε) +N 1+ε(1 + |t|)3/2kε

� N 2B(ε)(1 + |t|)3/2kε
∑

Y =2α/2, α≥−1

Y≤X1+ε/2

Y −1/2|SY (f)|. (4.5)

The function SY (f) is defined as

SY (f) =
∑

n

λf (n)λg(n)H
( n
Y

)
,

where H is a smooth function of compact support in [1, 2]. The same argument applies to

J1(X) and leads to sums SY (f) as in (4.5), in which the function H, though different from

the one in J2(X), remains smooth and compactly supported in [1, 2]. (See [23, §2] or [29, §1]

as well.)

Let
{
fj

}
be an orthonormal basis, consisting of Hecke eigenforms with eigenvalues 1/4+k2

j ,

of the space of Maass cusp forms. The estimation in Theorem 1 is then reduced to∑
K−L≤kj≤K+L

|SY (fj)|2 �ε LKY
1+ε

with

K1/3+2ε ≤ L ≤ K1−2ε and Y ≤ K2+ε, (4.6)
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for any arbitrarily small but fixed ε > 0. Or, we may use a smoothly weighted sum and

estimate ∑
fj

(
h
(kj −K

L

)
+ h
(
−kj +K

L

))∣∣∣SY (fj)
∣∣∣2, (4.7)

where h(t) is an even analytic function in |Im t| ≤ 1/2 satisfying h(n)(t) � (1 + |t|)−N for

any N > 0 in this region. Thus h is a Schwarz function on R. We also assume that h(t) ≥ 0

for real t. For example, we may simply take h(t) = 1/ cosh(t).

We remark that the normalization of fj in (4.7) is different from the normalization λf (1) =

1 as required in the definition of L(s, f ⊗ g), but the discrepancy is within kε as proved in

Hoffstein and Lockhart [12].

Squaring out |SY (fj)|2 and applying the Kuznetsov formula for both cusps being ∞, or

Petersson formula for holomorphic f and fj , the left-hand side of (4.7) leads to the estimates

of two types of sums, composing of respectively the diagonal terms and non-diagonal terms.

For the Maass case, there is an additional sum over cusps from the Eisenstein part of the

Kuznetsov formula, but this sum can be ignored by positivity, see [23, (3.6)].

The main task is to handle the non-diagonal terms

TK,L(Y ) =
∑
n,m

λg(n)λg(m)H
( n
Y

)
H
(m
Y

)∑
c≥1
N|c

S(m,n, c)
c

VK,L

(
4π
√
mn

c

)
,

see [23, §3] (and [29, §4] for holomorphic case). We seek a bound

TK,L(Y ) �ε Y LK
1+ε

for K1/3+2ε ≤ L ≤ K1−2ε and Y ≤ K2+ε. Then the function VK,L(·) is replaced by a sum

of exponential factors with an negligible error term, see (4.1) and Lemma 4.1 (ii) in [23] or

(55) and Proposition 3.1 (ii) in [29]. However, in both treatments, the expansion of VK,L

is carried out under the assumption L ≥ K1/2, forbidding the application here. We shall

develop another auxiliary but similar finite series expansion.

At first, we write as in [23, (4.1)] or [29, (55)],

VK,L(x) =
1
2i
(
WK,L(x)eix +WK,L(−x)e−ix

)
where

WK,L(x) =
∫

R
e

(
tK

L
+

x

2π
(
cosh(

πt

L
)− 1

))(
h(u)(uL+K)

)∧(t) dt.

(The holomorphic case is similar, except that the hyperbolic cosine function will be replaced

by the cosine function. See (53) and (54) in [29].) The auxiliary tool we need is the lemma

below and its proof is provided in Section 10.
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Lemma 4.1 (i) For ε > 0 and |x| ≤ 8πLK1−ε, WK,L(x) �M,ε K
−M for any M > 0.

(ii) For a 5-tuple λ = (µ, ν, k, α, β), we set λ = k − µ+ 3β − α and define

W̃λ(x)

=
L2k−2ν−αK4β−α

xλ

(
1 + i sgn(x)

) L√
|x|

e
(
−K

2

πx

)
×
(
L

(
u2k−α d2ν

du2ν

(
uh(u)

))∧(2LK
πx

)
+K

(
u2k−αh(2ν)(u)

)∧(2LK
πx

))
.

Assume K1/3+2ε ≤ L ≤ K1−2ε and LK1−ε ≤ |x| � K2+ε. Then for any fixed M ≥ 1, we

have

WK,L(x) =
∑

λ=(µ,ν,k,α,β)

cλW̃λ(x) +O(K−M )

where the summation
∑

λ denotes a multiple sum running over 0 ≤ 3µ ≤ ν ≤ N1, 0 ≤ k ≤ N2,

0 ≤ α ≤ 2k and α ≤ 4β ≤ N3. The coefficients cλ depend only on the parameters in λ, and

Ni (i = 1, 2, 3) denotes some large number depending on ε and M .

For our purpose, x takes the values ±4π
√
mn/c and hence |x| ≤ 8πY . Therefore, an

immediate consequence of Lemma 4.1 (i) is that for Y ≤ LK1−ε, all the non-diagonal terms

are negligible and (4.7) is done. In what follows we consider the ranges

LK1−ε ≤ Y ≤ K2+ε and K1/3+2ε ≤ L ≤ K1−2ε, (4.8)

where Lemma 4.1 (ii) applies.

Applying Lemma 4.1 in place, we repeat the argument in Sections 4.5-4.8 of [23]. That

is, we reduce TK,L(Y ) to T̃±λ (Y ),

TK,L(Y ) =
∑

λ

cλ
(
T̃+

λ (Y ) + T̃−λ (Y )
)

+O(K−M )

where M is any suitably large number at our disposal, and

T̃±λ (Y ) =
∑
n,m

λg(n)λg(m)H
( n
Y

)
H
(m
Y

)∑
c≥1
N|c

S(m,n, c)
c

e

(
± 2

√
mn

c

)
W̃λ

(
± 4π

√
mn

c

)
.

Next, we open the Kloosterman sums and perform a transformation with Voronoi sum-

mation formula. Then we insert the series expansion of Bessel functions, see [23, §4.5]. We
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arrive at

TK,L(Y )

=
∑

η

∑
j

∑
λ

c′η,j,λ

∑
c≤Y/(LK1−ε)

N|c

c−2
∑

n,r≥1

λg(n)λg(r)H
( n
Y

) ∑
z mod c
(z,c)=1

e

(
z(n− r)

c

)

×
∫ ∞

0
H
( t
Y

)
e

(
η1

2
√
tn

c
+ η2

2
√
tr

c

)
W̃λ

(
η3

4π
√
tn

c

)
cj+1/2

(tr)j/2+1/4
dt+O(K−M )

where the summation over η = (η1, η2, η3) with ηj = ±1 runs over all of the eight combina-

tions, j ranges from 1 to N4 with a suitably large N4 = N4(ε,M), and the range of λ is the

same as in Lemma 4.1. The coefficient c′η,j,λ depends only on η, j and λ.

Now we change variables from t to w by t = w2Y . Then

TK,L(Y )

=
∑

η

∑
j

∑
λ

c′η,j,λ

∑
c≤Y/(LK1−ε)

N|c

cj−3/2
∑

n,r≥1

λg(n)λ̄g(r)H
( n
Y

) ∑
z mod c
(z,c)=1

e
(z(n− r)

c

)

×
∫ ∞

0
H(w2)e

(
η1

2w
√
Y (η1

√
n+ η2

√
r)

c

)
W̃λ

(
η3

4πw
√
Y n

c

) 2Y 3/4−j/2 dw

wj−1/2rj/2+1/4

+O(K−M ).

Substituting the formula for W̃λ, we then get

TK,L(Y ) =
∑

η

∑
j

∑
λ

cη,j,λT̃
(η)
λ,j (Y ) +O(K−M ) (4.9)

where cη,j,λ denotes a coefficient, like c′η,j,λ, depending only on the indices and the summand

T̃
(η)
λ,j (Y ) is defined as

T̃
(η)
λ,j (Y ) =

Y 1/2−(λ+j)/2K4β−α

L2ν+α−2k−1

∑
c≤Y/(LK1−ε)

N|c

cj+λ−1

×
∑

n,r≥1

λg(n)λg(r)
nλ/2+1/4rj/2+1/4

H
( n
Y

)
B

(λ,j)
η,Y,c(n, r)

∑
z mod c
(z,c)=1

e

(
z(n− r)

c

)
.

Here for each λ = (µ, ν, k, α, β), we denote by λ the specific expression k − µ + 3β − α and

write

B
(λ,j)
η,Y,c(n, r) = 2K

∫ ∞

0
e

(
2w
√
Y (η1

√
n+ η2

√
r)

c
− η3K

2c

4π2w
√
Y n

)
× h2ν,2k−α

(
η3LKc

2π2w
√
Y n

)
H(w2)
wj+λ

dw (4.10)
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where h2ν,2k−α(t) is the smooth and rapidly decaying function,

h2ν,2k−α(t) =
L

K

(
u2k−α d2ν

du2ν

(
uh(u)

))∧
(t) +

(
u2k−αh(2ν)(u)

)∧(t).

Using the argument in [23, §4.7] (or Lemma 5.1(1) below), we obtain B
(λ,j)
η,Y,c(n, r) � K−M

whenever |r − n| > Y/2.

With the change of variables h = r − n and the well-known formula for the Ramanujan

sum (see e.g. [17, (2.26)]) ∑
z mod c
(z,c)=1

e
(zn
c

)
=
∑

δ|(c,n)

µ
( c
δ

)
δ,

it follows that

T̃
(η)
λ,j (Y ) =

Y 1/2−(λ+j)/2K4β−α

L2ν+α−2k−1

∑
c≤Y/(LK1−ε)

N|c

cj+λ
∑
δ|c

µ(c/δ)
c/δ

∑
|h|≤Y/2

δ|h

P (c, h, Y ). (4.11)

where the last term P (c, h, Y ) is a shifted sum,

P (c, h, Y ) =
∑

n≥max(1,1−h)

λg(n)λg(n+ h)
H(n/Y )

nλ/2+1/4(n+ h)j/2+1/4
B

(λ,j)
η,Y,c(n, n+ h).

By the inverse Mellin transform, P (c, h, Y ) can be expressed as a line integral of

Dg(s, 1, 1, h) against a function as follows:

P (c, h, Y ) =
1

2πi

∫ σ+i∞

σ−i∞
Dg(s, 1, 1, h)G̃h,c(s) ds (4.12)

for any σ > 1, where

G̃h,c(s) = (2Y )sY −(λ+j+1)/2

∫ ∞

0
G0(z)

(
z +

h

2Y

)s−1

dz. (4.13)

Let us take holomorphic cusp form g for illustration. We see from (3.1) that

G0(z) =

(
2z + h/Y√
z(z + h/Y )

)l−1

z−(λ/2+1/4)

(
z +

h

Y

)−j/2−1/4

×H(z)B(λ,j)
η,Y,c(zY, zY + h), (4.14)
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where

B
(λ,j)
η,Y,c(zY, zY + h)

= 2K
∫ ∞

0
e
(2w

√
Y (η1

√
zY + η2

√
zY + h)

c
− η3K

2c

4π2wY
√
z

)
×h2ν,2k−α

( η3LKc

2π2wY
√
z

)H(w2)
wj+λ

dw

= 2Kz(j+λ−1)/2

∫ ∞

0
e
(2wY (η1 + η2

√
1 + h/(Y z))

c
− η3K

2c

4π2wY

)
×h2ν,2k−α

( η3LKc

2π2wY

)
H
(w2

z

) dw

wj+λ

after changing variables from w to w/
√
z.

Then we obtain the following expression for

G̃h,c(s)

= 2K(2Y )σY −(λ+j+1)/2

∫ ∞

0

∫ ∞

0

(
2z + h/Y√
z + h/Y

)l−1(
z +

h

Y

)−j/4−1/4(
z +

h

2Y

)σ−1

×h2ν,2k−α

(
η3LKc

2π2wY

)
H

(
w2

z

)
H(z)e(Φ(z, w, t))

dw

wj+λ

dz

z(2l−j+1)/4
, (4.15)

where

Φ(z, w, t) =
t

2π
log (2Y z + h) +

2wY (η1 + η2

√
1 + h/(Y z))

c
− η3K

2c

4π2wY
. (4.16)

To achieve our goal it remains to evaluate (4.11). A nontrivial estimate of (4.12) will

definitely fulfill the purpose to provide a subconvexity bound. This is the main approach of

Sarnak [29] and our [23].

5. Estimation of G̃h,c(s)

The function G̃h,c(s) in the integral of P (c, h, Y ) is given by an exponential integral.

Clearly, the function G̃h,c(s) is holomorphic on the whole complex plane by (4.13), as |h| ≤
Y/2 and z ∈ [1, 2]. Let A0 be any fixed positive constant. By (4.15), we have the trivial

bound, for any |σ| ≤ A0 and t ∈ R,

G̃h,c(s) �A0 KY
σ−(λ+j+1)/2 (5.1)

but this estimate is very crude. We show a couple of estimates at different phases. For the

values of Y and L we recall the imposed condition (4.8).
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Lemma 5.1 Suppose s = σ + it with −A0 ≤ σ ≤ 2 and t ∈ R. Let 1 ≤ c ≤ Y/(LK1−ε) and

|h| ≤ Y/2.

(1) If η1 = η2, then for any M ′ > 1,

G̃h,c(s) �A0,M,M ′,ε K
−M ′

. (5.2)

(2) Assume η1 6= η2 and c ≤ Y/K2−ε. If |h| ≥ cKε, then (5.2) holds.

(3) Assume η1 6= η2, η3 = sgn(h)η2, and c ≥ Y/K2−ε. Then (5.2) holds. Here the symbol

sgn(h) = h/|h| denotes the sign of h.

(4) Assume c ≥ Y/K2−ε. There exists an absolute constant δ0 > 0 such that (5.2) holds

for

|h| ≤ δ0K
2c2/Y or |h| ≥ δ−1

0 K2c2/Y.

Proof. All estimates are shown by applying integration by parts to the w-integral in (4.15).

We integrate e(Φ(z, w, t))∂Φ
∂w with respect to w many times and differentiate the rest of the

integrand divided by ∂Φ
∂w . The differentiation of a function like

1
wj+λ

H̄
(w2

z

)
yields a constant bound. Each differentiation of h2ν,2k−α in (4.15) produces a factor

− η3LKc

2π2w2Y
� LKc

Y
.

They overall contribute at most

O(1 + LKc/Y ).

It remains to investigate the size of ∂Φ
∂w and its higher derivatives. By (4.16), the derivative

of Φ with respect to w is

∂Φ
∂w

=
2Y
c

(
η1 + η2

√
1 +

h

Y z

)
+

η3K
2c

4π2w2Y
,

and its higher derivatives satisfy

∂rΦ
∂wr

� K2c

Y
.

Because H is supported in [1, 2], we may confine, by (4.15), the values of z and w lying

between 1 and 2.
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(1) When η1 = η2 and c ≤ Y/(LK1−ε),∣∣∣∣∂Φ
∂w

∣∣∣∣ =

∣∣∣∣∣η1
2Y
c

(
1 +

√
1 +

h

Y z

)
+

η3K
2c

4π2w2Y

∣∣∣∣∣
� Y

c

(
1−O

(
K2c2

Y 2

))
� Y

c

(
1−O

((
Kε

L

)2))

� Y

c
� K2c

Y

for c ≤ Y/(LK1−ε). Therefore, for every r ≥ 0,

∂r

∂wr

((
∂Φ
∂w

)−1
)
� c

Y
.

Hence each integration by parts produces a saving

O

(
c

Y
+
LKc

Y

c

Y

)
= O(K−ε).

Doing this repeatedly produces a negligible O(K−M ′
) for arbitrary M ′ > 0, and (5.2) follows

by replacing M ′ by M ′ +M ′
0 where the number M ′

0 = M ′
0(ε,M) (depending on ε and M) is

chosen to satisfy KY 2−(λ+j+1)/2 � KM ′
0 .

(2) From η1 6= η2, we get

∂Φ
∂w

= η2
2Y
c

(√
1 +

h

Y z
− 1
)

+
η3K

2c

4π2w2Y

= sgn(h)η2
2|h|
zc

(
1 +

√
1 +

h

Y z

)−1
+

η3K
2c

4π2w2Y
. (5.3)

Under the assumption in (2), we get

|h|
c
≥ Kε and

K2c

Y
≤ K2

Y

Y

K2−ε
≤ Kε.

With |h| ≤ Y/2 and 1 ≤ z, w ≤ 2, we know that the first term in (5.3) has an absolute value

≥ (
√

6 − 2)Kε, while the second term there has an absolute value ≤ Kε/(4π2). Thus, we

have for r ≥ 2 that

∂rΦ
∂wr

� K2c

Y
� Kε �

∣∣∣∣∂Φ
∂w

∣∣∣∣.
Every integration by parts produces a factor

O

(
K−ε +

LKc

Y
K−ε

)
= O

(
K−ε +

L

K1−ε
K−ε

)
= O(K−ε),
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by c ≤ Y/K2−ε. This case is done.

(3) If η3 = sgn(h)η2, the absolute value of (5.3) is � K2c/Y . It follows that∣∣∣∣∂Φ
∂w

∣∣∣∣� K2c

Y
� ∂rΦ

∂wr
(5.4)

for r ≥ 2, and the saving is

O

((
1 +

LKc

Y

) Y

K2c

)
= O

(
K−ε +

L

K

)
= O(K−ε).

(4) It suffices to consider η1 6= η2 and η3 6= sgn(h)η2. The proof is similar to the above.

By (5.3), we have ∣∣∣∣∂Φ
∂w

∣∣∣∣ =

∣∣∣∣∣2z(1 +

√
1 +

h

Y z

)−1 |h|
c
− K2c

4π2w2Y

∣∣∣∣∣
Since |h| ≤ Y/2 and z, w ∈ [1, 2], there are two absolute constants B′ > A′ > 0 so that

A′ ≤ 2
z

(
1 +

√
1 +

h

Y z

)−1

≤ B′ and A′ ≤ 1
4π2w2

≤ B′.

Therefore, we choose a sufficiently small but absolute constant δ0 > 0 for which∣∣∣∂Φ
∂w

∣∣∣� K2c

Y
− B′

A′
|h|
c
� K2c

Y

(
1− B′

A′
δ0

)
� K2c/Y

whenever |h|/c ≤ δ0K
2c/Y , or∣∣∣∂Φ
∂w

∣∣∣� |h|
c
− B′

A′
K2c

Y
� K2c

Y

(
δ−1
0 − B′

A′

)
� K2c/Y

whenever |h|/c ≥ δ−1
0 K2c/Y .

Thus (5.4) holds in this case. We proceed with the argument in the proof of (3) to

conclude (5.2). �

Lemma 5.2 Suppose s = σ + it with −A0 ≤ σ ≤ 2 and t ∈ R. Assume 1 ≤ c ≤ Y/(LK1−ε)

and 1 ≤ |h| ≤ Y/2. There exists an absolute positive constant δ1 such that

(1) for all |t| ≥ δ−1
1 |h|/c,

G̃h,c(s) �A0,M ′ KY σ−(λ+j+1)/2|t|−M ′
,

(2) for all |t| ≤ δ1|h|/c,

G̃h,c(s) �A0,M ′ KY σ−(λ+j+1)/2
( |h|
c

)−M ′

for any M ′ > 1. The implied constants depend on A0 and M ′ only.
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Proof. We take derivative in (4.16) with respective to z,

∂Φ
∂z

=
t

2π
1

z + h/(2Y )
− η2

w

z2
√

1 + h/(Y z)
h

c
. (5.5)

Note that
1
2π

1
z + h/(2Y )

and
w

z2
√

1 + h/(Y z)

are both bounded above and below by some absolute positive constants B′ and A′, respec-

tively. Hence, there exists some absolute δ1 > 0 such that for |t| ≥ δ−1
1 |h|/c,∣∣∣∂Φ

∂z

∣∣∣� |t| − B′

A′
|h|
c
� |t|

(
1− B′

A′
δ1
)
� |t|,

and for r ≥ 2,
∂rΦ
∂zr

� |t|+ |h|
c
�r |t|.

This time the derivative of the remaining part in the z-integral of (4.15) is O(1). Hence,

successive integration by parts yields the upper bound O(|t|−M ) for the z-integral.

Similarly, we get for |t| ≤ δ1|h|/c,∣∣∣∂Φ
∂z

∣∣∣� |h|
c
− B′

A′
|t| � |h|

c

(
1− B′

A′
δ1
)
� |h|

c
,

and
∂rΦ
∂zr

� |h|
c
.

The above argument yields the desired result. �

In view of Lemma 5.1, the crucial case is c ≥ Y/K2−ε and the non-trivial cases arise when

(η1, η2, η3) is respectively of the form (−η, η,−η) for h > 0, or (η1, η2, η3) = (η,−η,−η) for

h < 0 where η = ±1. Also, together with Lemma 5.2, we need to consider only |h| � K2c2/Y

and |t| � |h|/c. To this end, we need a precise form for G̃h,c(s). We shall make use of the

tools below, which are Lemma 5.1.3 and Lemma 5.5.6 from Huxley [14]. (Note that Lemma

5.5.6 is Theorem 2 in [13] where the proof is provided.)

Lemma 5.3 (Second derivative test) Let f(x) be real and twice differentiable on the open

interval (α, β) with f ′′(x) ≥ λ > 0 on (α, β). Let g(x) be a real function of bounded total

variation, and let V be the sum of its total variation on the closed interval [α, β] and the

maximum modulus of g(x) on [α, β]. Then∣∣∣ ∫ β

α
g(x)e(f(x)) dx

∣∣∣ ≤ 4V√
πλ
.
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Lemma 5.4 (Weighted stationary phase integral) Let f ∈ C(4)([α, β]) and g ∈ C(3)([α, β])

be real-valued functions with continuous fourth and third derivatives, respectively. Suppose

that there are positive parameters P , N , Q, U such that

P ≥ β − α, N ≥ P/
√
Q,

and positive constants Cr such that, for α ≤ x ≤ β,

|f (r)(x)| ≤ CrQ/P
r, |g(s)(x)| ≤ CsU/N

s,

for 1 ≤ r ≤ 4 and 0 ≤ s ≤ 3 with

f ′′(x) ≥ Q/C2P
2.

Suppose f ′(x) changes sign at a point x = γ with α < γ < β. Then,∫ β

α
g(x)e(f(x)) dx

=
g(γ)e(f(γ) + 1/8)√

f ′′(γ)
+
g(β)e(f(β))

2πif ′(β)
− g(α)e(f(α))

2πif ′(α)

+O
(P 4U

Q2

(
1 +

P

N

)2( 1
(β − γ)3

+
1

(γ − α)3
))

+O
( PU
Q3/2

(
1 +

P

N

)2)
.

Remark 3. For a complex-valued g, we split it into g = g1 + ig2 where both g1 and g2 are

real. Since |g(s)
i (x)| ≤ |g(s)(x)|, Lemma 5.4 is also applicable.

Before proving our required formula we introduce some conditions and notation. Assume

1 ≤ C ≤ Y/(LK1−ε) , Kε ≤ K2C/Y � T , c ∼ C , |h| ∼ CT . (5.6)

We use the condition K2C/Y ≥ Kε to replace c ≥ Y/K2−ε. Let us write J = (sgnh)CT and

define for z ∈ [1/2, 2],

ω(z) =
1
2π

Kc√
2|J |Y

1
z

(√
1 + z2

J

Y
+ 1
)1/2

, (5.7)

eη(z, s) =
∫ z

1/2

(
1
u2

+
J

2Y

)s−1

e

(
η
K

π

√
2|J |
Y

u

(√
1 + u2

J

Y
+ 1
)−1/2)

du, (5.8)

Fh,c(z) =

(
2
z2

+
J

Y

)l−1(
1
z2

+
J

Y

)−(2l+j−1)/4

H

(
|h|
|J |z2

)
×H

(
|J |
|h|
z2ω(z)2

)
h2ν,2k−α

(
ηLKc

2π2ω(z)Y

)
z(2l−j−5)/2

ω(z)j+λ−3/2
(5.9)

where η = ±1 and λ ∈ R. In view of (5.6) and supp(H) ⊆ [1, 2], we have the following.

Remark 4. With the notation above, we have
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(i) Kc/
√
|J |Y � KC1/2/

√
Y T � KC1/2/

√
K2C � 1,

(ii) |J |/Y ≤ K2C2/Y 2 ≤ K2ε/L2 = o(1),

(iii) K
√
|J |/Y � T ,

(iv) 1 ≤ |h/J | ≤ 2,

(v) the support of H(|h|v/|J |) (as a function of v) is contained in [1/2, 2].

Therefore, all three functions are well-defined, and Fh,c(z) is supported inside [2−1/2, 21/2],

for any |h| ∼ CT .

We want to separate the h and s parts intertwined inside G̃h,c(s) in (4.15) into a product

of two factors. Let us introduce

G0(s;h, c) = 4π(1 + i)
|J |√
c

(
2Y
|J |

)s

Y −(λ+j)/2

∫ ∞

0
F ′h,c(z)eη(z, s) dz,

G1(s;h, c) = |h|1−sG̃h,c(s)−G0(s;h, c),

(5.10)

where F ′h,c(z) = d
dzFh,c(z) is also compactly supported in [2−1/2, 21/2].

The next lemma shows that G0(s;h, c) is a good approximate to |h|1−sG̃h,c(s).

Lemma 5.5 Let s = σ+it with |σ| ≤ 2 and t ∈ R. Assume that (5.6) holds and (η1, η2, η3) =

(−sgn(h)η, sgn(h)η,−η) where η = ±1. Then both Gr(s;h, c), r = 0, 1, are holomorphic on

C. Moreover, let 0 < a0 < b0 be any fixed absolute constants, then for all |t| ∈ (a0T, b0T ),

G1(s;h, c) � KεY σ−(λ+j)/2(CT )1/2−σT−1/2. (5.11)

The implied constant depends on ε only and 0 < ε� ε; see Notation in Section 1.

Remark 5. Indeed this lemma holds for −A0 ≤ σ ≤ 2 for any A0 > 0, but the range |σ| ≤ 2

will be enough for our applications.

Proof. Recall J = (sgnh)CT . By changing variables from z to |h|z/|J |, G̃h,c(s) in (4.15) is

expressed as

|h|1−sG̃h,c(s) = 2K|J |
(

2Y
|J |

)s

Y −(λ+j+1)/2

∫ ∞

0

( 2z + J/Y√
z + J/Y

)l−1(
z +

J

Y

)−j/4−1/4

×
(
z +

J

2Y

)σ−1
∫ ∞

0
h2ν,2k−α

( η3LKc

2π2wY

)
×H

( |J |w2

|h|z

)
H
( |h|
|J |

z
)
e(φ(z, w, t))

dw

wj+λ

dz

z(2l−j+1)/4
,
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where

φ(z, w, t) =
t

2π
log
(
z +

J

2Y

)
+

2wY
c

(
η1 + η2

√
1 +

J

Y z

)
− η3K

2c

4π2wY
(5.12)

and (η1, η2, η3) = (−sgn(h)η, sgn(h)η,−η).
We consider the case h > 0, and thus J > 0 and (η1, η2, η3) = (−η, η,−η). In other words,

φ(z, w, t) =
t

2π
log
(
z +

J

2Y

)
+ η

(
2wY
c

(√
1 +

J

Y z
− 1
)

+
K2c

4π2wY

)
. (5.13)

For the purpose of this proof, let us denote by Aw +B/w the last bracket in (5.13), i.e.,

A =
2Y
c

(√
1 +

J

Y z
− 1
)
, B =

K2c

4π2Y
.

We will express the w-integral into∫ ∞

0
F(w, z)e(φ(z, w, t)) dw (5.14)

for z fixed, i.e.,

F(w, z) =
1

wj+λ
H

(
|J |w2

|h|z

)
h2ν,2k−α

(
η3LKc

2π2wY

)
, (5.15)

and thus

|h|1−sG̃h,c(s) = 2K|J |
(

2Y
|J |

)s

Y −(λ+j+1)/2

∫ ∞

0

( 2z + J/Y√
z + J/Y

)l−1

×
(
z +

J

Y

)−j/4−1/4(
z +

J

2Y

)σ−1
H
( |h|
|J |

z
)

×
∫ ∞

0
F(w, z)e(φ(z, w, t)) dw

dz

z(2l−j+1)/4
. (5.16)

Due to the factor H(|h|z/|J |), we may restrict the value of |h|z/|J | to the interval [1, 2],

for otherwise, the integrand in (4.15) vanishes. Hence the support of F(w, z) as a function

of w satisfies supp(F) ⊆ [1, 2] from the factor H(|J |w2/(|h|z)) and |h|z/J ∈ [1, 2]. We can

write the integral as ∫ 5/2

1/2
F(w, z)e(φ(z, w, t)) dw.

In order to apply Lemma 5.4, we set α = 1/2, β = 5/2, P = β − α = 2, N = 1 � B−1/2,

Q = B, and U = K3ε.
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It is easy to evaluate the derivatives of φ. We observe that the differentiation of H and

h2ν,2k−α with respect to w produces factors � (|J |/(|h|z)) � 1 and � LKc/Y � Kε,

respectively. Therefore, we have for r ≥ 2 and s ≥ 0,

∂φ

∂w
= η

(
A− B

w2

)
, (−1)r ∂

rφ

∂wr
� ηB

wr+1
and

∂sF
∂ws

� Ksε . (5.17)

The conditions in Lemma 5.4 are thus verified. Moreover, we have ∂φ
∂w (γ) = 0 when

γ =

√
B

A
=

1√
2
Kc

2πY

(√
1 +

J

Y z
− 1
)−1/2

� K√
Y

√
C

T
. (5.18)

Suppose γ ∈ [3/4, 9/4]. Then we apply Lemma 5.4 to get∫ ∞

0
F(w, z)e

(
φ(z, w, t)

)
dw

=
F(γ, z)e(φ(z, γ, t) + 1/8)√

∂2φ
∂w2 (z, γ, t)

+
F(5/2, z)e(φ(z, 5/2, t))

2πi ∂φ
∂w (z, 5/2, t)

− F(1/2, z)e(φ(z, 1/2, t))

2πi ∂φ
∂w (z, 1/2, t)

+O
(P 4U

Q2

(
1 +

P

N

)2( 1
(5/2− γ)3

+
1

(γ − 1/2)3
))

+O
( PU
Q3/2

(
1 +

P

N

)2)
. (5.19)

The second and third terms in (5.19) vanish because F vanishes outside [1, 2]. The first

O-term in (5.19) is absorbed in the second one, because 5/2− γ � 1 and γ − 1/2 � 1, and

because P = 2 and

Q−1 = B−1 � Y

K2C
� T−1.

Therefore, it follows from (5.19) that∫ ∞

0
F(w, z)e

(
φ(z, w, t)

)
dw

=
F(γ, z)e(φ(z, γ, t) + 1/8)√

∂2φ
∂w2 (z, γ, t)

+O
( PU
Q3/2

(
1 +

P

N

)2)

=
γ3/2F(γ, z)√

2B
e
(
Ψ(z, t) +

1
8

)
+O(K3εT−3/2), (5.20)

where

Ψ(z, t) =
t

2π
log
(
z +

J

2Y

)
+ 2η

√
AB

=
t

2π
log
(
z +

J

2Y

)
+ η

√
2K
π

(√
1 +

J

Y z
− 1
)1/2

. (5.21)
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Next we want to show that (5.20) remains valid even when γ /∈ [3/4, 9/4]. To this end,

we observe that in this case, the main term in (5.20) is void for supp(F) ⊆ [1, 2]. Therefore,

it suffices to show the w-integral is absorbed in the O-term of (5.20). This can be seen easily

as follows. For all w ∈ supp(F), we have |γ − w| ≥ 1/4 and so∣∣∣∣ ∂φ∂w
∣∣∣∣ = ∣∣∣∣A− B

w2

∣∣∣∣ = A

∣∣∣∣1− ( γw)2
∣∣∣∣� A� J

C
� T.

With (5.17), we show that (5.14) yields to∫ 2

1

∂

∂w

((
∂φ

∂w

)−1 ∂

∂w

(
F(w, z)

(
∂φ

∂w

)−1))
e(φ(z, w, t)) dw � K2εT−2

with twice integration by parts. Our claim is then justified.

Now we replace the w-integral in (5.16) by (5.20). The contribution of the main term of

(5.20) to (5.16) is

G̃(s;h, c) = 2K|J |
(

2Y
|J |

)s

Y −(λ+j+1)/2 e(1/8)√
2B

∫ ∞

0

(
2z + J/Y√
z + J/Y

)l−1(
z +

J

Y

)−j/4−1/4

×
(
z +

J

2Y

)σ−1

H

(
|h|
|J |

z

)
γ(z)3/2F(γ(z), z)e(Ψ(z, t))

dz

z(2l−j+1)/4
(5.22)

with γ(z) and Ψ(z, t) defined as in (5.18) and (5.21), respectively. Note that from Remark

4(v), the integral with respect to z in (5.16) is

�
∫ 2

1/2

( 2z + J/Y√
z + J/Y

)l−1(
z +

J

Y

)−j/4−1/4(
z +

J

2Y

)σ−1
∣∣∣∣H( |h||J |z)

∣∣∣∣ dz

z(2l−j+1)/4
� 1,

as each factor is O(1) by J/Y = o(1) according to Remark 4(ii). The error term in (5.20)

contributes

� K|J |
(
Y

|J |

)σ

Y −(λ+j+1)/2K3εT−3/2

� K1+εY σ−(λ+j+1)/2T−3/2(CT )1−σ

� KεY σ−(λ+j)/2(CT )1/2−σT−1/2

by K2C/Y � T . In other words, we have

|h|1−sG̃h,c(s)− G̃(s;h, c) � KεY σ−(λ+j)/2(CT )1/2−σT−1/2.

This accounts for (5.11), once we have verified G̃(s;h, c) = G0(s;h, c) as defined in (5.10).

To this end, we change variables from z to z−2 in (5.22). ¿From (5.18) we get

γ(
1
z2

) =
1
2π

Kc√
2JY

1
z

(√
1 + z2

J

Y
+ 1
)1/2

= ω(z)
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by (5.7), and the z-integral in (5.22) becomes

−2
∫ ∞

0

(
2
z2

+
J

Y

)l−1(
1
z2

+
J

Y

)−(2l+j−1)/4

H

(
|h|
|J |z2

)
× zl−j/2−5/2ω(z)3/2F(ω(z), z−2)

(
1
z2

+
J

2Y

)σ−1

e(Ψ(z−2, t)) dz

= −2
∫ ∞

0
Fh,c(z)

(
1
z2

+
J

2Y

)σ−1

e(Ψ(z−2, t)) dz

by (5.15) and (5.9).

Let ψ(z, t) = Ψ(z−2, t). Then by (5.21),

ψ(z, t) =
t

2π
log
(

1
z2

+
J

2Y

)
+ η

K

π

√
2J
Y
z

(√
1 + z2

J

Y
+ 1
)−1/2

.

As 2K|J |Y −1/2e(1/8)/
√

2B = 2π(1 + i)|J |/
√
c, we see that G̃(s;h, c) in (5.22) equals

−4π(1 + i)
|J |√
c

(
2Y
|J |

)s

Y −(λ+j)/2

∫ ∞

0
Fh,c(z)

(
1
z2

+
J

2Y

)σ−1

e(ψ(z, t)) dz. (5.23)

Applying integration by parts, the integral in (5.23) equals

−
∫ ∞

0
F ′h,c(z)

∫ z

1/2

(
1
u2

+
J

2Y

)σ−1

e(ψ(u, t)) du dz.

The inner integral is eη(z, s) by (5.8), so G̃(s;h, c) = G0(s;h, c) and our assertion follows.

When h < 0, we carry out the same analysis but this time, we choose η = η1 and η2 = −η.
The involved case occurs when

φ(z, w, t) =
t

2π
log
(
z +

J

2Y

)
+ η

(
2wY
c

(
1−

√
1 +

J

Y z

)
+

K2c

4π2wY

)
.

Note that J < 0 now. The proof will be the same as above. �

Lemma 5.6 Under the same assumptions and notation as in Lemma 5.5, we have, uni-

formly in z ∈ [1/2, 2], the following estimates: (i) F ′h,c(z) � Kε and (ii) eη(z, s) � T−1/2.

Furthermore, we have

G0(s;h, c) �ε K
εY σ−(λ+j)/2(CT )1/2−σ, (5.24)

and hence,

|h|1−sG̃h,c(s) �ε K
εY σ−(λ+j)/2(CT )1/2−σ. (5.25)
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Proof. From (5.9), (i) follows by direct computation. In fact, by (i) and (ii) in Remark 4,

i.e., Kc/
√
|J |Y � 1 and J/Y = o(1), we see from (5.7) that for z ∈ (1/2, 2), |ω(z)| � 1

is non-vanishing while its derivative |ω′(z)| is O(1). The differentiation of H and h2ν,2k−α

produce O(|h|/|J |) and O(LKc/Y ), which are respectively O(1) and O(Kε).

To prove (ii), we apply Lemma 5.3 (i.e., the second derivative test). Let us write (5.8) as

eη(z, s) =
∫ z

1/2

(
1
u2

+
J

2Y

)σ−1

e(ψ(u, t)) du

where ψ(u, t) is given by

ψ(u, t) =
t

2π
log
(

1
u2

+
J

2Y

)
+ η

K

π

√
2|J |
Y

u

(√
1 + u2

J

Y
+ 1
)−1/2

.

The function
(
u−2 + J/(2Y )

)σ−1 is positive, monotone and bounded away from zero on

[1/2, 2] (with J/Y = o(1) again), and its total variation and maximum are O(1). It re-

mains to evaluate the second derivative ∂2

∂u2ψ(u, t) for u ∈ (1/2, 2). As
(√

1 + z + 1
)−1/2 is a

holomorphic function on |z| < 1/2, we can expand it into power series
∑

r≥0 crz
r and hence

d2

dz2

(
z
(√

1 + z2 + 1
)−1/2

)
=
∑
r≥1

(2r + 1)(2r)crz2r−1

which converges absolutely on |z| ≤ 1/2 and is � |z|. Let us take z =
√
J/Y u where√

J/Y = i
√
|J |/Y for J < 0. As J/Y = o(1), we get with the chain rule,

d2

du2

(
u

(√
1 + u2

J

Y
+ 1
)−1/2

)
=
(√

J

Y

)−1+2

O

(√
|J |
Y

)
� |J |

Y

for 1/2 < u < 2. Thus, by |t| � T and Remark 4(ii) and (iii),

∂2

∂u2
ψ(u, t) =

t

π

1 + 3Ju2/(2Y )
(u+ Ju3/(2Y ))2

+O

(
K

(
|J |
Y

)3/2)
� T

(
1− K2ε

L2

)
� T.

It then follows from Lemma 5.3 that

eη(z, s) � T−1/2.

To get (5.24), we use (5.10), (i), and (ii) with |J | = CT . Then

G0(s;h, c) � C−1/2|J |1−σY σ−(λ+j)/2KεT−1/2 � KεY σ−(λ+j)/2(CT )1/2−σ.

Finally (5.25) follows from (5.11) and the fact that T ≥ Kε by (5.6). �
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Remark 6. The estimates (i) and (ii) motivate the current form (rather than (5.23)) of the

z-integral in G0(s;h, c). In later applications of the spectral large sieve, we shall use the

pointwise bounds for the h and s parts of the integrand, which are now O(Kε) and O(T−1/2),

respectively. These are only O(1) in (5.23). This will result in a saving of T 1/2 .

6. A reduction process

Now we go back to P (c, h, Y ) as given by (4.12). The tail part of the integral in P (c, h, Y )

is negligible, because Dg(s, 1, 1, h) �ε 1 for σ = 1 + ε and by Lemma 5.2(1),

1
2π

∫
|t|�Y

Dg(σ + it, 1, 1, h)G̃h,c(σ + it) dt

� KY σ−(λ+j+1)/2

∫
|t|�Y

|t|−M ′
dt� KY σ−(λ+j−1)/2−M ′

.

Note that this last expression is negligible because Y ≥ LK1−ε by (4.8). Hence we only need

to evaluate the integral over |t| � Y .

Next we separate the situation into seven cases.

(i) η1 = η2.

(ii) η1 6= η2, c ≤ Y/K2−ε, and |h| ≥ cKε.

(iii) η1 6= η2, c ≤ Y/K2−ε, and |h| ≤ cKε.

(iv) η1 6= η2, c ≥ Y/K2−ε, and η3 = sgn(h)η2.

(v) η1 6= η2, c ≥ Y/K2−ε, η3 6= sgn(h)η2 (hence (η1, η2, η3) = (−sgn(h)η, sgn(h)η,−η)),
and |h| ≤ δ0K

2c2/Y , where δ0 is the absolute constant given in Lemma 5.1(4).

(vi) η1 6= η2, c ≥ Y/K2−ε, η3 6= sgn(h)η2 (hence (η1, η2, η3) = (−sgn(h)η, sgn(h)η,−η)),
and |h| ≥ δ−1

0 K2c2/Y .

(vii) η1 6= η2, c ≥ Y/K2−ε, η3 6= sgn(h)η2 (hence (η1, η2, η3) = (−sgn(h)η, sgn(h)η,−η)),
and δ0K2c2/Y ≤ |h| ≤ δ−1

0 K2c2/Y .

First we point out that Cases (i), (ii), and (iv) are negligible according to Lemma 5.1(1),

(2), and (3), respectively. Cases (v) and (vi) are negligible by Lemma 5.1(4). Therefore, the

only nontrivial cases are (iii) and (vii). We can then reduce (4.11) to

T̃
(η)
λ,j (Y ) =

Y 1/2−(λ+j)/2K4β−α

L2ν+α−2k−1

(∑′ +
∑′′)+O(K−M )
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where
∑′ and

∑′′ are sums corresponding to Cases (iii) and (vii), respectively:∑′ =
∑

1≤c≤Y/K2−ε

N|c

cj+λ
∑
δ|c

µ(c/δ)
c/δ

∑
|h|<cKε

δ|h

P (c, h, Y ),

∑′′ =
∑

Y/K2−ε≤c≤Y/(LK1−ε)
N|c

cj+λ
∑
δ|c

µ(c/δ)
c/δ

∑
|h|�K2c2/Y

δ|h

P (c, h, Y ).

The sum
∑′ can be treated in a trivial way. When |h|/c < Kε, we have by Lemma 5.2(1)

with M ′/ε in place of M ′,

1
2π

∫
K3ε<|t|�Y

Dg(σ + it, 1, 1, h)G̃h,c(σ + it) dt

�M ′,ε KY σ−(λ+j+1)/2

∫
|t|>K3ε

|t|−M ′/ε dt�M ′,ε K
2−3M ′

Y σ−(λ+j+1)/2,

which is negligible according to (4.8). On the other hand, by (5.1),

1
2π

∫
|t|≤K3ε

Dg(σ + it, 1, 1, h)G̃h,c(σ + it) dt� K1+3εY (1−λ−j)/2+ε

for σ = 1 + ε. Hence, P (c, h, Y ) � K1+3εY (1−λ−j)/2+ε for |h| < cKε.

Consequently, as Y/K2−ε � K2ε, the sum over c in this range is∑′ �
∑

1≤c≤Y/K2−ε

cj+λ
∑
δ|c

1
c/δ

∑
|h|≤cKε

δ|h

K1+3εY (1−λ−j)/2+ε

� K1+4εY (1−λ−j)/2
∑

1≤c≤Y/K2−ε

cj+λ+ε.

Note that j + λ may be positive, zero, or negative. Thus,∑′ � δ(Y≥K2−ε)K
1+4εY (1−λ−j)/2 max

{
1,
( Y

K2−ε

)j+λ} ∑
1≤c≤Y/K2−ε

cε

� δ(Y≥K2−ε)K
1+εY 1/2 max

{( 1√
Y

)j+λ
,
( √Y
K2−ε

)j+λ}
, (6.1)

where δ(Y≥K2−ε) = 1 if Y ≥ K2−ε, and 0 otherwise. Here we used the fact that Y/K2−ε ≤ K2ε

by (4.8).

In case of
∑′′, we have |h|/c� K2c/Y ≥ Kε. Clearly from Lemma 5.2, only the integral

of P (c, h, Y ) over an interval about |h|/c is the critical part.

We divide dyadically the summation ranges of c and |h|. It suffices to evaluate the sum∑′′(C, T ) =
∑
c∼C
N|c

cj+λ
∑
δ|c

µ(c/δ)
c/δ

∑
|h|∼CT

δ|h

P (c, h, Y )
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where

1 ≤ C ≤ Y/(LK1−ε) and T � K2C/Y ≥ Kε. (6.2)

To be specific, the range of T we need is from δ0K
2C/Y to 2δ−1

0 K2C/Y . We impose the

condition K2C/Y ≥ Kε because c ≥ Y/K2−ε. Together with (6.1), we have

T̃
(η)
λ,j (Y ) � Y −(λ+j)/2K4β−α

L2ν+α−2k
LY 1/2 max

C,T

∑′′(C, T )

+δ(Y≥K2−ε)
Y −(j+λ)/2K4β−α

L2ν+α−2k
LYK1+ε

×max
{( 1√

Y

)j+λ
,
( √Y
K2−ε

)j+λ}
, (6.3)

where the maximum takes C and T over the ranges specified above.

Let c0 = δ1/2 and c′0 = 2δ−1
1 , where δ1 is given in Lemma 5.2. Since T/2 ≤ |h|/c ≤ 2T ,

we see that |t| ≥ c′0T and |t| ≤ c0T imply respectively |t| ≥ δ−1
1 |h|/c and |t| ≤ δ1|h|/c. As

|h|/c� T � Kε, we can apply Lemma 5.2(1) and (2), with (2M ′+M ′
0)/ε in place of M ′, to

get the following estimation uniformly in −A0 ≤ σ ≤ 2,

G̃h,c(σ + it) � KY σ−(λ+j+1)/2|t|−(2M ′+M ′
0)/ε

� K−2M ′
if |t| ≥ c′0T ,

G̃h,c(σ + it) � KY σ−(λ+j+1)/2(|h|/c)−(2M ′+M ′
0)/ε

� K−2M ′
if |t| ≤ c0T ,

(6.4)

for any M ′ ≥ 1, where the implied constants depend on A0,M,M ′, ε. Here A0 > 0 is any

fixed number and M ′
0 = M ′

0(ε,M) is selected so that K−M ′
0 suppresses KY σ−(λ+j+1)/2. We

obtain for σ = 1 + ε and for any M ′ > 1,

1
2π

∫
|t|<c0T

Dg(σ + it, 1, 1, h)G̃h,c(σ + it) dt� K−2M ′
∫
|t|<c0T

dt�M,ε K
1−2M ′

,

as T � K1+ε/L� K, and

1
2π

∫
c′0T<|t|�Y

Dg(σ + it, 1, 1, h)G̃h,c(σ + it) dt� K−2M ′
∫

c′0T<|t|�Y
dt� K2+ε−2M ′

,

by Y ≤ K2+ε and T � Kε. (The integral over |t| � Y was treated at the beginning of this

section.)

Thus these integrals are negligible according to (4.8). Then we may write

P (c, h, Y ) =
1

2πi

∫
`
Dg(s, 1, 1, h)G̃h,c(s) ds+O(K−M ′

) (6.5)
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for any M ′ > 2, where the implied constant in the O-term depends on M ′. Here ` = `−∪`+ is

the (disconnected) path consisting of two disjoint vertical line segments `− from 1 + ε− ic′0T
to 1 + ε− ic0T and `+ from 1 + ε+ ic0T to 1 + ε+ ic′0T .

Inserting the spectral decomposition (3.16) into (6.5), we deduce that

P (c, h, Y ) = PR(c, h, Y ) + Pd(c, h, Y ) + PE(c, h, Y ) +O(K−M ′
), (6.6)

where

PR(c, h, Y ) =
1

2πi

∫
`
Rh(s)G̃h,c(s) ds, (6.7)

Pd(c, h, Y ) =
∑

j: 0<tj≤2T

〈V, φj〉
1

2πi

∫
`
Bj(s)

ρj(−h)
|h|s−1/2

G̃h,c(s) ds, (6.8)

PE(c, h, Y ) =
1
4π

∑
a

∫ 2T

−2T

〈V,Ea(·, 1/2 + iτ)〉
Γ(1/2− iτ)

dτ

× 1
2πi

∫
`
Ca(s, τ)

ρa(1/2 + iτ,−h)
|h|s−1/2+iτ

G̃h,c(s) ds. (6.9)

Note that the contribution of the last term in (3.16) is absorbed in O(K−M ′
). In fact,

|h|1/2−σ+θ+εe−T/4KY σ−(λ+j+1)/2

∫
`
ds� |h|1/2−σ+θ+εTe−T/4KY σ−(λ+j+1)/2. (6.10)

As T � Kε, T � K, and |h| ≤ Y/2, the right side of (6.10) is � bounded by the product of

powers of K and Y times e−Kε/4, and hence negligible.

Correspondingly, we now can decompose∑′′(C, T ) =
∑′′

R(C, T ) +
∑′′

d(C, T ) +
∑′′

E(C, T ) +O(K−M ′
) (6.11)

where for ∗ = R, d or E. Explicitly, we have∑′′
∗(C, T ) :=

∑
c∼C
N|c

cj+λ
∑
δ|c

µ(c/δ)
c/δ

∑
|h|∼CT

δ|h

P∗(c, h, Y )

=
∑

|h|∼CT

∑
δ|h

δ
∑
c∼C

N|c, δ|c

cj+λµ(c/δ)
c

P∗(c, h, Y ) (6.12)

by interchanging the order of summation.

In the next three sections we will evaluate each
∑′′
∗(C, T ) for ∗ = R, d,E in (6.11). We

recall again the values of the parameters due to (4.8) and (6.2),

LK1−ε ≤ Y ≤ K2+ε , K1/3+2ε ≤ L ≤ K1−2ε ,

1 ≤ C ≤ Y/(LK1−ε) , T � K2C/Y ≥ Kε ,
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from whence, we have C � KεT and both C, T � K1+ε/L. (The symbol ε is explained in

Notation at the end of Section 1.)

7. The discrete spectrum λj ≤ 1/4

Using the holomorphicity of Rh(s) (in the complex plane omitting R) and G̃h,c(s), we

apply Cauchy’s theorem to shift horizontally the vertical segments `± to <e s = −A0. The

integral over horizontal line segments are � K−M ′
, by (6.4). Up to an error O(K−M ′

), we

have by (3.18), (5.1) and (6.7),

PR(c, h, Y ) �A0 |h|1/2+A0+θ+εTKY −A0−(λ+j+1)/2

�A0 TK
1+εY −A0−(λ+j+1)/2|h|1+A0 .

Here we have used the trivial bound θ = 1/2 and |h|ε ∼ (CT )ε � Kε. Consequently, we

deduce from (6.12) that

∑′′
R(C, T ) �A0 TK1+εY −A0−(λ+j+1)/2

∑
c∼C
N|c

cj+λ
∑
δ|c

δ

c

∑
|h|∼CT

δ|h

|h|1+A0

�A0 TK1+εY −A0−(λ+j+1)/2Cj+λ(CT )2+A0
∑
c∼C

cε−1

by evaluating the two inner sums, using
∑

δ|c 1 � cε. Then

∑′′
R(C, T ) �A0 CεK1+εY 1/2CT 2

(
CT

Y

)A0+1( C√
Y

)j+λ

�A0 K1+εY 1/2

(
K

L

)3(CT
Y

)A0+1( C√
Y

)j+λ

by C, T � K1+ε/L and absorbing Cε and the ε-power of K from CT 2 in K1+ε. Using

CT/Y ≤ K2C2/Y 2 � K2ε/L2, we conclude that

∑′′
R(C, T ) �A0 K1+εY 1/2

(
K2ε+3/(2A0+5)

L

)2A0+5( C√
Y

)j+λ

. (7.1)

For our purpose, it suffices to take A0 = 2 in (7.1).

For the other two
∑′′
∗(C, T ), the path of integration ` will be shifted horizontally to left

beyond <e s = 1/2. There are contributions due to the poles of Bj(s) and Ca(s, τ). Let us

focus firstly on
∑′′

d(C, T ).
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8. The discrete spectrum λj > 1/4

In this case tj ∈ (0,∞). We move ` = `− ∪ `+ horizontally to `′ = `′− ∪ `′+ whose

real part equals 1/2 + ε. Note that no pole is encountered during this shifting and the

integral over the horizontal line segments is negligible and indeed � K l+4−2M ′
, as explained

below. Let us write T ′ for ±c0T or ±c′0T . The integration over a horizontal line segment

[1/2 + ε+ iT ′, 1 + ε+ iT ′] is, by (6.8),

∑
j: 0<tj≤2T

〈V, φj〉
1

2πi

∫ 1+ε

1
2
+ε

Bj(s′)
ρj(−h)
|h|s′−1/2

G̃h,c(s′) dσ, (8.1)

where s′ = σ + iT ′. By (2.3), ρj(−h) � |h|1/2(|h|tj)εeπtj/2 where, again, we have used

only θ = 1/2, and by (3.19), the function Bj(s′) is � T . With (3.7) and Cauchy-Schwarz’s

inequality, it follows that∑
0<tj≤2T

Bj(s′)ρj(−h)〈V, φj〉

� T |h|1/2(|h|T )ε

( ∑
0<tj≤2T

1
)1/2( ∑

0<tj≤2T

|〈V, φj〉|2eπtj

)1/2

� |h|1/2+εT l+2+ε.

This is crudely � K l+4 for |h| ∼ CT and C, T ≤ K. Hence the integration over horizontal

line segments gives a term O(K l+4−2M ′
), by (6.4).

The shifting of path from ` to `′ yields

Pd(c, h, Y ) =
∑

j: 0<tj≤2T

〈V, φj〉
1

2πi

∫
`′
Bj(s)

ρj(−h)
|h|s−1/2

G̃h,c(s) ds+O(K l+4−2M ′
)

= Pd,0(c, h, Y ) + Pd,1(c, h, Y ) +O(K l+4−2M ′
)

where for r = 0, 1,

Pd,r(c, h, Y ) =
∑

j: 0<tj≤2T

〈V, φj〉
1

2πi

∫
`′
Bj(s)

ρj(−h)
|h|1/2

Gr(s;h, c) ds (8.2)

and G0(s;h, c)+G1(s;h, c) = |h|1−sG̃h,c(s), as defined in (5.10). We insert the formula before

(8.2) for Pd(c, h, Y ) into (6.12), and write correspondingly,∑′′
d(C, T ) =

∑′′
d(C, T )0 +

∑′′
d(C, T )1 +O(K−M ′

) (8.3)
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where for r = 0, 1,∑′′
d(C, T )r =

∑
|h|∼CT

∑
δ|h

δ
∑
c∼C

N|c, δ|c

cj+λµ(c/δ)
c

Pd,r(c, h, Y ) (8.4)

by (8.2) and (6.12). Here M ′ is any sufficiently large number up to our disposal.

We introduce, for simplicity, the sums

Sh,r(s) :=
∑
δ|h

δ
∑
c∼C

N|c, δ|c

cj+λµ(c/δ)
c

Gr(s;h, c) (8.5)

for r = 0, 1, and remark the following estimates for later uses. By Lemmas 5.5 and Lemma 5.6,

we have the upper estimates Gr(s;h, c) � KεY σ−(λ+j)/2(CT )1/2−σT−r/2 and thus for r =

0, 1,

Sh,r(s) � KεY σ−(λ+j)/2(CT )1/2−σT−r/2
∑
δ|h

δ
∑
c∼C
δ|c

cj+λ−1

� KεT−r/2Y σ(CT )1/2−σ

(
1√
Y

)j+λ∑
δ|h

δ · C
j+λ

δ

� τ(|h|)KεT−r/2Y σ(CT )1/2−σ

(
C√
Y

)j+λ

, (8.6)

where τ(n) =
∑

1≤d|n 1 denotes the divisor function. The case for r = 1 is easier, as Sh,1(s)

has an extra saving T 1/2 over Sh,0(s).

Inserting (8.2) into (8.4), we obtain, after moving the summations over |h|, δ and c into

the integral, that for r = 0, 1,

∑′′
d(C, T )r =

1
2πi

∫
`′−∪`′+

∑
j: 0<tj≤2T

〈V, φj〉Bj(s)
∑

|h|∼CT

ρj(−h)
|h|1/2

Sh,r(s) ds

=
∑

j: 0<tj≤2T

〈V, φj〉
1

2πi

∫
`′−∪`′+

Bj(s)
∑

|h|∼CT

ρj(−h)
|h|1/2

Sh,r(s) ds. (8.7)

We apply the Cauchy-Schwarz inequality to the integral to remove Bj(s) from the sum over

tj . Note that <e s = 1/2 + ε for s ∈ `′ and by (3.20),∫
`′±

|Bj(s)|2 |ds| � T 1−2l.

The integral in (8.7) is

� T 1/2−l

(∫
`′−∪`′+

∣∣∣∣ ∑
|h|∼CT

ρj(−h)
|h|1/2

Sh,r(s)
∣∣∣∣2 |ds|)1/2

.
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As the integral in the bracket will appear several times later, we introduce the notation

Ir(σ, ρ) =
∫

`−(σ)∪`+(σ)

∣∣∣∣ ∑
|h|∼CT

ρ(−h)
|h|1/2

Sh,r(s)
∣∣∣∣2 |ds| (8.8)

where `±(σ) denote two vertical line segments σ ± it with t � T .

We infer that for r = 1,

∑′′
d(C, T )1 � T 1/2−l

∑
j: 0<tj≤2T

|〈V, φj〉|I1

(1
2

+ ε, ρj

)1/2
(8.9)

� T 1/2−l

( ∑
0<tj≤2T

|〈V, φj〉|2eπtj

)1/2( ∑
0<tj≤2T

e−πtjI1

(1
2

+ ε, ρj

))1/2

by Cauchy-Schwarz’s inequality. Now we are in a position to apply Good’s estimate (3.7)

and the spectral large sieve inequality (2.5) in Lemma 2.1. The first bracket over tj in (8.9)

is � T 2l by (3.7).

We now evaluate the second bracket in (8.9) for r = 0, 1 by Lemma 2.1, for |σ| ≤ 2,

∑
0<tj≤2T

e−πtjIr(σ, ρj) �
∑

0<tj≤2T

1
coshπtj

∫
`−(σ)∪`+(σ)

∣∣∣∣ ∑
|h|∼CT

ρj(−h)
|h|1/2

Sh,r(s)
∣∣∣∣2 |ds|

�
∫

`−(σ)∪`+(σ)

∑
0<tj≤2T

1
coshπtj

∣∣∣∣ ∑
|h|∼CT

ρj(h)
S−h,r(s)
|h|1/2

∣∣∣∣2 |ds|.
By (2.5), we have

∑
0<tj≤2T

e−πtjIr(σ, ρj) � (CT )ε(T 2 + CT )
∫

`−(σ)∪`+(σ)

∑
|h|∼CT

|Sh,r(s)|2

|h|
|ds|.

By (8.6), we then get

∑
0<tj≤2T

e−πtjIr(σ, ρj) � T 2 · T ·KεT−rY 2σ(CT )1−2σ

(
C√
Y

)2(j+λ) ∑
|h|∼CT

τ(|h|)2

|h|
,

where one factor of O(T ) comes from the line integral over `−(σ) ∪ `+(σ). By the estimate∑
1≤h�X τ(h)2/h� Xε,

∑
0<tj≤2T

e−πtjIr(σ, ρj) � KεT 3−rY 2σ(CT )1−2σ

(
C√
Y

)2(j+λ)

, (8.10)

where we have absorbed the ε powers of T and CT into Kε.
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When r = 1 and σ = 1/2 + ε, we get

∑
0<tj≤2T

e−πtjI1

(1
2

+ ε, ρj

)
� KεT 2Y

(
C√
Y

)2(j+λ)

.

It follows that

∑′′
d(C, T )1 � T 1/2−l · T l ·KεTY 1/2

(
C√
Y

)j+λ

� KεY 1/2T 3/2

(
C√
Y

)j+λ

.

As T � K1+ε/L, we conclude

∑′′
d(C, T )1 � K1+εY 1/2

(
K

L3

)1/2( C√
Y

)j+λ

. (8.11)

The above treatment can be applied to
∑′′

d(C, T )0 but due to the extra T 1/2 in Sh,0(s),

we obtain only the upper estimate

O

(
K1+εY 1/2 K

L2

(
C√
Y

)j+λ
)

which only admits the choice L ≥ K1/2, not sufficient for us. We will carry out a more delicate

analysis to avoid the loss from the removal of Bj(s) with Cauchy-Schwarz’s inequality. In

order to do so, we shift the path `′ further to the left.

¿From (3.4) (with ν1 = ν2 = 1), each Bj(s) (0 < tj ≤ 2T ) has two simple poles at

s = 1/2± itj in the strip −3/2+ε ≤ σ ≤ 2. Clearly, we may assume no tj equal to c0T or c′0T

by a small perturbation (of magnitude ε). By the fact that the residue of Γ
(
(s−1/2−νitj)/2

)
at s = 1/2 + νitj is 2 for ν = ±, we obtain

Pd,0(c, h, Y ) = 2l−3/2πl−1/2
∑
ν=±

×
∑

j: 0<tj≤2T

2νitjΓ(νitj)〈V, φj〉
Γ(l − 1/2 + νitj)

ρj(−h)
|h|1/2

G0

(1
2

+ νitj ;h, c
)

+
∑

j: 0<tj≤2T

〈V, φj〉
1

2πi

∫
`′′
Bj(s)

ρj(−h)
|h|1/2

G0(s;h, c) ds

+O(K l+6−2M ′
) (8.12)

where `′′ = `′′− ∪ `′′+ is the union of the two vertical line segments joining −1/2 − ic′0T to

−1/2− ic0T , and −1/2 + ic0T to −1/2 + ic′0T . The O-term accounts for the contribution of
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the integration over horizontal line segments, following from the same treatment as in (8.1).

This time the integral is taken from −1/2 to 1 + ε, and the factor 1/|h|s′−1/2 is � CT � K2

crudely.

We insert (8.12) into (8.4) for Pd,0(c, h, Y ) and move inwards the summations over |h|, δ
and c. We obtain the decomposition∑′′

d(C, T )0 =
∑′′

d(C, T )+0 +
∑′′

d(C, T )−0 +
∑′′

d(C, T )`
0 +O(K−M ′

) (8.13)

where for ν = ±,

∑′′
d(C, T )ν

0 = 2l−3/2πl−1/2
∑

j: 0<tj≤2T

2νitjΓ(νitj)〈V, φj〉
Γ(l − 1/2 + νitj)

×
∑

|h|∼CT

ρj(−h)
|h|1/2

Sh,0

(1
2

+ νitj

)
, (8.14)

∑′′
d(C, T )`

0 =
1

2πi

∫
`′′

∑
j: 0<tj≤2T

〈V, φj〉Bj(s)
∑

|h|∼CT

ρj(−h)
|h|1/2

Sh,0(s) ds. (8.15)

See (8.5) for the definition of Sh,0(·).
We handle

∑′′
d(C, T )`

0 by adopting the treatment for
∑′′

d(C, T )1. We apply the Cauchy-

Schwarz inequality to the integral in (8.15) to get rid of Bj(s). In this case <e s = −1/2, we

have by (3.21), ∫
`′′
|Bj(s)|2 |ds| � T 2−2l.

We infer with the notation in (8.8) that∑′′
d(C, T )`

0 � T 1−l
∑

j: 0<tj≤2T

|〈V, φj〉|I0

(
−1

2
, ρj

)1/2

� T 1−l

( ∑
0≤tj≤2T

|〈V, φj〉|2eπtj

)1/2( ∑
0≤tj≤2T

e−πtjI0

(
−1

2
, ρj

))1/2

by Cauchy-Schwarz’s inequality on the sum. Then, we apply Good’s estimate (3.7) to the

first factor, and apply the estimate in (8.10), which incorporates the spectral large sieve, to

the second factor with σ = −1/2 and r = 0. It follows that∑′′
d(C, T )`

0 � TKεY −1/2CT 5/2
( C√

Y

)j+λ

= KεY 1/2CT

Y
T 5/2

( C√
Y

)j+λ

� K1+εY 1/2

(
K

L3

)3/2( C√
Y

)j+λ
, (8.16)
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by CT/Y � Kε/L2 and T � K1+ε/L. Comparing with (8.11), (8.16) yields an acceptable

bound for L ≥ K1/3.

Next we evaluate
∑′′

d(C, T )ν
0 for ν = ±, as given in (8.14) with Sh,0 given in (8.5) and

G0(s;h, c) given in (5.10). To this end, we apply the explicit formula in Lemma 5.5 to unwind

the h and tj parts in G0(1/2+ νitj ;h, c), in order to utilize the large sieve inequality. (In the

cases of
∑′′

d(C, T )1 and
∑′′

d(C, T )`
0, this step is not necessary due to the extra averaging over

t.) Invoking the integral representation of G0(s;h, c) in (5.10) and noting that the integrand

is supported in [2−1/2, 21/2] ⊂ [1/2, 2], we can write

G0

(1
2

+ νitj ;h, c
)

= 4π(1 + i)
√

2Y |J |Y −(λ+j)/2

×
∫ 2

1/2

1
c1/2

F ′h,c(z)
(

2Y
|J |

)νit

eη

(
z,

1
2

+ νit
)
dz,

where Fh,c(z) and eη(z, s) are given as in (5.9) and (5.8), respectively. Then we can express

(8.5) as

Sh,0

(1
2

+ νit
)

= 4π(1 + i)
√

2Y |J |Y −(λ+j)/2

∫ 2

1/2
Sh(z)

(
2Y
|J |

)νit

eη

(
z,

1
2

+ νit
)
dz (8.17)

for s = 1/2 + νit, where

Sh(z) =
∑
δ|h

δ
∑
c∼C

N|c, δ|c

cj+λµ(c/δ)
c3/2

F ′h,c(z). (8.18)

Let us also introduce the function

B(z, ντ) =
2νiτΓ(νiτ)

Γ(l − 1/2 + νiτ)

(
2Y
|J |

)νiτ

eη

(
z,

1
2

+ νiτ
)
. (8.19)

The symbol η is not shown up in B(z, νt) because its value has no effective in the estimation

below.

The key feature of Sh(z) and B(z, ντ) is their respective independence from the spectral

parameter tj and the parameter h, which enables the application of Good’s inequality and

the large sieve inequality. But at first we need some estimates. From Lemma 5.6 (i), it is

clear that

Sh(z) � KεCj+λ−1/2
∑
δ|h

δ
∑
c∼C
δ|c

c−1 � τ(|h|)KεCj+λ−1/2. (8.20)

Moreover, we have by (3.8),

2νiτΓ(νiτ)
Γ(l − 1/2 + νiτ)

� |τ |1/2−l,
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for τ ≥ ε, and then with Lemma 5.6 (ii), we infer that for |τ | � T ,

B(z, ντ) � T−l. (8.21)

In view of (8.14) and (8.17), we have∑′′
d(C, T )ν

0

= 2l+1πl+1/2(1 + i)
√
Y |J |Y −(λ+j)/2

×
∫ 2

1/2

∑
j: 0<tj≤2T

2νitjΓ(νitj)〈V, φj〉
Γ(l − 1/2 + νitj)

(
2Y
|J |

)νitj

eη

(
z,

1
2

+ νitj

) ∑
|h|∼CT

ρj(−h)
|h|1/2

Sh(z) dz

= 2l+1πl+1/2(1 + i)
√
Y |J |Y −(λ+j)/2

×
∫ 2

1/2

∑
j: 0<tj≤2T

B(z, νtj)〈V, φj〉
∑

|h|∼CT

ρj(−h)
|h|1/2

Sh(z) dz (8.22)

by (8.19). We insert the factor eπtj/2(cosh(πtj))−1/2 (� 1) and apply Cauchy-Schwarz’s

inequality to the integrand,∑
j: 0<tj≤2T

B(z, νtj)〈V, φj〉
∑

|h|∼CT

ρj(−h)
|h|1/2

Sh(z)

�
( ∑

j: 0<tj≤2T

|B(z, νtj)|2|〈V, φj〉|2eπtj
)1/2

×
( ∑

j: 0<tj≤2T

1
cosh(πtj)

∣∣∣ ∑
|h|∼CT

ρj(−h)
|h|1/2

Sh(z)
∣∣∣2)1/2

. (8.23)

The first bracket is very small, for we have, by (3.7) and (8.21),∑
j: 0<tj≤2T

|B(z, νtj)|2|〈V, φj〉|2eπtj

� (log T ) sup
X≤T

X−2l
∑

j: |tj |∼X

|〈V, φj〉|2eπtj � T ε. (8.24)

The second bracket is treated by the large sieve inequality (2.5) and (8.20),∑
j: 0<tj≤2T

1
cosh(πtj)

∣∣∣∣ ∑
|h|∼CT

ρj(−h)
|h|1/2

Sh(z)
∣∣∣∣2

� (CT )ε(T 2 + CT )
∑

|h|∼CT

|Sh(z)|2

|h|

� T 2 ·KεC2(j+λ)−1
∑

|h|∼CT

τ(|h|)2

|h|

� KεT 2C2(j+λ)−1, (8.25)
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where we again used the fact that
∑

1≤h�X τ(h)2/h� Xε.

Using (8.24) and (8.25), we get from (8.23) that∑
j: 0<tj≤2T

B(z, νtj)〈V, φj〉
∑

|h|∼CT

ρj(−h)
|h|1/2

Sh(z) � KεT 1+εCj+λ−1/2.

This in turn gives us an estimate of (8.22) for ν = ±,∑′′
d(C, T )ν

0 �
√
Y |J |Y −(λ+j)/2 · T ε ·KεTC(j+λ)−1/2

� K1+εY 1/2

(
K

L3

)1/2( C√
Y

)j+λ

, (8.26)

by |J | = TC and T � K1+ε/L.

By (8.3) and (8.13), the estimation of
∑′′

d(C, T ) is reduced to estimations for
∑′′

d(C, T )1,∑′′
d(C, T )`

0,
∑′′

d(C, T )+0 , and
∑′′

d(C, T )−0 . These are established respectively in (8.11), (8.16)

and (8.26). We therefore conclude that

∑′′
d(C, T ) � K1+εY 1/2

(
K

L3

)1/2( C√
Y

)j+λ

(8.27)

for L ≥ K1/3.

9. The continuous spectrum

Finally we evaluate
∑′′

E(C, T ) in (6.11). The treatment is very similar to the case of

discrete spectrum. However, when we shift the path of integration `′ beyond <e s = 1/2, a

technical problem arises as we cannot avoid the poles of Ca(s, τ) (at s = 1/2± iτ , see (3.5))

to appear on the horizontal line segments. (Note that c0 or c′0 may lie in [−2, 2].) To this

end, we put I = [c0T/2, 2c′0T ] and divide the τ -integral in the definition of PE(c, h, Y ) in

(6.9) into two parts:

PE(c, h, Y ) = PE,O(c, h, Y ) + PE,I(c, h, Y )

according as |τ | ∈ [0, 2T ] \ I or |τ | ∈ [0, 2T ] ∩ I, and write correspondingly,∑′′
E(C, T ) =

∑′′
E(C, T )O +

∑′′
E(C, T )I . (9.1)

Explicitly, we have

PE,O(c, h, Y ) =
1
4π

∑
a

∫
|τ |∈[0,2T ]\I

〈V,Ea(·, 1/2 + iτ)〉
Γ(1/2− iτ)

× 1
2πi

∫
`
Ca(s, τ)

ρa(1/2 + iτ,−h)
|h|s−1/2+iτ

G̃h,c(s) ds dτ, (9.2)
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PE,I(c, h, Y ) =
1
4π

∑
a

∫
|τ |∈[0,2T ]∩I

〈V,Ea(·, 1/2 + iτ)〉
Γ(1/2− iτ)

× 1
2πi

∫
`
Ca(s, τ)

ρa(1/2 + iτ,−h)
|h|s−1/2+iτ

G̃h,c(s) ds dτ, (9.3)

∑′′
E(C, T )O =

∑
|h|∼CT

∑
δ|h

δ
∑
c∼C

N|c, δ|c

cj+λµ(c/δ)
c

PE,O(c, h, Y ), (9.4)

∑′′
E(C, T )I =

∑
|h|∼CT

∑
δ|h

δ
∑
c∼C

N|c, δ|c

cj+λµ(c/δ)
c

PE,I(c, h, Y ). (9.5)

Let R be the rectangle with vertices at −1/2 + ic0T , −1/2 + ic′0T , 1 + ε + ic0T and

1 + ε + ic′0T , and R′ be its mirror image about the real axis. When |τ | /∈ I (and thus

τ /∈ [c0T, c′0T ]), the point 1/2 + iτ always lies outside R ∪ R′. Hence, the shifting of ` to

`′′ = `′′− ∪ `′′+ (where σ = −1/2 and c0T ≤ |t| ≤ c′0T for σ + it ∈ `′′) does not cross any pole

of Ca(s, τ).

We move the path ` in the inner integral of PE,O(c, h, Y ) in (9.2) to `′′ with a cost of

producing a term O(K l+4−2M ′
), by (6.4) and the same fashion of treatment in (8.1). As in

(8.7), we move the sums over |h|, δ and c in (9.4) inside the integrals of PE,O(c, h, Y ). Let us

abbreviate

ρa,τ (−h) = |h|iτρa(1/2 + iτ,−h). (9.6)

Then from (9.4) we get

∑′′
E(C, T )O =

1
4π

∑
a

∫
|τ |∈[0,2T ]\I

〈V,Ea(·, 1/2 + iτ)〉
Γ(1/2− iτ)

dτ

× 1
2πi

∫
`′′−∪`′′+

Ca(s, τ)
∑

h∼CT

ρa,τ (−h)
|h|1/2

×
∑
δ|h

δ
∑
c∼C

N|c, δ|c

cj+λµ(c/δ)
c

|h|1−sG̃h,c(s) ds+O(K−M ′
). (9.7)

Now we recall |h|1−sG̃h,c(s) =
∑

r=0,1Gr(s;h, c) and

∑
δ|h

δ
∑
c∼C

N|c, δ|c

cj+λµ(c/δ)
c

|h|1−sG̃h,c(s) = Sh,0(s) + Sh,1(s),
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by (8.5). Therefore we can rewrite (9.7) as∑′′
E(C, T )O =

1
4π

∑
r=0,1

∑
a

∫
|τ |∈[0,2T ]\I

〈V,Ea(·, 1/2 + iτ)〉
Γ(1/2− iτ)

dτ

× 1
2πi

∫
`′′−∪`′′+

Ca(s, τ)
∑

h∼CT

ρa,τ (−h)
|h|1/2

Sh,r(s) ds+O(K−M ′
). (9.8)

When s ∈ `′′ and |τ | ≤ 2T , we have s = −1/2 + it with |t| � T and thus∫
`′′
|Ca(s, τ)|2 |ds| � T 2−2l

by (3.21). By the Cauchy-Schwarz inequality, the s-integral in (9.8) is

�
(∫

`′′
|Ca(s, τ)|2 |ds|

)1/2
(∫

`′′

∣∣∣∣ ∑
h∼CT

ρa,τ (−h)
|h|1/2

Sh,r(s)
∣∣∣∣2 |ds|

)1/2

.

It follows that∑′′
E(C, T )O � T 1−l

∑
r=0,1

∑
a

∫
|τ |∈[0,2T ]\I

|〈V,Ea(·, 1/2 + iτ)〉|

×eπ|τ |/2Ir

(
−1

2
, ρa,τ

)1/2
dτ (9.9)

by (8.8). Note that the factor eπ|τ |/2 comes up from Γ(1/2 − iτ)−1, by (3.8). Relaxing the

range of integration and using Cauchy-Schwarz’s inequality, we obtain∑′′
E(C, T )O � T 1−l

∑
r=0,1

(∑
a

∫ 2T

−2T
|〈V,Ea(·, 1/2 + iτ)〉|2eπ|τ | dτ

)1/2

×
(∑

a

∫ 2T

−2T
Ir

(
−1

2
, ρa,τ

)
dτ

)1/2

.

As before, we apply Good’s estimate and the large sieve inequality. The first bracket is � T 2l

by (3.7).

The second bracket is evaluated along the line of argument in (8.10), as follows. Inter-

changing the order of integrations, we have∑
a

∫ 2T

−2T
Ir(σ, ρa,τ ) dτ =

∫
`−(σ)∪`+(σ)

|ds|
∑

a

∫ 2T

−2T

∣∣∣ ∑
h∼CT

ρa,τ (−h)
|h|1/2

Sh,r(s)
∣∣∣2 dτ.

Using the spectral large sieve (2.6), we get∑
a

∫ 2T

−2T
Ir(σ, ρa,τ ) dτ � (CT )ε(T 2 + CT )

∫
`−(σ)∪`+(σ)

∑
|h|∼CT

|Sh,r(s)|2

|h|
|ds|

� KεT 3−rY 2σ(CT )1−2σ

(
C√
Y

)2(j+λ)

(9.10)
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by (8.6), where r = 0 or 1. Taking σ = −1/2 in (9.10), we conclude that

∑′′
E(C, T )O � T 1−l · T l ·KεT 3/2Y −1/2(CT )

(
C√
Y

)(j+λ)

� K1+εY 1/2

(
K

L3

)3/2( C√
Y

)j+λ

, (9.11)

for CT/Y � Kε/L2 and T � K1+ε/L.

It remains to estimate the sum
∑′′

E(C, T )I corresponding to PE,I(c, h, Y ) given by (9.5)

and (9.3). We shall follow the argument in treating
∑′′

d(C, T ) in §8. To bypass the technical

problem mentioned at the beginning, we elongate the two components `± of `. More specifi-

cally, we take c1 = c0/4 and c′1 = 4c′0, and let ˜̀− and ˜̀
+ be the straight line segments joining

from 1 + ε− c′1iT to 1 + ε− c1iT and from 1 + ε+ c1iT to 1 + ε+ c′1iT , respectively. Also,

we denote by ˜̀= ˜̀− ∪ ˜̀
+ their union.

The newly fill-in is indeed negligible because by (6.4), G̃h,c(s) � K−2M ′
for s ∈ ˜̀\ `,

whose imaginary part is outside [c0T, c′0T ], while the remnant in the integral is at most∫
˜̀\`

∫
|τ |∈[0,2T ]∩I

∣∣∣∣Ca(s, τ)
〈V,Ea(·, 1/2 + iτ)〉

Γ(1/2− iτ)
ρa(1/2 + iτ,−h)
|h|s−1/2+iτ

∣∣∣∣ dτ |ds|
� |h|−1/2

∫
˜̀\`

∣∣Ca(s, τ)
∣∣ |ds|∫

|τ |≤2T

∣∣〈V,Ea(·, 1/2 + iτ)〉
∣∣eπ|τ |/2 dτ (9.12)

by (2.4) and (3.8). Applying (3.19) to the first integral on the right side of (9.12) and applying

Cauchy-Schwarz’s inequality to the second integral, we conclude that (9.12) is bounded by

� |h|−1/2T 2
(∫

|τ |≤2T

∣∣〈V,Ea(·, 1/2 + iτ)〉
∣∣2eπ|τ | dτ)1/2(∫

|τ |≤2T
dτ
)1/2

� T 5/2+l

by (3.7). Note that the number of summands in the sum over cusps is independent of K.

The added portion is thus O(K l+5/2−2M ′
).

After replacing ` by ˜̀, we follow closely the argument in the discrete spectrum case. We

shift the path ˜̀ to ˜̀′ (with σ = 1/2 + ε), and then split |h|1−sG̃h,c(s) into G0(s;h, c) and

G1(s;h, c) as defined in (5.10). The horizontal line segments produce an admissible error

O(K l+4−2M ′
) by the same arguments as at the beginning of §8. This leads to the evaluation,

for r = 0, 1,

∑′′
E(C, T )I,r =

1
4π

∑
a

∫
|τ |∈[0,2T ]∩I

〈V,Ea(·, 1/2 + iτ)〉
Γ(1/2− iτ)

dτ

× 1
2πi

∫
˜̀′
Ca(s, τ)

∑
h∼CT

ρa,τ (−h)
|h|1/2

Sh,r(s) ds+O(K−M ′
) (9.13)
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where ρa,τ (−h) and Sh,r(s) are defined as in (9.6) and (8.5) respectively. Note that∑′′
E(C, T )I =

∑′′
E(C, T )I,0 +

∑′′
E(C, T )I,1 +O(K−M ′

). (9.14)

We note <e s = 1/2 + ε for s ∈ ˜̀′ in (9.13) and by (3.20),∫
˜̀′
|Ca(s, τ)|2 |ds| � T 1−2l.

We deduce from Γ(1/2− iτ)−1 � eπ|τ |/2 and (8.8) that

∑′′
E(C, T )I,1 � T 1/2−l

∑
a

∫ 2T

−2T

∣∣〈V,Ea(·, 1/2 + iτ)〉
∣∣

×eπ|τ |/2I1

(1
2

+ ε, ρa,τ

)1/2
dτ, (9.15)

with a relaxation of the range of integration, and then

∑′′
E(C, T )I,1 � T 1/2−l

(∑
a

∫ 2T

−2T

∣∣〈V,Ea(·, 1/2 + iτ)〉
∣∣2eπ|τ | dτ)1/2

×

(∑
a

∫ 2T

−2T
I1

(1
2

+ ε, ρa,τ

)
dτ

)1/2

by Cauchy-Schwarz’s inequality. Invoking Good’s result (3.7) and (9.10), we derive

∑′′
E(C, T )I,1 � T 1/2−l · T l ·KεTY 1/2

(
C√
Y

)j+λ

.

� K1+εY 1/2

(
K

L3

)1/2( C√
Y

)j+λ

. (9.16)

We shift the path ˜̀′ in
∑′′

E(C, T )I,0 horizontally to ˜̀′′ whose real part is −1/2. Due to

Ca(s, τ), two poles come up at s = 1/2± iτ , and the residues are

2l−1/2πl 2
±iτπ−iτΓ(±iτ)

Γ(l − 1/2± iτ)
. (9.17)

This is not big, actually, � |τ |1/2−l by (3.8).

There is no pole lying on the horizontal line segments because the end-points of ˜̀ have

imaginary parts ±c0T/4 or ±4c′0T but c0T/2 ≤ |τ | ≤ 2c′0T . These horizontal line segments

again produce an admissible error of O(K l+4−2M ′
). Like in

∑′′
d(C, T )0 in (8.13), we split∑′′

E(C, T )I,0 into three parts,∑′′
E(C, T )I,0 =

∑′′
E(C, T )+I,0 +

∑′′
E(C, T )−I,0 +

∑′′
E(C, T )`

I,0 +O(K−M ′
), (9.18)
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where for ν = ± the contribution from the residue in (9.17) is

∑′′
E(C, T )ν

I,0 = 2l−5/2πl−1
∑

a

∫
|τ |∈[0,2T ]∩I

2νiτπ−iτΓ(νiτ)〈V,Ea(·, 1/2 + iτ)〉
Γ(l − 1/2 + νiτ)Γ(1/2− iτ)

×
∑

h∼CT

ρa,τ (−h)
|h|1/2

Sh,0

(1
2

+ νiτ
)
dτ, (9.19)

and the new line integral on ˜̀′′ is

∑′′
E(C, T )`

I,0 =
1
4π

∑
a

∫
|τ |∈[0,2T ]∩I

〈V,Ea(·, 1/2 + iτ)〉
Γ(1/2− iτ)

dτ

× 1
2πi

∫
˜̀′′
Ca(s, τ)

∑
h∼CT

ρa,τ (−h)
|h|1/2

Sh,0(s) ds.

¿From (3.21), we have ∫
˜̀′′
|Ca(s, τ)|2 |ds| � T 2−2l,

and thus,

∑′′
E(C, T )`

I,0 � T 1−l
∑

a

∫ 2T

−2T

∣∣〈V,Ea(·, 1/2 + iτ)〉
∣∣eπ|τ |/2I1

(
−1

2
, ρa,τ

)1/2
dτ

by arguments similar to (9.9) and (9.15). Again, by Cauchy-Schwarz’s inequality, (3.7) and

(9.10) for σ = −1/2 and r = 0, it follows

∑′′
E(C, T )`

I,0 � T 1−lT lKεT 3/2Y −1/2(CT )
(
C√
Y

)j+λ

� K1+εY 1/2

(
K

L3

)3/2( C√
Y

)j+λ

(9.20)

as in (9.11).

Now let us turn to (9.19). Using Sh(z) and eη(z, s) as defined in (8.18) and (5.8), respec-

tively, we can insert (8.17) into (9.19) and get

∑′′
E(C, T )ν

I,0 = 2l−5/2πl−1
∑

a

∫
|τ |∈[0,2T ]∩I

2νiτπ−iτΓ(νiτ)〈V,Ea(·, 1/2 + iτ)〉
Γ(l − 1/2 + νiτ)Γ(1/2− iτ)

×
∑

h∼CT

ρa,τ (−h)
|h|1/2

dτ 4π(1 + i)
√

2Y |J |Y −(λ+j)/2

×
∫ 2

1/2
Sh(z)

(
2Y
|J |

)νit

eη

(
z,

1
2

+ νit
)
dz.
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Then we use B(z, ντ) as defined in (8.19) to rewrite

∑′′
E(C, T )ν

I,0 = (2π)l(1 + i)
√
Y |J |Y −(λ+j)/2

∫ 2

1/2
dz
∑

a

∫
|τ |∈[0,2T ]∩I

B(z, ντ)

×π
−iτ 〈V,Ea(·, 1/2 + iτ)〉

Γ(1/2− iτ)

∑
h∼CT

ρa,τ (−h)
|h|1/2

Sh(z) dτ. (9.21)

Applying Cauchy-Schwarz’s inequality with Γ(1/2− iτ)−1 � eπ|τ |/2, the integrand of the

z-integral in (9.21) is

�

(∑
a

∫
|τ |∈[0,2T ]∩I

|B(z, ντ)|2|〈V,Ea(·, 1/2 + iτ)〉|2eπ|τ | dτ

)1/2

×

(∑
a

∫
|τ |∈[0,2T ]∩I

∣∣∣∣ ∑
h∼CT

ρa,τ (−h)
|h|1/2

Sh(z)
∣∣∣∣2 dτ

)1/2

. (9.22)

When |τ | ∈ I (i.e. |τ | � T ), we can apply the estimate (8.21) so that the first bracket in

(9.22) is

� T−2l
∑

a

∫
|τ |∈[0,2T ]∩I

|〈V,Ea(·, 1/2 + iτ)〉|2eπ|τ | dτ � 1

by (3.7). From the spectral large sieve inequality (2.6), the second bracket in (9.22) is

�
∑

a

∫ 2T

−2T

∣∣∣∣ ∑
h∼CT

ρa,τ (−h)
|h|1/2

Sh(z)
∣∣∣∣2 dτ

� (CT )ε(T 2 + CT )
∑

h∼CT

∣∣Sh(z)
∣∣2

|h|

� T 2KεC2(j+λ)−1,

by (8.20), following an argument similar to (8.25). Consequently, as |J | = CT and T �
K1+ε/L, we get from (9.22) that∑′′

E(C, T )ν

I,0 �
√
Y |J |Y −(λ+j)/2TKεC(j+λ)−1/2

� Kε
√
Y T 3/2

(
C√
Y

)j+λ

� K1+εY 1/2

(
K

L3

)1/2( C√
Y

)j+λ

. (9.23)

Consequently by (9.20) and (9.23), (9.18) becomes

∑′′
E(C, T )I,0 � K1+εY 1/2

(
K

L3

)1/2( C√
Y

)j+λ
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for L3 ≥ K. With (9.16), we get the same bound for (9.14). Finally by (9.11) and (9.1), we

infer that ∑′′
E(C, T ) � K1+εY 1/2

(
K

L3

)1/2( C√
Y

)j+λ

(9.24)

for L3 ≥ K.

10. The proof of Theorem 1 for holomorphic g

In view of our estimates for
∑′′

R(C, T ),
∑′′

d(C, T ), and
∑′′

E(C, T ) (with the choice A0 = 2)

in (7.1), (8.27), and (9.24), we deduce from (6.11) that

∑′′(C, T ) � K1+εY 1/2

((K
L3

)1/2
+
(K1+6ε

L3

)3
)

max
C

(
C√
Y

)j+λ

� K1+εY 1/2

(( 1√
Y

)j+λ
+
( √

Y

LK1−ε

)j+λ
)

(10.1)

under the conditions

LK1−ε ≤ Y ≤ K2+ε , K1/3+2ε ≤ L ≤ K1−2ε ,

1 ≤ C ≤ Y/(LK1−ε) , T � K2C/Y ≥ Kε .

Note that λ and even j + λ may be negative. Inserting the last estimate in (10.1) into (6.3),

we get

T̃
(η)
λ,j (Y ) � Y −(λ+j)/2K4β−α

L2ν+α−2k
LYK1+ε

(( 1√
Y

)j+λ
+
( √

Y

LK1−ε

)j+λ
)

+δ(Y≥K2−ε)
Y −(j+λ)/2K4β−α

L2ν+α−2k
LYK1+ε

×max
{( 1√

Y

)j+λ
,
( √Y
K2−ε

)j+λ}
. (10.2)

Observing
1√
Y
≤

√
Y

K2−ε
≤

√
Y

LK1−ε

for Y ≥ K2−ε, we conclude that the term corresponding to (
√
Y /K2−ε)j+λ in the second

bracket on the right side of (10.2) can be absorbed by other terms. Therefore

T̃
(η)
λ,j (Y ) � Y −(λ+j)/2K4β−α

L2ν+α−2k
LYK1+ε

(( 1√
Y

)j+λ
+
( √

Y

LK1−ε

)j+λ
)

� Y LK1+ε K4β−α

L2ν+α−2k

(( 1
Y

)j+λ
+
( 1
LK1−ε

)j+λ
)

� Y LK1+ε K4β−α

L2ν+α−2k

(( 1
Y

)k−µ+3β−α
+
( 1
LK1−ε

)k−µ+3β−α
)

(10.3)
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as j ≥ 0 and λ = k − µ+ 3β − α.

Since ν ≥ 3µ, 0 ≤ α ≤ 2k and α ≤ 4β (see Lemma 4.1), we see that

K4β−α

L2ν+α−2k

(
1
Y

)k−µ+3β−α

=
(
L2

Y

)k( Y µ

L2ν

)(
K4

Y 3

)β( Y

KL

)α

≤
(
L2

Y

)k−α/2( Y
L6

)µ(K4

Y 3

)β−α/4( 1
Y 1/4

)α

≤
(

L

K1−ε

)k−α/2(K1/3+ε

L

)6µ+3(β−α/4)

as K1−εL ≤ Y ≤ K2+ε. This last quantity is less than 1 for our choice of L. Similarly, we

have

K4β−α

L2ν+α−2k

(
1

LK1−ε

)k−µ+3β−α

=
(

L

K1−ε

)k((LK1−ε)µ

L2ν

)(
K4

(LK1−ε)3

)β

K−εα

≤
(

L

K1−ε

)k(K1−ε

L5

)µ(K1/3+ε

L

)3β

which is also less than 1 for the same range of L. From (10.3) we thus obtain T̃
(η)
λ,j (Y ) �

Y LK1+ε, and consequently by (4.9), we prove∑
K−L≤kj≤K+L

|SY (fj)|2 � Y LK1+ε,

for K1/3+2ε ≤ L ≤ K1−2ε and Y ≤ K2+ε. Note that the multiple sum in (4.9) produces

only a constant multiple. Writing ε = C0ε for some constant C0 > 0, we can replace ε by

ε/(C0 + 2). Then (4.7) holds true whenever K1/3+ε ≤ L ≤ K1−ε. �

11. The proof of Theorem 1 for Maass g

The proof of Theorem 1 for a holomorphic form g is accomplished in the last section. Now

we indicate the necessary changes in the proof for Maass form g. In this case the function

Dg(s, ν1, ν2, h) is defined as

Dg(s, ν1, ν2, h) =
∑

m,n6=0
ν1m−ν2n=h

λg(n)λg(m)
( √ν1ν2|mn|
ν1|m|+ ν2|n|

)2il
(ν1|m|+ ν2|n|)−s.

Its spectral decomposition will follow from the line of argument in Section 3.
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We consider the inner 〈Uh(·, s), V 〉 where V (z) = g(ν1z)g(ν2z). From the proof of Theo-

rem A.2 in [29], we have for <e s > 1,

(ν1ν2)−1/223−s−2ilπsΓ(s)
Γ(s/2 + il)Γ(s/2− il)Γ(s/2)2

〈Uh(·, s), V 〉

=
∑

m,n6=0
ν1m−ν2n=h

λg(n)λg(m)
( √ν1ν2|mn|
ν1|m|+ ν2|n|

)2il
(ν1|m|+ ν2|n|)−s

× F

(
s

2
+ il,

1
2

+ il;
s

2
+

1
2
;
(
|ν1m| − |ν2n|
|ν1m|+ |ν2n|

)2
)
, (11.1)

where F is the hypergeometric function. Let us write s = σ + it and denote

DF
g (s, ν1, ν2, h) =

∑
m,n6=0

ν1m−ν2n=h

λg(n)λg(m)
( √ν1ν2|mn|
ν1|m|+ ν2|n|

)2il
(ν1|m|+ ν2|n|)−s

×

{
1− F

(
s

2
+ il,

1
2

+ il;
s

2
+

1
2
;
(
|ν1m| − |ν2n|
|ν1m|+ |ν2n|

)2
)}

.

The bracket {· · · } in the last line is

�
(
|ν1m| − |ν2n|
|ν1m|+ |ν2n|

)2

� |h|2

(|ν1m|+ |ν2n|)2

for bounded σ, say |σ| ≤ 2. By the simple inequalities |ab| ≤ |a|2 + |b|2 and 2(|a|+ |a+ b|) ≥
|a|+ |b|, we get

DF
g (s, ν1, ν2, h) � |h|2

∑
m,n6=0

ν1m−ν2n=h

|λg(n)λg(m)|
(ν1|m|+ ν2|n|)σ+2

� |h|2
∑
n6=0

|λg(n)|2

(ν2|n|+ |h|)σ+2
+ |h|2

∑
m6=0

|λg(m)|2

(ν1|m|+ |h|)σ+2

�ν1,ν2 |h|−σ
∑
|n|≤|h|

|λg(n)|2 + |h|2
∑
|n|>|h|

|λg(n)|2

|n|σ+2
.

The estimate
∑
|n|≤X |λg(n)|2 � X (see [17, (8.7)]) implies that DF

g (s, ν1, ν2, h) converges

absolutely for σ ≥ −1 + ε and satisfies

DF
g (s, ν1, ν2, h) � |h|1−σ. (11.2)

Besides, we have

Dg(s, ν1, ν2, h) +DF
g (s, ν1, ν2, h) =

(ν1ν2)−1/223−s−2ilπsΓ(s)
Γ(s/2 + il)Γ(s/2− il)Γ(s/2)2

〈Uh(·, s), V 〉 (11.3)
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by (11.1).

The right-hand side above is essentially the same as the right-side of (3.2). Indeed, we

have, by (3.8),

(ν1ν2)−1/223−s−2ilπsΓ(s)
Γ(s/2 + il)Γ(s/2− il)Γ(s/2)2

� (ν1ν2)−1/2|t|3/2−σeπ|t|/2 �
∣∣∣(ν1ν2)−1/2

Γ(s− 1)

∣∣∣ (11.4)

for |=m s| ≥ 1. But for the gamma factors in (11.3), we have to be careful when <e s ≤ −1,

because there are poles at s = −1,−3, · · · . We shall see why these poles have no influence in

our proof. We apply the argument in (3.3)-(3.16) to obtain

Dg(s, ν1, ν2, h) = −DF
g (s, ν1, ν2, h) + R̃h(s) +

∑
j: 0<tj≤2T

ρj(−h)
|h|s−1/2

B̃j(s)〈V, φj〉

+
1
4π

∑
a

∫ 2T

−2T

ρa(1/2 + iτ,−h)
|h|s−1/2+iτ

C̃a(s, τ)
Γ(1/2− iτ)

〈V,Ea(·, 1/2 + iτ)〉 dτ

+O
(
|h|1/2−σ+θ+εe−T/4

)
(11.5)

where R̃h(s), B̃j(s) and C̃a(s, τ) are defined as in (3.17), (3.4) and (3.5) with only a small

change, that is, the factor
(2π)s+l−1(ν1ν2)(l−1)/2

Γ(s+ l − 1)

in their definitions is replaced by the expression on the left side of (11.4). It should be noted

that we need a substitute of Good’s estimate in (3.7), which is available in [21].

The reduction process (in Section 6) up to (6.5) makes use of the absolutely convergence

of Dg(s, 1, 1, h) for σ > 1. It is plainly valid for the Maass form case. Then we insert (11.5),

instead of (3.16), into (6.5); consequently, instead of (6.6), we have

P (c, h, Y ) = PF (c, h, Y ) + P
eR
(c, h, Y ) + P

ed
(c, h, Y ) + P

eE
(c, h, Y ) +O(K−M ′

)

where the three P
e∗(c, h, Y ) are defined analogously as P∗(c, h, Y ) in (6.6) with Rh(s), Bj(s)

and Ca(s, τ) being replaced by R̃h(s), B̃j(s) and C̃a(s, τ). The function PF (s, h, Y ) is defined

as

PF (c, h, Y ) = − 1
2πi

∫
`
DF

g (s, 1, 1, h)G̃h,c(s) ds.

We recall that ` = `−∪`+ where `± are straight line segments joining 1+ε−ic′0T to 1+ε−ic0T
and 1 + ε+ ic0T to 1 + ε+ ic′0T respectively. Hence,

∑′′(C, T ) takes the decomposition∑′′(C, T ) =
∑′′

F (C, T ) +
∑′′

eR
(C, T ) +

∑′′
ed
(C, T ) +

∑′′
eE
(C, T ) +O(K−M ′

)
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where
∑′′

e∗(C, T ) is defined as in (6.12) with a corresponding change in P∗(c, h, Y ).

By (6.4), we shift horizontally the path ` to real part equal to−1+ε, on whichDF
g (s, 1, 1, h)

is still absolutely convergent. Therefore, we infer that

PF (c, h, Y ) �
∫ c′0T

c0T
|DF

g (−1 + ε+ it, 1, 1, h)||G̃h,c(−1 + ε+ it)| dt+ |h|2+εT−M ′

� TKεY −1−(λ+j)/2(CT )3/2

by (5.25) in Lemma 5.6 and (11.2). From (6.12), we get that∑′′
F (C, T ) � TKεY −1−(λ+j)/2(CT )3/2

∑
|h|∼CT

∑
δ|h

δ
∑
c∼C

N|c, δ|c

cj+λ−1

� TKεY −1(CT )5/2

(
C√
Y

)j+λ

� K1+εY 1/2

(
K2

L6

)(
C√
Y

)j+λ

as T � K2C/Y ≤ K1+ε/L, CT ≤ Y K2ε/L2 and Y ≤ K2+ε. This can be absorbed in (10.1).

It remains to check that the estimation of
∑′′
∗(C, T ) in §§7-9 is valid for

∑′′
e∗(C, T ) with

∗ = R, d,E. In the evaluation, we need to shift the path ` horizontally to the left. Although

the new factor (11.4) contains poles, they all lie on the real axis. As ` does not cross the real

axis, there will be no contribution coming up from these poles. Moreover, the same asymptotic

behavior shown in (11.4) verifies the applicability of our argument. This concludes that (10.1)

holds true for the case of Maass g, and therefore, Theorem 1 follows. �

12. Proof of Lemma 4.1

This section is devoted to prove Lemma 4.1, which consists of two parts.

Part (i). Let us write

WK,L(x) = K

∫
R
e(φ(t))

(
h(u)(u

L

K
+ 1)

)∧(t) dt,

where φ(t) = tK/L+ x
(
cosh(πt/L)− 1

)
/(2π). The Fourier transform

(
h(u)(uL/K + 1)

)∧(t)

decays rapidly, and more accurately, is � |t|−M for any M ≥ 1 and |t| � 1. Introducing a

smooth partition ϕ1(t) + ϕ2(t) ≡ 1 where ϕ1 is supported on [−2, 2] and ϕ1 ≡ 1 on [−1, 1],

we infer that

WK,L(x) = K

∫
R
ϕ1

(
t

Kε/2

)
e(φ(t))

(
h(u)(u

L

K
+ 1)

)∧(t) dt+O(K−M ). (12.1)
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If |x| ≤ 8πLK1−ε and |t| ≤ Kε/2, then the phase φ(t) satisfies

φ′(t) =
K

L
+

x

2L
sinh(

πt

L
) � K

L
−O

(
|x|Kε/2

L2

)
� K

L
,

and φ(r)(t) � |x|/L2 < K/L for r ≥ 2. The derivative of the integrand without the factor

e(φ(t)) is O(1), hence successive integration by parts shows that the integral in (12.1) is

O(K−M ). This completes part (i).

Part (ii). To prove it, we follow the line of argument in [23, §§4.1-4.4]. We apply the Taylor

expansion to cosh(πt/L) and expand the exponential factor, like (4.2) in [23], but this time we

keep the terms up to t4, as follows. Recall LK1−ε ≤ |x| � K2+ε and K1/3+2ε ≤ L ≤ K1−2ε.

As x/L6 = o(1) and the Fourier transform of (h(u)(uL+K) is rapidly decaying, we have

WK,L(x) =
∑

0≤3µ≤ν≤N

cµ,ν
xµ

L2ν

∫
R
e

(
tK

L
+
πxt2

4L2

)
e

(
π3xt4

48L4

)
t2ν
(
h(u)(uL+K)

)∧(t) dt

+O

(
|x|N/3

L2N

∫
R
|t|2N

∣∣∣(h(u)(uL+K)
)∧(t)

∣∣∣ dt) .
Now, as |x| � K2+ε and L ≥ K1/3+2ε, the O-term is

� K

(
K2+ε

L6

)N/3

� K1−εN � K−M ,

by choosing a suitable N = N1(ε,M).

Temporarily we write

g(t) = e

(
π3xt4

48L4

)
t2ν
(
h(u)(uL+K)

)∧(t).

By Parseval’s theorem, we obtain∫
R
g(t)e

(
tK

L
+
πxt2

4L2

)
dt =

L√
π|x|

(
1 + i sgn(x)

)
e
(
−K

2

πx

) ∫
R
ĝ(u)e

(
2uLK
πx

− u2L2

πx

)
du.

Since for all u ∈ R,

eiu =
∑

0≤k≤N

(iu)k

k!
+ON

(
|u|N

)
,

we expand the exponential factor e(−u2L2/(πx)) to obtain∫
R
ĝ(u)e

(
2uLK
πx

− u2L2

πx

)
du =

∑
0≤k≤N

1
k!

(
−2iL2

x

)k ∫
R
u2kĝ(u)e

(
2uLK
πx

)
du

+O

((
L2

x

)N ∫
R
|u|2N

∣∣ĝ(u)∣∣ du). (12.2)
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It is plain that for r ≥ 0,

g(r)(t) �r K

(
1 +

(
x

L4

)r) 1
1 + t2

,

and ĝ(u) = (2πiu)−rĝ(r)(u) for u 6= 0. Thus, we have

ĝ(u) �r K

(
1 +

(
x

L4

)r) 1
1 + |u|r

.

We shall take r = 2N + 2. By K1/3+2ε ≤ L ≤ K1−2ε and LK1−ε ≤ |x| � K2+ε, the O-term

in (12.2) is

�N K

(
L2

x

)N
(

1 +
(
x

L4

)2N+2
)∫

R

|u|2N

1 + |u|2N+2
du

� K

(
L2

x

)N

+K

(
x

L4

)2( x

L6

)N

� K

(
L

K1−ε

)N

+K

(
x

L4

)2(K2+ε

L6

)N

� K1−εN

(
1 +

(
x

L4

)2
)
� K−M ,

with a suitable N = N2(ε,M). Therefore,

WK,L(x) =
∑

0≤3µ≤ν≤N1

cµ,ν
xµ

L2ν

L√
π|x|

(
1 + i sgn(x)

)
e

(
−K

2

πx

)

×
∑

0≤k≤N2

1
k!

(
−2iL2

x

)k ∫
R
u2kĝ(u)e

(
2uLK
πx

)
du+O(K−M ). (12.3)

The integral in (12.3) equals

(2πi)−2kg(2k)

(
2LK
πx

)
By definition of g and Leibniz’s theorem, we have

g(2k)(t) =
∑

0≤α≤2k

(
2k
α

)
dα

dtα
e

(
π3xt4

48L4

)
× d2k−α

dt2k−α
t2ν
(
h(u)(uL+K)

)∧(t)

where
(
n
r

)
denotes the binomial coefficient. Expanding in power series and differentiating

termwisely, the derivative of the exponential factor is

dα

dtα
e

(
π3xt4

48L4

)
=

dα

dtα

∞∑
β=0

1
β!

(
iπ4

24

)β( x

L4

)β

t4β

=
∑

4β≥α

(4β)!
(4β − α)!β!

(
iπ4

24

)β( x

L4

)β

t4β−α.
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Next we show that the tail is negligible about t = 2LK/(πx). Indeed, as K4/x3 �
K1+3ε/L3 � K−3ε, we have for N ≥ 8N2,∑

β>N

(4β)!
(4β − α)!β!

(
π4

24

)β( x

L4

)β(2LK
πx

)4β−α

=
(

πx

2LK

)α ∑
β>N

(4β)!
(4β − α)!β!

(
2
3

)β(K4

x3

)β

�
(

πx

2LK

)α(K4

x3

)N ∑
4β≥α

(4β)!
(4β − α)!β!

(
2
3

)β

�α

(
x

LK

)α

K−3εN .

Note that the last sum over 4β ≥ α yields the constant

dα

dtα

∣∣∣∣
t=1

e2t4/3.

Thus

dα

dtα
e

(
π3xt4

48L4

)∣∣∣∣
t=2LK/(πx)

=
∑

α≤4β≤4N

(4β)!
(4β − α)!β!

(
iπ4

24

)β( x

L4

)β(2LK
πx

)4β−α

+O

((
x

LK

)α

K−3εN

)
.

As

t2ν
(
h(u)(uL+K)

)∧(t) =
1

(2πi)2ν

( d2ν

du2ν
h(u)(uL+K)

)∧(t),

all its rth derivatives at t = 2LK/(πx) are O(K) and the O-constant depends only on ν and

r for a given h. Together with

d2k−α

dt2k−α
t2ν
(
h(u)(uL+K)

)∧(t) = (−2πi)2k−α

(
u2k−α d2ν

du2ν

(
h(u)(uL+K)

))∧
(t),

the integral in (12.3) equals∫
R
u2kĝ(u)e

(
2uLK
πx

)
du =

∑
α,β +O

((
1 +

(
x

LK

)2k)
K−3εN

)
(12.4)

where with some suitable coefficients ck,α,β,∑
α,β

=
∑

0≤α≤2k

∑
α≤4β≤N

ck,α,β

(
x

LK

)α(K4

x3

)β (
u2k−α d2ν

du2ν

(
h(u)(uL+K)

))∧(2LK
πx

)
.
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Hence, we may select N = N3(ε,M,N2) so that the cumulative error in (12.3) caused by

the O-term in (12.4) is O(K−M ). Then, we conclude

WK,L(x) =
∑

0≤3µ≤ν≤N1

∑
0≤k≤N2

∑
0≤α≤2k

∑
α≤4β≤N

cµ,ν,k,α,β
xµ

L2ν

(
L2

x

)k (
x

LK

)α(K4

x3

)β

×
(
1 + i sgn(x)

) L√
π|x|

e

(
−K

2

πx

)(
u2k−α d2ν

du2ν

(
h(u)(uL+K)

))∧(2LK
πx

)
+O(K−M ),

where the summands are cλW̃λ(x), with a little but straightforward computation. This ends

the proof. �
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