On the least quadratic non-residue
†
Y.-K. Lau & J. Wu

Abstract. We prove that for almost all real primitive characters \(\chi_d \) of modulus \(|d|\), the least positive integer \(n_{\chi_d} \) at which \(\chi_d \) takes a value not equal to 0 and 1 satisfies
\[
n_{\chi_d} \ll \log |d|,
\]
and give a quite precise estimate on the size of the exceptional set. Also, we generalize Burgess' bound for \(n_{\chi_d'} \) (with \(p' \) being a prime up to \(\pm \) sign) to composite modulus \(|d|\) and improve Garaev's upper bound for the least quadratic non-residue in Pajtechi-Šapiro's sequence.

§ 1. Introduction

Let \(q \geq 2 \) be an integer and \(\chi \) a non principal Dirichlet character modulo \(q \). Here the evaluation of the least integer \(n_{\chi} \) among all positive integers \(n \) for which \(\chi(n) \neq 0,1 \) is referred as Linnik’s problem. In case \(\chi \) coincides with the Legendre symbol, \(n_{\chi} \) is a least quadratic non-residue. Concerning the size of \(n_{\chi} \), Pólya-Vinogradov’s inequality
\[
\max_{x \geq 1} \left| \sum_{n \leq x} \chi(n) \right| \ll q^{1/2} \log q
\]
implies trivially \(n_{\chi} \ll q^{1/2} \log q \). But for prime \(q \), Vinogradov [24] proved the better bound
\[
n_{\chi} \ll q^{1/2(\sqrt{7})} (\log q)^2
\]
by combining a simple argument with (1.1). He also conjectured that \(n_{\chi} \ll \varepsilon q^\varepsilon \) for all integers \(q \geq 2 \) and any \(\varepsilon > 0 \). Under the Generalized Riemann Hypothesis (GRH), Linnik [18] settled this conjecture, and later Ankeny [1] gave a sharper estimate
\[
n_{\chi} \ll (\log q)^2
\]
(still assuming GRH). Burgess ([3], [4], [5]) wrote a series of important papers on sharpening (1.1). His well known estimate on character sums is as follows: For any \(\varepsilon > 0 \), there is \(\delta(\varepsilon) > 0 \) such that
\[
\left| \sum_{n \leq x} \chi(n) \right| \ll \varepsilon xq^{-\delta(\varepsilon)}
\]
provided \(x \geq q^{1/3+\varepsilon} \). The last condition can be improved to \(x \geq q^{1/4+\varepsilon} \) if \(q \) is cubefree. When \(q \) is prime, he deduced, via (1.4) and Vinogradov’s argument,

\[
(1.5) \quad n_\chi \ll \varepsilon q^{1/(4\sqrt{e})+\varepsilon}.
\]

Since Burgess’ estimate (1.4) on character sums holds for composite modulus, one expects a bound analogous to (1.5) for \(n_\chi \) in general cases, but this seems not available in literature. Our first result is to propose such a generalisation, by modifying Vinogradov’s argument.

Theorem 1. Let \(\varepsilon \) be an arbitrarily small positive number. For all integers \(q \geq 2 \) and \(\chi \) non principal characters \((\text{mod } q)\), we have

\[
(1.5) \quad n_\chi \ll \varepsilon \begin{cases}
q^{1/(4\sqrt{e})+\varepsilon} & \text{if } q \text{ is cubefree,} \\
q^{1/(3\sqrt{e})+\varepsilon} & \text{otherwise.}
\end{cases}
\]

The proof of Theorem 1 will be given in the Section 2.

Let us now focus on real primitive characters. Denote \(\mathcal{D} \) (resp. \(\mathcal{D}(Q) \)) to be the set of fundamental discriminants \(d \) (resp. with \(|d| \leq Q\)), that is, the set of non-zero integers \(d \) which are products of coprime factors of the form \(-4, 8, -8, p' \) where \(p' := (-1)^{(p-1)/2}p \) (\(p \) odd prime). Also, we write \(\mathcal{K} \) (resp. \(\mathcal{K}(Q) \)) for the set of real primitive characters (resp. with modulus \(q \leq Q \)). Then there is a bijection between \(\mathcal{D} \) and \(\mathcal{K} \) given by

\[
d \mapsto \chi_d \left(\frac{d}{\cdot} \right)_K,
\]

where \(\left(\frac{d}{\cdot} \right)_K \) is the Kronecker symbol. Note that the modulus of \(\chi_d \) equals \(|d|\) and

\[
(1.6) \quad |\mathcal{D}(Q)| = |\mathcal{K}(Q)| = \frac{6}{\pi}Q + O(Q^{1/2}).
\]

In the opposite direction of (1.2), Fridlender [12], Salié [23] and Chowla & Turán (see [10]) independently showed that there are infinitely many primes \(p \) for which

\[
(1.7) \quad n_{\chi_{p'}} \gg \log p,
\]

or in other words, \(n_{\chi_{p'}} = \Omega(\log p) \). Under GRH, Montgomery [20] gave a stronger result \(n_{\chi_{p'}} = \Omega(\log p \log_2 p) \), where \(\log_k \) denotes the \(k \)-fold iterated logarithm. Without any assumption Graham & Ringrose [14] obtained \(n_{\chi_{p'}} = \Omega(\log p \log_3 p) \). In view of these results, it is natural to wonder what is the size of the majority of \(n_{\chi_{p'}} \), or more generally \(n_{\chi_d} \). Indeed the density of \(p' \) for which \(n_{\chi_{p'}} \) satisfies (1.7) is low. This can be seen from Erdős’ result [11],

\[
(1.8) \quad \lim_{x \to \infty} \frac{1}{\pi(x)} \sum_{p \leq x} n_{\chi_{p'}} = \text{constant},
\]

where \(\pi(x) \) denotes the number of primes up to \(x \). This result is extended and refined by Elliott in [7] and [8]. Using (1.8) or its refinement in [7], it follows, for any fixed constant \(\delta > 0 \), that

\[
(1.9) \quad \sum_{p \leq x, n_{\chi_{p'}} \geq \delta \log p} 1 \ll_{\delta} \frac{x}{(\log x)^2}.
\]
In [6], Duke & Kowalski indicated: Let $\alpha > 1$ be given. Denote by $N(Q, \alpha)$ the number of primitive characters χ (not necessarily real) of modulus $q \leq Q$ such that $\chi(n) = 1$ for all $n \leq (\log Q)^\alpha$ and $(n, q) = 1$. Then one has

$$N(Q, \alpha) \ll \varepsilon Q^{2/\alpha + \varepsilon}$$

for all $\varepsilon > 0$. Therefore

$$|\{d \leq Q : n_{\chi_d} \geq (\log Q)^\alpha\}| \ll \varepsilon Q^{2/\alpha + \varepsilon}.$$

However, in view of (1.6) this result is non-trivial only when $\alpha > 2$ and it tells that $n_{\chi_d} \geq (\log |d|)^{2 + \varepsilon}$ for almost all fundamental discriminants d. Very recently Baier [2] improved $2 + \varepsilon$ to $1 + \varepsilon$ by using the large sieve inequality of Heath-Brown [15] for real primitive characters. However, the argument is unable to cover the case $\alpha = 1$ or to provide information on the sparsity of the primes p with $n_{\chi_p} \gg \log p$ as in (1.9).

Our second result is to supplement the case $\alpha = 1$, using the large sieve inequality of Elliott-Montgomery-Vaughan (see [9] and [21]). We obtain an almost all result, which is strong enough to yield a tighter estimate on the low density of exceptional non-residues than in (1.9).

Theorem 2. For $2 \leq P \leq Q$, define

$$E(Q, P) := \{d \in \mathcal{D}(Q) : \chi_d(p) = 1 \text{ for } P < p \leq 2P \text{ and } p \nmid |d|\}.$$

Then there are two absolute positive constants C and c such that

$$|E(Q, P)| \ll Qe^{-c(\log Q)/\log_2 Q}$$

holds uniformly for $Q \geq 10$ and $C \log Q \leq P \leq (\log Q)^2$. In particular we have

$$n_{\chi_d} \ll \log |d|$$

for all but except $O(Qe^{-c(\log Q)/\log_2 Q})$ characters $\chi_d \in K(Q)$.

Sections 3 and 4 are devoted to the proof of Theorem 2.

Theorem 3 (essentially due to Graham & Ringrose [14]) shows that the upper bound for exceptional real primitive characters set is optimal. Graham & Ringrose considered a problem of the quasi-random graphs (Paley graphs) which leads to study the lower bound for the sum of the right-hand side of (6.5) below. This will also be the essential part of our proof of Theorem 3. We shall provide the salient points along the line of arguments in [14] to prove Theorem 3, see Sections 5 and 6.

Theorem 3. For any fixed constant $\delta > 0$, there are a sequence of positive real numbers $\{Q_n\}_{n=1}^\infty$ with $Q_n \to \infty$ and a positive constant c such that

$$\sum_{Q_n^{1/2} < p \leq Q_n \atop n_{\chi_p} \geq \delta \log p} 1 \gg_\delta Q_ne^{-c(\log Q_n)/\log_2 Q_n}.$$

Further if we assume that both $L_1(s, P)$ and $L_4(s, P)$ defined in (5.3) below have no exceptional zeros in the region (5.4), then (1.12) holds for all $Q \geq 10$.

Finally we consider the least quadratic non-residue problem in Pajtechi-Šapiro’s sequence $\{[n^c]\}_{n=1}^\infty$, where $c > 1$ is a constant and $[t]$ denotes the integral part of $t \in \mathbb{R}$. Denote by $n_{\chi_p, c}$
the least positive integer \(n \) such that \([n^c]\) is a quadratic non-residue \((\mod p)\). Garaev \cite{Gar13} proved that for \(1 < c < \frac{12}{11}\) and any \(\varepsilon > 0 \), one has

\[
n_{\chi_p',c} \ll_{c,\varepsilon} p^{3/8(3-2c)\sqrt{e}+\varepsilon}
\]

for all primes \(p \). He pointed out also that by the method of exponential pairs the range of \(c \) and the exponent of \(p \) can be improved to \(1 < c < \frac{12}{11} + 0.00257 \cdots\) and \(1/(8(1-\theta_2 c)\sqrt{e})\), respectively, where \(\theta_2 = 0.66451 \cdots \). Here we propose a further improvement by applying a recent result of Robert & Sargos \cite{RS22}, and give an almost result based on Theorem 2.

Theorem 4. Let \(1 < c < \frac{32}{29}\). Then for all primes \(p \) and any \(\varepsilon > 0 \), we have

\[
n_{\chi_p',c} \ll_{c,\varepsilon} p^{9/((64 - 40c)\sqrt{e})+\varepsilon}.
\]

For all but except \(O\left(Qe^{-c(\log Q)/\log_2 Q}\right) \) primes \(p \) with \(p \leq Q \), we have

\[
n_{\chi_p',c} \ll_{c,\varepsilon} (\log p)^{9/(16-10c)+\varepsilon}.
\]

We prove Theorem 4 in Section 7.

Our range of \(c \) is larger than \(\frac{12}{11} + 0.01253 \cdots\) \((\frac{32}{29} = \frac{12}{11} + 0.019794 \cdots)\) and our exponent is definitely better than (1.13) but is smaller than \(1/((64-40c)\sqrt{e})\) only when \(c > 1/(9\theta_2 - 5) = 1/0.019794 \cdots \). It is possible to give a slightly better result with Huxley’s estimates for exponential sums \cite[§ 18.5]{Hux66}. We can also generalize Theorem 4 to composite modulus \(|d|\) as in Theorem 1, but with smaller range of \(c \) and larger exponent of \(|d|\).

\[\section{2. Vinogradov’s argument and proof of Theorem 1}

Without loss of generality we assume \(n_\chi \geq q^{1/(4\sqrt{e})} \) (otherwise there is nothing to prove). Let \(x \) be a number specified later but satisfy

\[q > x \geq \begin{cases} \frac{1}{4+\varepsilon} q & \text{if } q \text{ is cubefree}, \\ \frac{1}{3+\varepsilon} q & \text{otherwise} \end{cases}\]

By Burgess’ well known estimate (1.4) on character sums, for any \(\varepsilon > 0 \) there are two positive constants \(C_\varepsilon \) and \(\delta(\varepsilon) > 0 \) such that

\[
C_\varepsilon q x^{3/4(\theta-\varepsilon)} \geq \left| \sum_{n \leq x} \chi(n) \right| \geq \sum_{n \leq x} \left(1 - 2 \sum_{\substack{n \leq x \\{n,q\}=1 \}} 1 \right) \geq \sum_{\substack{n \leq x \\{n,q\}=1 \}} \left(1 - 2 \sum_{\substack{n \chi < p \leq x \\{m,q\}=1 \}} 1 \right).
\]

As usual we denote by \(\varphi(n) \) the Euler function, \(\mu(n) \) the Möbius function and \(\omega(n) \) the number of distinct prime factors of \(n \). With the Möbius inversion formula, we have, for some \(|\theta| \leq 1\),

\[
\sum_{n \leq x} 1 = \sum_{d | q} \mu(d) \sum_{m \leq x/d} 1 = \frac{\varphi(q)}{q} x + \theta 2^{c(q)}.
\]
To estimate the last double sum on the right-hand side of (2.1), we divide the sum over \(p \) into two parts according as \(n_x < p \leq x/2^{\omega(q)} \) or \(x/2^{\omega(q)} < p \leq x \). By (2.2), the first part contributes at most

\[
(2.3) \sum_{n_x < p \leq x/2^{\omega(q)}} \left(\frac{\varphi(q)}{q} \frac{x}{p} + 2^{\omega(q)} \right) \leq \frac{\varphi(q)}{q} x \left\{ \log \left(\frac{\log x}{\log n_x} \right) + O \left(e^{-\sqrt{\log n_x}} \right) \right\} + \frac{(1 + \varepsilon)x}{\log(x/2^{\omega(q)})} \leq \frac{\varphi(q)}{q} x \log \left(\frac{\log x}{\log n_x} \right) + (1 + 2\varepsilon) \frac{x}{\log x}.
\]

Note that \(2^{\omega(q)} \ll x^{\varepsilon} \) and \(n_x \geq q^{1/(4\sqrt{n})} \). For the second part, we interchange the summations and apply the Rankin trick,

\[
\sum_{x/2^{\omega(q)} < p \leq x} \sum_{m \leq x/p} 1 \leq \sum_{1 \leq m \leq x/2^{\omega(q)}} \sum_{p \leq x/m} \frac{1}{m} \ll \frac{x}{\log x} \prod_{p \leq x/2^{\omega(q)}} \left(\frac{1 - 1/p}{p} \right)^{-1} \leq \frac{\varphi(q)}{q} \frac{x}{\log x} \prod_{p \mid m} \left(\frac{1 - 1/p}{p} \right)^{-1} \times \prod_{p \leq x/2^{\omega(q)}} \left(1 - \frac{1}{p} \right)^{-1}.
\]

In virtue of the simple estimates

\[
\prod_{p > x/2^{\omega(q)}} \left(1 - \frac{1}{p} \right)^{-1} \ll \exp \left\{ \sum_{p > x/2^{\omega(q)}} \frac{1}{p} \right\} \ll \exp \left\{ \frac{\omega(q)}{2^{\omega(q)}} \right\} \ll 1,
\]

\[
\prod_{p \leq x/2^{\omega(q)}} \left(1 - \frac{1}{p} \right)^{-1} \ll \exp \left\{ \sum_{p \leq x/2^{\omega(q)}} \frac{1}{p} \right\} \ll \omega(q),
\]

it follows immediately that

\[
(2.4) \sum_{x/2^{\omega(q)} < p \leq x} \sum_{m \leq x/p} \frac{1}{m} \ll \frac{\varphi(q)}{q} \frac{\omega(q)}{\log x}.
\]

Inserting (2.2), (2.3) and (2.4) into (2.1), we conclude

\[
C_x x^{q^{-\delta(c)}} \geq \frac{\varphi(q)}{q} x \left\{ 1 - 2 \log \left(\frac{\log x}{\log n_x} \right) \right\} - 2^{\omega(q)} - (1 + 2\varepsilon) \frac{x}{\log x} - C_x \frac{\varphi(q)}{q} \frac{\omega(q)}{\log x}.
\]

¿From this we deduce that

\[
\log \left(\frac{\log x}{\log n_x} \right) \geq \frac{1}{2} - C_x q^{1-\delta(c)} \varphi(q) - \frac{(1/2 + \varepsilon)q}{\varphi(q) \log x} - \frac{C_x \omega(q)}{2 \log x} \geq \frac{1}{2} - C_x \left(\frac{q}{\varphi(q) \log x} + \frac{\omega(q)}{\log x} \right)
\]
provided \(q \geq q_0(\varepsilon) \). Since \(q/\varphi(q) \log x + \omega(q)/\log x \ll (\log_2 q)^{-1} \), the preceeding inequality implies

\[
 n_x \ll x^{1/\sqrt{x}} \exp \left\{ Q \left(\frac{q}{\varphi(q)} + \omega(q) \right) \right\},
\]

which gives the required result, by taking

\[
 x = \begin{cases}
 q^{1/4 + \varepsilon} & \text{if } q \text{ is cubefree}, \\
 q^{1/3 + \varepsilon} & \text{otherwise}.
\end{cases}
\]

This completes the proof of Theorem 1. \(\square \)

§ 3. A large sieve inequality of Montgomery-Vaughan

Our key tool for proving Theorem 2 is a large sieve inequality of Montgomery & Vaughan in [21, page 1050] following from [21, Lemma 2]. Here we state a slightly refined version. Their original statement absorbs the factors \((6/\log P)^{j} \) and \((6/(\log P)^2)^j \) in the implied constant. We reproduce here their proof with a minuscule modification.

Lemma 1. We have

\[
(3.1) \quad \sum_{d \in \mathcal{D}(Q)} \left| \sum_{P < p \leq 2P} \frac{\chi_d(p)}{p} \right|^{2j} \ll Q \left(\frac{6j}{P \log P} \right)^j + \left(\frac{6P}{(\log P)^2} \right)^j
\]

uniformly for \(2 \leq P \leq Q \) and \(j \geq 1 \). The implied constant is absolute.

Proof. Since \(\chi_d(n) \) is completely multiplicative on \(n \), we can write

\[
 \left(\sum_{P < p \leq 2P} \frac{\chi_d(p)}{p} \right)^j = \sum_{P | m \leq (2P)^j} \frac{a_j(m)}{m} \chi_d(m),
\]

where

\[
 a_j(m) := |\{(p_1, \ldots, p_j) : p_1 \cdots p_j = m, \ P < p_i \leq 2P\}|.
\]

By Lemma 2 of [21] with the choice of parameters

\[
 X = P^j, \quad Y = (2P)^j \quad \text{and} \quad a_m = a_j(m)/m,
\]

it follows that as \(a_j(m_1) a_j(m_2) \leq a_{2j}(n^2) \) for \(n^2 = m_1 m_2 \),

\[
 (3.2) \quad \sum_{d \in \mathcal{D}(Q)} \left| \sum_{P < p \leq 2P} \frac{\chi_d(p)}{p} \right|^{2j} \ll Q \sum_{P | n \leq (2P)^j} \frac{a_{2j}(n^2)}{n^2} + \left(\sum_{P < p \leq 2P} \frac{1}{p^{3/2}} \right)^j.
\]

Writing \(n = p_1^{\nu_1} \cdots p_i^{\nu_i} \) with \(\nu_1 + \cdots + \nu_i = j \), we have

\[
 a_{2j}(n^2) = \frac{(2j)!}{(2\nu_1)! \cdots (2\nu_i)!} \left(\frac{2j!}{(2\nu_1)!} \frac{\nu_1!}{(2\nu_1)!} \cdots \frac{\nu_i!}{(2\nu_i)!} \right) a_j(n).
\]
From this, it is easy to see \(a_{2j}(n^2) \leq j^2 a_j(n) \), and thus
\[
\sum_{P^j < n \leq (2P)^j} \frac{a_{2j}(n^2)}{n^2} \leq j^2 \sum_{P^j < n \leq (2P)^j} \frac{a_j(n)}{n^2} = \left(j \sum_{P < p \leq 2P} \frac{1}{P^2} \right)^j \leq \left(\frac{6j}{P \log P} \right)^j.
\]
Inserting this into (3.2) and using the estimate
\[
\sum_{P < p \leq 2P} \frac{1}{p^{1/2}} \leq \frac{6P^{1/2}}{\log P},
\]
we obtain the required result (3.1).

§ 4. Proof of Theorem 2

Define
\[
\mathcal{E}^*(Q, P) := \{ d \in \mathcal{D}(Q) : Q^{1/2} \leq |d| \leq Q \text{ and } \chi_d(p) = 1 \ (P < p \leq 2P, \ p \nmid |d|) \}.
\]
Let \(C \log Q \leq P \leq (\log Q)^2 \). For \(d \in \mathcal{E}^*(Q, P) \), we invoke the prime number theorem to deduce
\[
\sum_{P < p \leq 2P} \frac{\chi_d(p)}{p} = \sum_{P < p \leq 2P} \frac{1}{p} - \sum_{P < p \leq 2P, p \nmid |d|} \frac{1}{p} \geq \frac{\log 2 + o(1)}{\log P} - \frac{(1 + o(1)) \log Q}{P \log_2 Q} \geq \frac{\log 2 - 2/C + o(1)}{\log P} > \frac{1}{2 \log P},
\]
provided \(C \) is sufficiently large. It is apparent from (3.1) that
\[
\left| \mathcal{E}^*(Q, P) \right| \leq \sum_{d \in \mathcal{D}(Q)} \left| \sum_{P < p \leq 2P} \frac{\chi_d(p)}{p} \right|^{2j} \leq Q \left(\frac{6j}{P \log P} \right)^j + \left(\frac{6P}{(\log P)^2} \right)^j.
\]
Hence we obtain
\[
\left| \mathcal{E}^*(Q, P) \right| \ll Q(12j \log P/P)^j + (12P)^j
\]
uniformly for \(C \log Q \leq P \leq (\log Q)^2 \) and \(j \geq 1 \). Taking
\[
j = \left\lceil \frac{\log Q}{48 \log P} \right\rceil + 1,
\]
a simple calculation shows that
\[|\mathcal{E}^*(Q, P)| \ll Q e^{-c \log Q / \log_2 Q} \]
with \(c = (\log 2) / 48 \). This implies (1.10).

Finally let
\[\mathcal{E}^*(Q) := \{ d \in \mathcal{D}(Q) : d \leq Q^{1/2} \} \cup \mathcal{E}^*(Q, C \log Q). \]
Then by (1.10), we have
\[|\mathcal{E}^*(Q)| \ll Q e^{-c \log Q / \log_2 Q}; \]
and for any \(d \in \mathcal{D}(Q) \setminus \mathcal{E}^*(Q) \) there is a prime number \(p = \log Q \approx \log |d| \) such that \(\chi_d(p) \neq 1 \), which implies (1.11). The proof is complete.

\[\text{§ 5. Graham-Ringrose’s method} \]

In this section, we shall state and extend the main results of ([14], Theorems 2, 3 and 4) for our purposes. For characters of certain moduli, Graham & Ringrose [14] obtained a wide zero-free region and good zero density estimates for the corresponding Dirichlet \(L \)-functions. The main ingredient of their method is an \(q \)-analogue of van der Corput’s result, which can be stated as follows: Suppose that \(q = 2^s r \), where \(0 \leq \nu \leq 3 \) and \(r \) is an odd squarefree integer, and that \(\chi \) is a non-principal character mod \(q \). Let \(p \) be the largest prime factor of \(q \). Suppose that \(k \) is a non-negative integer, and \(K = 2^k \). Finally, assume that \(N \leq M \). Then
\[\sum_{M < n \leq M + N} \chi(n) \ll M^{1 - \frac{k+1}{8K} - \frac{3}{2k} + \frac{1}{2k} + \frac{1}{4k} + \frac{1}{8K} + \frac{1}{16K} - \frac{1}{64K}} (\log q)^{\frac{k+1}{8K} - 1} \sigma^{-1}(q), \]
where \(\sigma(q) := \sum_{d | q} d^\nu \) and \(d(q) := \sigma_0(q) \). The implied constant is absolute.

Recall that for any odd prime \(p \),
\[\chi_s(p) = \left(\frac{2}{p} \right), \quad \chi_{q'}(p) = \left(\frac{q}{p} \right), \quad \chi_{q'}(p) = \left(\frac{q}{p} \right) (q \text{ odd prime, } q' := (-1)^{(q-1)/2}) \]
by definition. For squarefree \(m \geq 2 \), the character \(\chi_m := \prod_{p | m} \chi_{p} \) for odd \(m \) or \(\chi_m := \chi_8 \chi_{m'} \) for \(m = 2m' \) is a real primitive of modulus \(m \) or \(4m \), respectively. By convention, we set \(\chi_1 \equiv 1 \). Moreover, if \(\chi_4 \) is the real primitive character mod 4, i.e. \(\chi_4(n) = (-1)^{(n-1)/2} \) for odd \(n \), then \(\chi_{4m} := \chi_4 \chi_m \) is also a real primitive character of modulus \(4m \).

Let
\[P_y := \prod_{p \leq y} p = e^{(1 + o(1)) y} \quad (y \to \infty), \]
and define for \(\ell = 1 \) or 4,
\[L_\ell(s, P_y) := \prod_{m | P_y} L(s, \chi_{\ell m}), \]
where \(L(s, \chi_{\ell m}) \) is the Dirichlet \(L \)-function associated to \(\chi_{\ell m} \). Denote by \(N_\ell(\alpha) \) the number of zeros of \(L_\ell(s, P_y) \) in the rectangle
\[\alpha \leq \sigma \leq 1 \quad \text{and} \quad |\tau| \leq \log P_y. \]
Here and in the sequel we implicitly define the real numbers \(\sigma \) and \(\tau \) by the relation \(s = \sigma + i \tau \).

The next lemmas 2, 3 and 4 are trivial extensions of Theorems 2, 3 and 4 of [14], respectively.
Lemma 2. Let \(y \geq 100 \). Then there is an absolute positive constant \(C_1 \) such that the \(L \)-function \(\prod_{\ell=1,4} L_\ell(s, P_y) \) has at most one zero in the region

\[
\sigma \geq 1 - \frac{C_1 (\log_2 P_y)^{1/2}}{\log P_y} \quad \text{and} \quad |\tau| \leq \log P_y.
\]

The exceptional zero, if exists, is real.

Proof. As the crucial estimate (5.1) holds for all non-principal primitive characters of modulus \(q = 2^\nu r \geq 2 \) with \(0 \leq \nu \leq 3 \) and \(r \) being odd squarefree. Consider the case \(\nu = 0 \) or 3, and \(\nu = 2 \) or 3, respectively. We see that (5.1) applies to \(\chi_m \) and \(\chi_{4m} \) for any \(m | P_y \). It follows that [14, Lemma 6.1] is valid for these characters. Proceeding with the same argument, we have [14, Lemma 6.2] for our \(L \)-function \(\prod_{\ell=1,4} L_\ell(s, P_y) \) in place of \(L(s, P_y) \) there. Then the same proof of [14, Theorem 2] will give the desired result. (Note that the value of \(\phi \) suffers a negligible change when \(P_y \) is replaced by \(4P_y \) or \(8P_y \).) The exceptional zero must be real, for otherwise, its conjugate is another zero in the specified region. \(\square \)

Lemma 3. Let \(C_1 \) be as in Lemma 2. There is a sequence of positive real numbers \(\{y_n\}_{n=1}^\infty \) with \(y_n \to \infty \) such that both \(L_1(s, P_{y_n}) \) and \(L_4(s, P_{y_n}) \) have no zeros in the region

\[
\sigma \geq 1 - \eta(y_n) \quad \text{and} \quad |\tau| \leq \log P_{y_n},
\]

where

\[
\eta(y) := \frac{C_1 (\log_2 P_y)^{1/2}}{2 \log P_y}.
\]

Proof. Similar to [14, Theorem 3], our proof is also based on an interesting argument attributed to Maier [19]. Suppose that for some \(y \), the product \(L_1(s, P_y)L_4(s, P_y) \) has an exceptional zero in the region (5.4). That is, it has a real zero \(\beta > 1 - 2\eta(y) \). In view of (5.2), we can take \(y_n \geq y \) such that

\[
\eta(y_n) < 1 - \beta < 2\eta(y_n).
\]

By Lemma 2, \(\beta \) is the only exceptional zero of \(\prod_{\ell=1,4} L_\ell(s, P_{y_n}) \) in the region

\[
\sigma > 1 - 2\eta(y_n) \quad \text{and} \quad |\tau| \leq \log P_{y_n}.
\]

Together with the first inequality in (5.6), this forces \(\prod_{\ell=1,4} L_\ell(s, P_{y_n}) \) to have no zero in the region (5.5). It follows that we can find a sequence of positive real numbers \(\{y_n\}_{n=1}^\infty \) with \(y_n \to \infty \) such that both \(L_1(s, P_{y_n}) \) and \(L_4(s, P_{y_n}) \) have no zero in this region. \(\square \)

Lemma 4. Let \(\ell = 1 \) or 4 and \(y \geq 100 \). Then there is an absolute constant \(C_2 \) such that

\[
N_\ell(\alpha) \ll \begin{cases}
\exp \left\{ \frac{C_2(1 - \alpha) \log P_y}{\sqrt{\log_2 P_y}} + \frac{\log_3 P_y}{2} \right\} & \text{if } \alpha \geq 1 - \eta_1(y), \\
\exp \left\{ \frac{C_2(1 - \alpha) \log P_y}{\log(1/(1 - \alpha))} \right\} & \text{if } \alpha < 1 - \eta_1(y),
\end{cases}
\]

where

\[
k_0(y) := [(\log_2 P_y)^{1/2}] \quad \text{and} \quad \eta_1(y) := \frac{k_0(y)}{2(2k_0(y) - 2)}.
\]
Proof. The case of $\ell = 1$ has been done in [14, Sections 7 and 8] and $N_4(\alpha)$ can be treated in the same way by applying (5.1) to our χ_{4m}. \qed

§ 6. Proof of Theorem 3

In this section, we denote by p and q prime numbers. Define

$$\mathbb{P}_y := \{p : p \equiv 1 \pmod{4} \text{ and } \chi_p(q) = 1 \text{ for all } q \leq y\}.$$

Clearly we have $n_{\chi_p} > y$ for any $p \in \mathbb{P}_y$. We shall first show that the set \mathbb{P}_y is not too small for suitable y.

Proposition. Let $\delta > 0$ be a fixed small constant and $y(x)$ be a strictly increasing function defined on $[120, \infty)$ satisfying

$$(6.1) \quad (\log x)\frac{e^{-\delta(\log x)^{1/2}}}{\log^{3} x} \leq y(x) \leq \frac{\delta}{\log x} \log 3x.$$

Then there are a positive constant $c = c(\delta)$ and a sequence of positive real numbers $\{x_n\}_{n=1}^{\infty}$ with $x_n \to \infty$ such that

$$(6.2) \quad \sum_{x_n^{1/2} < \mathbb{P}_y \leq x \log x \atop p \in \mathbb{P}_y(x_n)} 1 \gg x_n e^{-cy(x_n)/\log y(x_n)}.$$

Further if we assume that both $L_1(s, \mathbb{P}_y)$ and $L_4(s, \mathbb{P}_y)$ have no zeros in the region (5.4) for all $y \geq 100$, then there is a positive constant c such that for all $x \geq 100$ we have

$$(6.3) \quad \sum_{x^{1/2} < p \leq x \log x \atop p \in \mathbb{P}_y} 1 \gg x e^{-cy(x)/\log y(x)}.$$

Proof. First let $10 \leq y \leq x^{1/2}$. As usual, $\pi(y)$ denotes the number of prime numbers $\leq y$. Clearly we have

$$(6.4) \quad 2^{-\pi(y)-1} \left(1 + \chi_4(p)\right) \prod_{q \leq y} (1 + \chi_p(q)) = \begin{cases} 1 & \text{if } p \in \mathbb{P}_y, \\ 0 & \text{if } p \notin \mathbb{P}_y. \end{cases}$$

When p and q are odd primes with $p \equiv 1 \pmod{4}$, i.e. $\chi_4(p) = 1$, we infer by quadratic reciprocity law that

$$\chi_p(q) = \left(\frac{p}{q}\right) = \left(\frac{q}{p}\right) = \chi_q(p) \quad (q' := (-1)^{(q-1)/2}q).$$

Note also for odd prime p,

$$\chi_p(2) = \left(\frac{p}{2}\right) = \left(\frac{2}{p}\right) = \chi_8(p).$$

Thus we can replace $\chi_p(q)$ by $\left(\frac{q}{p}\right)$ in (6.4) to write

$$\sum_{x^{1/2} < p \leq x \log x \atop p \in \mathbb{P}_y} \frac{1}{2^{\pi(y)+1}} \sum_{x^{1/2} < p \leq x \log x} (1 + \chi_4(p)) \prod_{q \leq y} \left(1 + \left(\frac{q}{p}\right)\right).$$
It is convenient to introduce the weight factor \((\log p) \left(e^{-p/(2x)} - e^{-p/x}\right)\) to the summands,

\[
\sum_{\ell^{-1/2} < p \leq x \log x} \frac{1}{2\pi(y)^2 \log x} \sum_{\ell^{-1/2} < p \leq x \log x} (\log p) \left(e^{-p/(2x)} - e^{-p/x}\right) \times (1 + \chi_4(p)) \prod_{q \leq y} \left(1 + \left(\frac{q}{p}\right)\right).
\]

We want to relax the range of the sum over \(p\). To this end, we observe that by the prime number theorem and integration by parts,

\[
\frac{1}{2\pi(y) \log x} \sum_{x \log x < p \leq x^2} (\log p) \left(e^{-p/(2x)} - e^{-p/x}\right) \left(1 + \chi_4(p)\right) \prod_{q \leq y} \left(1 + \left(\frac{q}{p}\right)\right) \ll \sum_{x \log x < p \leq x^2} \left(e^{-p/(2x)} - e^{-p/x}\right) \ll x^{1/2}/\log x.
\]

Combining this with the preceding inequality, we obtain

\[
(6.5) \quad \sum_{\ell^{-1/2} < p \leq x \log x} \frac{1}{2\pi(y)^2 \log x} \sum_{m|P_y} (S_x(m) + S_x(4m)) + O\left(\frac{x^{1/2}}{\log x}\right),
\]

where \(\ell = 1\) or \(4\), and

\[
S_x(\ell m) := \sum_{\ell^{-1/2} < p \leq x^2} (\log p) \left(e^{-p/(2x)} - e^{-p/x}\right) \chi_{\ell m}(p).
\]

By the Perron formula, we can write

\[
(6.6) \quad S_x(\ell m) = \frac{1}{2\pi i} \int_{2 - \infty}^{2 + \infty} \frac{L'}{L}(s, \chi_{\ell m}) (2^s - 1) \Gamma(s) x^s \, ds + O\left(x^{1/2}/\log x\right).
\]

We shift the line of integration to \(\sigma = -\frac{3}{4}\). The function \((2^s - 1)\Gamma(s)x^s\) has no pole in the strip \(-\frac{3}{4} \leq \sigma \leq 2\) since the pole of \(\Gamma(s)\) at \(s = 0\) is canceled by the zero of \((2^s - 1)\). Thus the only poles of the integrand in (6.6) occur at \(s = 1\) if \(\ell m = 1\) (note that \(L(s, \chi_1)\) is the Riemann \(\zeta\)-function), or at the zeros \(\rho(\ell m) = \beta(\ell m) + i\gamma(\ell m)\) of \(L(s, \chi_{\ell m})\). It follows that

\[
S_x(\ell m) = \delta_{m,1} x - \sum_{\rho(\ell m)} \left(2^{\rho(\ell m)} - 1\right) \Gamma(\rho(\ell m)) x^{\rho(\ell m)} + O\left(x^{1/2}/\log x\right),
\]

where \(\delta_{m,1} = 1\) if \(j = 1\) and \(0\) otherwise, and the sum is over all zeros with \(0 \leq \beta(\ell m) < 1\).

We write \(N(T, \chi_{\ell m})\) for the number of zeros of \(L(s, \chi_{\ell m})\) in the rectangle \(0 < \beta(\ell m) < 1\) and \(|\gamma| \leq T\). Then we have the classical bound

\[
(6.7) \quad N(T, \chi_{\ell m}) \ll T \log(Tm),
\]

which implies, for any \(\alpha \in (0, 1)\),

\[
(6.8) \quad N_{\ell}(\alpha) \leq \sum_{m|P_y} N(\log P_y, \chi_{\ell m}) \ll 2\pi(y) y^2.
\]
On the other hand, by means of \((2^s - 1)\Gamma(s)x^s \ll x^\sigma|\tau|\varepsilon^{-(\pi/2)|\tau|}\), the contribution of the zeros with \(|\gamma(\ell m)| \geq \log P_y\) to \(S_x(\ell m)\) is \(\ll 1\). Let \(\varepsilon\) be an arbitrarily small positive number. The zeros with \(\beta(\ell m) \leq 1 - \varepsilon\) and \(|\gamma(\ell m)| \leq \log P_y\) contribute

\[
\ll x^{1-\varepsilon}N(\log P_y, \chi_{\ell m}) \ll x^{1-\varepsilon}(\log P_y)^2 \ll x^{1-\varepsilon}y^2.
\]

Combining these with (6.5), we conclude

\[\sum_{x^{1/2} < \rho \leq x \log x} \frac{1}{\rho} \geq \frac{x}{(\log x)^{2\pi(y)+1}} + O\left(x^{1-\varepsilon}2^{\pi(y)}y^2 + \frac{T_1(x,y) + T_4(x,y)}{(\log x)^{2\pi(y)}}\right)\]

uniformly for \(x \geq 10\) and \(1 \leq y \leq x^{1/2}\), where

\[T_\ell(x,y) := \sum_{m \mid P_y} \sum_{\rho(\ell m) \geq 1, \beta(\ell m) \leq \log P_y} x^{\beta(\ell m)}\]

\[= - \int_{1-\varepsilon}^1 x^{\alpha}dN_\ell(\alpha).\]

It remains to estimate \(T_\ell(x,y)\). From now on we take \(y = y(x)\). By integration by parts and by using (6.8), we can deduce

\[T_\ell(x,y) \ll x^{1-\varepsilon}2^{\pi(y)}y^2 + x(\log x)I_\ell,\]

where

\[I_\ell := \int_0^\varepsilon x^{-\beta}N_\ell(1-\beta)d\beta.\]

Let \(\eta = \eta(y)\) and \(\eta_1 = \eta_1(y)\) be defined as in Lemmas 3 and 4, respectively. Set \(\eta_2 := 2y(x)/(\log x)\log y\). It is easy to verify that \(0 < \eta < \eta_1 < \eta_2 < \varepsilon\). (The inequality \(\eta_1 < \eta_2\) governs the lower bound of \(y(x)\) in (6.1).) Thus we can divide the interval \([0, \varepsilon]\) into four subintervals \([0, \eta], [\eta, \eta_1], [\eta_1, \eta_2]\) and \([\eta_2, \varepsilon]\), and denote by \(I_{\ell,0}, I_{\ell,1}, I_{\ell,2}\) and \(I_{\ell,3}\) the corresponding contribution to \(I_\ell\). Plainly we have

\[\frac{1}{2}\log_3 P_y \leq \frac{\eta_1}{4}\log x, \quad \frac{C_2 \log P_y}{\log_2 P_y} \leq \frac{1}{4}\log x, \quad \frac{C_2 \log P_y}{\log(1/\eta_2)} \leq \frac{1}{2}\log x, \quad \frac{y}{\log y} \geq \frac{\eta_2}{2}\log x.\]

(The third inequality governs the upper bound of \(y(x)\) in (6.1).) From Lemma 4 and (6.8), we deduce that

\[I_{\ell,1} \ll \int_\eta^{\eta_1} \exp\left\{-\beta \log x + \frac{C_2 \beta \log P_y}{\log_2 P_y} + \frac{1}{2}\log_3 P_y\right\}d\beta \ll \frac{x^{-\eta/2}}{\log x},\]

\[I_{\ell,2} \ll \int_{\eta_1}^{\eta_2} \exp\left\{-\beta \log x + \frac{C_2 \beta \log P_y}{\log(1/\beta)}\right\}d\beta \ll \frac{x^{-\eta_1/2}}{\log x},\]

\[I_{\ell,3} \ll \int_{\eta_2}^{\varepsilon} \exp\left\{-\beta \log x + \frac{y}{\log y}\right\}d\beta \ll \frac{x^{-\eta_2/2}}{\log x}.\]

Hence, all of them satisfy

\[I_{\ell,i} = o((\log x)^{-1}) \quad (i = 1, 2, 3).\]
If we assume that both $L_1(s, P_y)$ and $L_4(s, P_y)$ have no zeros in the region (5.4) for all $y \geq 100$, then $I_{\ell,0} = 0$. Otherwise we use Lemma 3 to ensure the existence of $\{y_n\}_{n=1}^\infty$ such that $I_{\ell,0} = 0$.

With (6.10), our conclusion is

$$T_\ell(x_n, y_n) = o \left(\frac{x_n}{(\log x_n)^2} \pi(y_n) \right) \quad (n \to \infty),$$

or

$$T_\ell(x, y) = o \left(\frac{x}{(\log x)^2} \pi(y) \right) \quad (x \to \infty)$$

under the assumption that both $L_1(s, P_y)$ and $L_4(s, P_y)$ have no exceptional zeros. Clearly this and (6.9) imply the required result. This completes the proof of Proposition. □

Now we are ready to prove Theorem 3.

Taking $Q_n = x_n \log x_n$ and $y(x) = 100\delta \log x$ in Proposition and noticing that $p \in P_y \Rightarrow n \chi_p \geq y$, we have

$$\sum_{n \chi_p \geq 100\delta \log Q_n} \frac{1}{2} \gg Q_n e^{-c_1(\log Q_n)/\log_2 Q_n}.$$

It implies the first assertion of Theorem 3, and the second one can be treated similarly. This concludes Theorem 3. □

§ 7. Proof of Theorem 4

Let $1 < c < \frac{32}{29}$ and ε be an arbitrary but sufficiently small positive constant. The upshot is to show

$$(7.1) \quad n_{\chi_{\nu'},c} \ll n_{\chi_{\nu'}}^{9/(16-10c)+\varepsilon}$$

whenever $n_{\chi_{\nu'}} \geq N_0(c, \varepsilon)$ for some suitably large constant $N_0(c, \varepsilon)$ depending only on c and ε. Once (7.1) is established, the required results follow from Burgess’ upper bound (1.5) or (1.11).

To prove (7.1), we make use of the observation that the integer $mn_{\chi_{\nu'}}$ is quadratic non-residue for any integer $m < n_{\chi_{\nu'}}$. Now, we want to find a positive $M (< \frac{1}{2} n_{\chi_{\nu'}})$ as small as possible such that

$$(7.2) \quad [n'] = mn_{\chi_{\nu'}}$$

for some integers $m \in (M, 2M]$ and $n > 1$. This implies

$$(7.3) \quad n_{\chi_{\nu'},c} \ll (Mn_{\chi_{\nu'}})^{1/c}$$

which leads to (7.1) with a suitable estimate on M.

Apparently, (7.2) is equivalent to

$$(7.4) \quad (mn_{\chi_{\nu'}})^{1/c} \leq n < (mn_{\chi_{\nu'}} + 1)^{1/c}. $$

Denote by $\{x\}$ the fractional part of x. Then (7.4) holds if

$$(7.5) \quad 0 < \{(mn_{\chi_{\nu'}} + 1)^{1/c}\} \leq (2^{1/c-2}/c)(Mn_{\chi_{\nu'}})^{1/c-1} =: \Delta < 1 \quad (c > 1), $$
since

\[(mn_{x'} + 1)^{1/c} - (mn_{x'})^{1/c} \geq (1/c)(2Mn_{x'})^{1/c-1}.\]

Let \(\delta_\Delta(t)\) be the periodic function of period 1 such that \(\delta_\Delta(t) = 1\) if \(t \in (0, \Delta]\) and \(= 0\) if \(t \in (\Delta, 1]\). Then (7.5) will follow from

\[(7.6) \sum_{M < m \leq 2M} \delta_\Delta((mn_{x'} + 1)^{1/c}) > 0.\]

Introducing the function \(\psi(t) := \frac{1}{2} - \{t\}\), we can express

\[\delta_\Delta(t) = \Delta + \psi(\Delta - t) - \psi(-t).\]

Thus we have

\[\sum_{M < m \leq 2M} \delta_\Delta((mn_{x'} + 1)^{1/c}) = \Delta M + R,\]

where

\[R := \sum_{M < m \leq 2M} \left(\psi(\Delta - (mn_{x'} + 1)^{1/c}) - \psi(-(mn_{x'} + 1)^{1/c})\right)\]

Consider respectively

\[f(t) = \Delta - ((M + t)n_{x'} + 1)^{1/c}, \quad f(t) = -((M + t)n_{x'} + 1)^{1/c}.\]

Then the treatment of \(R\) is reduced to the sum \(\sum_{M < m \leq 2M} \psi(f(m))\), which can be handled using a recent result in [22] via third derivative of \(f(t)\). Applying Theorem 2 of [22], we obtain

\[R \ll c, \varepsilon \left(M\left(M^{1/c-3n_{x'}^{1/c}}\right)^{3/19} + M^{3/4} + (M^{1/c-3n_{x'}^{1/c}})^{-1/3}\right)M^2.\]

Thus (7.6) will hold provided

\[M^{1-\varepsilon} \geq n_{x'}^{(19c-16)/(16-10c)}.\]

Taking \(M = n_{x'}^{(19c-16)/(16-10c)+\varepsilon}\), it follows that

\[R \leq C_0(c, \varepsilon)n_{x'}^{(10c-16)/(19c)M^2\Delta M}\]

for \(n_{x'} \geq N_1(c, \varepsilon)\) where \(C_0(c, \varepsilon)\) and \(N_1(c, \varepsilon)\) are absolute constants depending only on \(c\) and \(\varepsilon\). The hypothesis \(1 < c < \frac{32}{29}\) yields that \(M < \frac{1}{2}n_{x'}\) for all sufficiently large \(n_{x'}\). Furthermore, this hypothesis ensures that the exponent of \(n_{x'}\) is negative and hence \(R\) is suppressed by \(\Delta M\) for all large \(n_{x'}\). Consequently, we derive (7.6) for \(n_{x'} \geq N_2(c, \varepsilon)\), and therefore (7.1) by inserting the value of \(M\) into (7.3). The proof of Theorem 4 is thus complete.

\[\square\]

References

[2] S. Baier, A remark on the least \(n\) with \(\chi(n) \neq 1\), Preprint.
On the least quadratic non-residue

Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong

E-mail: yklau@maths.hku.hk

Institut Elie Cartan, UMR 7502 UHP CNRS INRIA, Université Henri Poincaré (Nancy 1), 54506 Vandœuvre-lès-Nancy, France

E-mail: wujie@iecn.u-nancy.fr