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Information Bottleneck

Efficiency of a given representation U = f(Y ) measured by the pair

Rate (or Complexity): I(U ;Y ) and Information (or Relevance): I(U ;X)

Information I(X;U) can be achieved by OBLIVIOUS coding Y while with
the logarithmic distortion with respect to X

Single letter-wise, U is not necessarily a deterministic function of Y

The non-oblivious bottleneck problem is immediate as the min(I(X;Y ), R)
is achievable by having the relay decoding the message transmitted by X

The bottleneck problem connects to many timely aspects, such as ’deep
learning’ [Tishby-Zaslavsky, ITW’15].
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Digression: Learning via the Information Bottleneck
Method

Preserving all the information about X that is contained in Y , i.e., I(X;Y ),
requires high complexity (in terms of minimum description coding length).

Other measures of complexity may be (Vapnik-Chervonenkis) VC-dimension,
covering numbers, ..

Efficiency of a given representation U = f(Y) measured by the pair

Complexity: I(U ;Y ) and Relevance: I(U ;X)

Example:

max
p(u|x)

I(U ;X) s.t. I(U ;Y ) ≤ R, for 0 ≤ R ≤ H(Y )

min
p(u|x)

I(U ;Y ) s.t. I(U ;X) ≥ ∆, for 0 ≤ ∆ ≤ I(X;Y )
4 / 43



Basically, a Remote Source Coding Problem !

Reconstruction at decoder is under log-loss measure,

R(∆) = min
p(u|y)

I(U ;Y )

where the minimization is over all conditional pmfs p(u|y) such that

E[`log(X,U)] ≤ H(X)−H(X|U) = H(X)−∆

- R. L. Dobrushin and B. S. Tsybakov, “Information transmission with additional noise”, IRE Tran. Info.
Theory, Vol. IT-8, pp. 293-304, 1962.

- H. Witsenhausen, A. Wyner, “A conditional entropy bound for a pair of discrete random variables”,

IEEE Trans. on Info. Theory, Vol. 21, pp. 493-501, 1975.

Solution also coined as the Information Bottleneck Method [Tishby’99]

LIB(β, PX,Y ) = min
p(u|y)

I(Y ;U)− βI(X;U)
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Other Connections

The Efficiency of Investment Information

- X - Stock Market Data.

Y - Correlated Information about X.

∆(R) the maximum increase in growth rate when Y is described to the
investor at rate R (a logarithmic distortion that relates to the
Wyner-Ahlswede-Korner Problem).

- Solution of the bottleneck for: (X,Y ) are binary and (X,Y ) Gaussian
(horse race examples).

- E. Erkip and T. M. Cover, “The Efficiency of Investment Information”,
IEEE Trans. on Info. Theory, Vol. 44, May 1998.
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Other Connections (Cont.)

Common Reconstruction. Because X −
− Y −
− U , we have

I(U ;X) = I(U ;Y )− I(U ;Y |X)

≤ R− I(U ;Y |X)

- Y. Steinberg, “Coding and common reconstruction”, IEEE Trans. on Info.
Theory, vol. 55, no. 11, pp. 4995–5010, Nov. 2009 (X – side information is
not used for the ‘source’ Y common reconstruction).

∗ Heegard-Berger Problem with Common Reconstruction: Y -source, to be
commonly reconstructed (with logarithmic distortion), with and without side
information (X), as to maximize I(U ;X).

- M. Benammar, A. Zaidi, “Rate-Distortion of a Heegard-Berger Problem with
Common Reconstruction Constraint,” IZS, March 2–4, 2016.
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Other Connections (Cont.)

Information Combining

I(Y ;U,X) = I(U ;Y ) + I(X;Y )− I(U ;X) (since X −
− Y −
− U)

Since I(X;Y ) is given and I(Y ;U) = R, maximizing I(U ;X) is equivalent
to minimizing I(Y ;U,X).

- I. Sutskover, S. Shamai and J. Ziv, “Extremes of Information Combining”,
IEEE Trans. Inform. Theory, vol. 51, no. 4, pp. 1313–1325, April 2005.

- I. Land and J. Huber, ”Information combining,” Foundations and trends in
Commun. and Inform. Theory, vol. 3, pp. 227–330, Nov. 2006.
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Other Connections (Cont.)

Elegant Proofs of Classical Bottleneck Results

- X,Y binary symmetric connected through a Binary Symmetric Channel
(error probability e): U -Y , also a BSC, I(U ;X) = {1− h(e∗v)} where
e∗v = e(1− v) + v(1− e), R = 1− h(v).

Directly extends to X − Y symmetric, where Y is symmetric binary (one bit
output quantization).

- X standard Gaussian, and Y =
√

snrX +N (N standard Gaussian).
Elegant proof via I-MMSE [Guo-Shamai-Verdu, FnT’13].

I(U ;X) =
1

2
log(1 + snr)− 1

2
log
(

1 + snr exp(−2R)
)
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Other Connections (Cont.)

Proof:
min I(Y ;X,U) subject to: I(Y ;U) = R .

Let

X =
√
βY +M ,

M ∼ N(0, 1)
M ⊥⊥ Y

β = snr/(1 + snr)

I(Y ;X,U) = I(Y ;U) + I(Y ;X|U)

I(Y ;X|U) =
1

2

∫ β

0

mmse (Y : γ, U) dγ

mmse (Y : γ, U) = E
(
Y − E(Y |√γ Y +M,U)

)2
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Other Connections (Cont.)

I-MMSE + Single Crossing Property
[Guo-Shamai-Verdú, FnT’13] ⇒

1

2

∫ β

0

mmse (Y : γ, U) dγ =
1

2

∫ β

0

ρσ2
Y |U

1 + γρσ2
Y |U

dγ

=
1

2
log
(

1 + βρσ2
Y |U

)

0 ≤ ρ ≤ 1 , σ2
Y |U = E

(
Y − E(Y |U)

)2
= mmse (Y : 0, U)
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Other Connections (Cont.)

R = I(Y ;U) = h(Y )− h(Y |U)

h(Y ) =
1

2
log
(

2π exp (snr + 1)
)

h(Y |U) =
1

2

∫ ∞
0

(
mmse (Y : γ, U)− 1

2πρ+ γ

)
dγ

≤
single crossing point

1

2

∫ ∞
0

(
ρσ2

Y |U

1 + γρσ2
Y |U
− 1

2πe+ γ

)
dγ
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Other Connections (Cont.)

⇒ ρσ2
Y |U ≥ exp(−2R) (1 + snr)

⇒
information
combining

I(Y ;X,U) ≥ R+
1

2
log
(

1 + snr exp(−2R)
)

⇒
bottleneck I(X;U) ≤ 1

2
log(1 + snr)− 1

2
log
(

1 + snr exp(−2R)
)

Directly extends to the Gaussian vector case, where the vector version of the
single crossing point [Bustin-Payaro-Palomar-Shamai, IT13] is used.
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Other Connections (Cont.)

Wyner-Ahlswede-Körner Problem

If X and Y are encoded at rates RX and RY , respectively. For given
RY = R, the minimum rate RX that is needed to recover X losslessly is

R?X(R) = min
p(u|y) : I(U ;Y )≤ R

H(X|U)

So, we get
max

p(u|y) : I(U ;Y )≤R
I(U ;X) = H(X)−R?X(R)

- R. F. Ahlswede and J. Korner, “Source coding with side information and a converse for
degraded broadcast channels”, IEEE Trans. on Info. Theory, Vol. 21, pp. 629-637, 1975.

- A. D. Wyner, “On source coding with side information at the decoder”,

IEEE Trans. on Info. Theory, Vol. 21, pp. 294-300, 1975.
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Vector Gaussian Information Bottleneck

(X,Y) jointly Gaussian, X ∈ RN and Y ∈ RM

Optimal encoding PU|Y is a noisy linear projection to a subspace whose dimensionality is
determined by the bottleneck Lagrangian multiplier β
[Chechik-Globerson-Tushby-Weiss, ’05]

U = AY + Z, Z ∼ N(0, I)

where

A =


[0T ; . . . ; 0T ], if 0 ≤ β ≤ βc

1

[α1vT
1 ; 0T ; . . . ; 0T ], if βc

1 ≤ β ≤ βc
2

[α1vT
1 ;α2vT

2 ; 0T ; . . . ; 0T ], if βc
2 ≤ β ≤ βc

3

...

and {vT
1 , . . . ,v

T
N} are the left eigenvectors of Σy|xΣ−1

y , sorted by their ascending

eigenvalues {λ1, . . . , λN}; βc
i = 1/(1− λi) are critical β values; ri = vT

i Σyvi and

αi =

√
β(1− λi)− 1

λiri

Rate-Information Trade-off Gaussian Vector Channel [Winkelbauer-Matz, ISIT’14].
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CEO Source Coding Problem under Log-Loss

CEO source coding problem under log-loss distortion:

dlog(x, x̂) := log

(
1

x̂(x)

)
where x̂ ∈ P(X) is a probability distribution on X.

Characterization of rate-distortion region in [Courtade-Weissman’14]

Key step: log-loss admits a lower bound in the form of conditional entropy of
the source conditioned on the compression indices:

nD ≥ E[dlog(Xn; X̂n)] ≥ H(Xn|JK) = H(Xn)− I(Xn; JK)
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CEO Source Coding Problem under Log-Loss (Cont.)

Converse of Theorem 1 for Oblivious CRAN leverages on this relation applied
to multiple channel inputs, which can be designed.

Multiple description CEO problem-logloss distortion
[Pichler-Piantanida-Matz, ISIT’17].

Vector Gaussian CEO Problem Under Logarithmic Loss and Applications
[Ugur-Aguerri-Zaidi, arxiv:1811.03933]: Accounts also for Gaussian side
information about the source at the decoder.

- Full characterization
(not the case for MMSE Distortion, [Ekrem-Ulukos, IT0214]).

Implications [Ugur-Aguerri-Zaidi, arxiv:1811.03933] Solutions of:

- Vector Gaussian distributed hypothesis testing against conditional
independence [Rahman-Wagner, IT2012].

- A quadratic vector Gaussian CEO problem with determinant constraint.

- Vector Gaussian distributed Information Bottleneck Problem.
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Distributed Information Bottleneck

Information Bottleneck introduced by [Tishby’99] and [Witsenhausen’80]

“Indirect Rate Distortion Problems”, IT–26, no. 5, pp. 518–521, Sept. 1980.

It is a CEO source-coding problem under log-loss!

Theorem (Distributed Information Bottleneck [ Estella-Zaidi, IZS’18 ] )

The D-IB region is the set of all tuples (∆, R1, . . . , RK) which satisfy

∆ ≤
∑
k∈S

[Rk−I(Yk;Uk|X,Q)] + I(X;USc |Q), for all S ⊆ K

for some joint pmf p(q)p(x)
∏K
k=1 p(yk|x)

∏K
k=1 p(uk|yk, q).
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Vector Gaussian Distributed Information Bottleneck

(Y1, · · · ,YK ,X) jointly Gaussian, Yk ∈ RN and X ∈ RM ,

Yk = HkX + Nk, Nk ∼ N(0,Σnk
)

Optimal encoding P ∗Uk|Yk
is Gaussian and Q = ∅ [Estella-Zaidi’17]

Theorem ([Estella-Zaidi, IZS’18], [Ugur-Aguerri-Zaidi, arxiv:1811.03933] )

If (X,Y1, . . . ,YK) are jointly Gaussian, the D-IB region is given by the set of all
tuples (∆, R1, . . . , RL) satisfying that for all S ⊆ K

∆ ≤
∑
k∈S

[Rk + log |I−Bk|] + log

∣∣∣∣∣∑
k∈Sc

H̄H
k BkH̄k + I

∣∣∣∣∣
for some 0 � Bk � I, where H̄k = Σ

−1/2
nk HkΣ

1/2
x , and achievable with

p∗(uk|yk, q) = CN(yk,Σ
1/2
nk

(Bk − I)Σ1/2
nk

)

Reminiscent of the sum-capacity in Gaussian Oblivious CRAN with Constant
Gaussian Input constraint.
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Example
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Optimal information (relevance):

∆∗(R, snr) =
1

2
log

(
1 + 2 snr exp(−4R)

(
exp(4R) + snr−

√
snr2 + (1 + 2 snr) exp(4R)

))
Collaborative encoding upper bound: (Y1, Y2) encoded at rate 2R

∆ub(R, sr) =
1

2
log (1 + 2 snr)−

1

2
log
(

1 + 2 snr exp(−4R)
)

Lower bound: Y1 and Y2 independently encoded

∆lb(R, snr) =
1

2
log
(

1 + 2 snr− snr exp(−2R)
)
−

1

2
log
(

1 + snr exp(−2R)
)
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The Cost of Oblivious Processing: an Example
Cut-Set Bound∑

(R, snr) = min

{
2R,

1

2
log (1 + 2snr) , R+

1

2
log (1 + snr)

}
Improved Upper Bound: geometric analysis of typical sets
[Wu-Ozgur-Peleg-Shamai, ITW’19 ]

There exists: θ ∈ E[arcsin(2−R), π/2] such that:∑
(R, snr) ≤ 1

2
log (1 + snr) +R+ log sin θ ,∑

(R, snr) ≤ 1

2
log (1 + snr) + min, h(ω; θ)

ω∈
[π

2
− θ, π

2

]
∑

(R, snr) ≤ 2R+ 2 log sin θ

where

h(ω; θ) =
1

2
log

(
[2snr + sin2 ω − 2snr cosω] sin2 θ

(snr + 1)(sin2 θ − cos2 θ)

)
.
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The Cost of Oblivious Processing: an Example
Cut-Set Bound (Cont).

Achievable Scheme

∗ Optimization (optimized time sharing)

→ Fully decode & forward (both relays decode) & rate splitting over the
fronthaul links.

→ Optimal obvlivious processing (disributed source coding under logarithmic
loss).

→ Capacity achieving for: 2R ≤ 1

2
log (1 + snr).
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Oblivious Relay Processing

Resource-sharing random variable Qn available at all terminals [Simeone et al’11].

Qn way easier to share, (e.g., on/off activity ).

Memoryless Channel: PY1,...,YK |X1,...,X1

User l ∈ {1, . . . , L}: φnl : [1, |Xl|n2nRl ]× [1, 2nRl ]× Qn → Xn
l

Relay k ∈ {1, . . . ,K}: gnk : Yk
n × Qn → [1, 2nCk ]

Decoder:

ψn : [1, |X1|n2nR1
]× · · · × [1, 2nCK ]× Qn → [1, 2nR1 ]× . . .× [1, 2nRL ]
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Capacity Region of a Class of CRAN Channels

Theorem (Aguerri-Zaidi-Caire-Shamai ’IT19)

For the class of discrete memoryless channels satisfying

Yk −
−XL −
− YK\k

with oblivious relay processing and enabled resource-sharing, a rate tuple
(R1, . . . , RL) is achievable if and only if for all T ⊆ L and for all S ⊆ K,∑

t∈T

Rt ≤
∑
s∈S

[Cs − I(Ys;Us|XL, Q)] + I(XT;USc |XTc , Q),

for some joint measure of the form

PQ

L∏
l=1

PXl|Q

K∏
k=1

PYk|XL

K∏
k=1

PUk|Yk,Q,

with the cardinality of Q bounded as |Q| ≤ K + 2.

⇒ Equivalent to Noisy Network Coding [Lim-Kim-El Gamal-Chung, IT ’11].
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Numerical Example

Three-cell SISO circular Wyner model
• Three-cell SISO circular Wyner model 

 

 



Numerical Example 



CU 
- Each cell contains a single-antenna and 

a single-antenna RU. 

- Inter-cell interference takes place only 

between adjacent cells. 

- The intra-cell and inter-cell channel gains 

are given by 1 and     , respectively. 

- All RUs have a fronthaul capacity of     . 


C
C

C
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C

- Each cell contains a single-antenna and a single-antenna RU.
- Inter-cell interference takes place only between adjacent cells.
- The intra-cell and inter-cell channel gains are given by 1 and α, respectively.
- All RUs have a fronthaul capacity of C.
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Numerical Example (Cont.)

Compare the following schemes
- Single-cell processing

Each RU decodes the signal of the in-cell MS by treating all other MSs’ signals
as noise.

Point-to-point fronthaul compression

Each RU compresses the received baseband signal and the quantized signals are
decompressed in parallel at the control unit.

Distributed fronthaul compression [dCoso-Simoens ’09]

Each RU performs Wyner-Ziv conding on the received baseband signal and the
quantized signals are successively recovered at the control unit.
Joint Decompression and Decoding (noisy network coding
[Sanderovich-Shamai-Steinberg-Kramer’08])

Compute-and-forward [Hong-Caire ’11]

Each RU performs structured coding.

Oblivious processing upper bound

RUs cooperate and optimal compression is done over 3C fronthaul link.

Cutset upper bound
[Simeone-Levy-Sanderovich-Somekh-Zaidel-Poor-Shamai ’12]
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Numerical Example (Cont.)

α = 1/
√

2 and C = 3 bit/s/Hz

the received signals at RUs 

becomes more pronounced. 

- Compute-and-Forward

- At low SNR, its performance

coincides with single-cell 

processing. 

- RUs tend to decode trivial

combinations. 

- At high SNR, the fronthaul

capacity is the main performance 

bottleneck, so CoF shows the 

best performance. 

16 of 71 pages 

- The performance advantage of

distributed compression over

point-to-point compression increases

as SNR grows larger.

- At high SNR, the correlation of

the received signals at RUs

becomes more pronounced.

- Compute-and-Forward

- At low SNR, its performance
coincides with single-cell
processing.

- RUs tend to decode trivial
combinations.

- At high SNR, the fronthaul

capacity is the main

performance bottleneck, so CoF

shows the best performance.
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Numerical Example (Cont.)

α = 1/
√

2 and C = 3 bit/s/Hz

the received signals at RUs 

becomes more pronounced. 

- Compute-and-Forward

- At low SNR, its performance

coincides with single-cell 

processing. 

- RUs tend to decode trivial

combinations. 

- At high SNR, the fronthaul

capacity is the main performance 

bottleneck, so CoF shows the 

best performance. 

16 of 71 pages 

- Distributed compression

- Joint decompression and

decoding does not provide much

gain compared to separate

decompression and decoding.

- Optimality of joint

decompression and decoding in

symmetric case

[Zaidi-Aguerri-Caire-Shamai’19].

28 / 43



Numerical Example (Cont.)

α = 1/
√

2 and C = 5 log10 P bit/s/Hz

Numerical Example 
105lo=1/ 2  and  bit/ / zg s HC P 

- When      increases as log(snr), CoF 

is not the best for high SNR. 

- i.e., if      does not limit the  

performance, the oblivious 

compression technique will be 

advantageous than CoF. 
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C

C

- When C increases as log (snr),
CoF is not the best for high SNR.

- i.e., if C does not limit the
performance, the oblivious
compression technique will be
advantageous than CoF.
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The Distributed Information Bottleneck for Learning

For simplicity, we look at the D-IB under sum-rate [Aguerri-Zaidi’18]

P ∗Uk|Yk
= arg min

PUk|Yk

I(X;UK) + β

K∑
k=1

[I(Yk;Uk)− I(X;Uk)]

The optimal encoders-decoder of the D-IB under sum-rate constraint satisfy
the following self consistent equations,

p(uk|yk) =
p(uk)

Z(β, uk)
exp (−ψs(uk, yk)) ,

p(x|uk) =
∑

yk∈Yk

p(yk|uk)p(x|yk)

p(x|u1, . . . , uK) =
∑

yK∈YK

p(yK)p(uK|yK)p(x|yK)/p(uK)

where

ψs(uk, yk) :=DKL(PX|yk ||QX|uk
) +

1

s
EUK\k|yk [DKL(PX|UK\k,yk

||QX|UK\k,uk
))].

Alternating iterations of these equations converge to a a solution for any
initial p(uk|xk), similarly to a Blahut-Arimoto algorithm.
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D-IB for Vector Gaussian Sources: Iterative Optimization

(Y1, · · · ,YK ,X) jointly Gaussian, Yk ∈ RN and X ∈ RM ,

Yk = HkX + Nk, Nk ∼ N(0, I)

Optimal encoding P ∗Uk|Yk
is Gaussian [Aguerri-Zaidi’17] and given by

Uk = AkYk + Zk, Zk ∼ N(0,Σz,k)

For this class of distributions, the updates in the Blahut-Arimoto type
algorithm simplify to:

Σ
zt+1
k

=

((
1 +

1

β

)
Σ−1

ut
k
|x −

1

s
Σ−1

ut
k
|ut

K\k

)−1

,

At+1
k =Σ−1

zt+1
k

((
1 +

1

β

)
Σ−1

ut
k
|xAt

k(I−Σyk|xΣ−1
yk

)

− 1

β
Σ−1

ut
k
|ut

K\k
At

k(I−Σyk|ut
K\k

Σ−1
yk

)

)
.

31 / 43



Some Perspectives
Optimal input distributions for the input power constrained Gaussian bottleneck
model.

Discrete signaling is already known to sometimes outperform Gaussian
signaling for single-user Gaussian CRAN
[Sanderovich-Shamai-Steinberg-Kramer ’08].

It is conjectured that the optimal input distribution is discrete.

Improved upper bounds (over cut-set) for non-oblivious relay based schemes,
to better evaluate the cost of oblivious processing (á la: Vu-Barnes-Ozgur,
arXiv:1701.02043 (IT’19) Gaussian primitive relay,
[Wu-Ozgur-Peleg-Shamai, ITW’19]).

Connections between classical bottleneck problems and Common Information
[Wyner’75] : For given (X,U) find Y : X − Y − U minimizing I(Y ;X,U), and
Gacs-Korner-Witsenhausen Common Information [Gacs-Korner ’73].

Lossy common information [Viswanatha-Akyol-Rose, IT2014].

Network source-coding [Gray-Wyner’74], viewed as a general common
information characterization [El Gamal-Kim, Cambridge’15].

Gray-Wyner models with side information [Bennamar-Zaidi, Entropy’17].

Information Decomposition, Common Information and Bottleneck
[Banerjee, arXiv: 1503.00709].
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Some Perspectives cont.’

Bounds on general information bottleneck problems [Painsky-Tishby,
arXiv:1711.02421], [Eswaran-Gastpar, arXiv:1805.06515].

A variety of related C-RAN & Distributed bottleneck problems:

Impact of block length n [R may not scale linearly with n ⇒ Courtade
conjecture (R = 1)] relates to [Courtade-Kumar, IT’14],
[Yang-Wesel, arXiv:1807.11289, July’19], [Ordentlich-Shayevitz-Weinstein,
ISIT’16].
The R = n− 1 relates to [Huleihel-Ordentlich, arXiv:1701.03119v2, ISIT ’17].

Bandlimited time-continuous models [Homri-Peleg-Shamai, TCOM, Nov.’18].

Broadcast Approach (oblivious and general) for the Information Bottleneck
Channel [Steiner-Shamai ’19].

Multi-layer Information Bottleneck Problem (Yang-Piantanida-Gündüz,
arXiv:1711.05102).

Gaussian version ⇒ half space indicator [Kindler-O’Donnell-Witmer, arXiv
July 2016].
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Some Pespectives cont.’

Distributed Information-Theoretic Clustering (Pichler-Piantanida-Matz,
arXiv:1602.04605, Dictator Functions, arXiv:1604.02109).

- For: V −X − Y − U , find:

max I(U ;V ) subjected to: I(V ;X) ≤ R1, I(U ;Y ) ≤ R2 .

Entropy constraint bottleneck:

X − Y − U
max I(X;U) under the constraint H(U) ≤ R practical applications:
LZ distortionless compression.

⇒ U = f(Y ) a deterministic function [Homri-Peleg-Shamai, TCOM, Nov.’18]

– With resource sharing Q⇒ max I(X;U |Q) subjected to: H(U |Q) ≤ R.

The deterministic bottleneck: advantages in complexity as compared to a
classical bottleneck: [Strouse-Schwab, arXiv:1604.00268].
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Some Perspectives cont.’

Privacy Funnel, dual of bottleneck: X − Y − U , minimize: I(X;U), under
the constraint: I(Y ;U) = R. [Calmon-Makhdoumi-Medard-Varia-Christiansen-Duffy IT2017].

Direct connection to Information combining, maximize:
I(Y ;U,X) = I(X;Y ) + I(U ;Y )− I(U ;X), under the constraint:
I(U ;Y ) = R.

Example: (X,Y ) binary symmetric connected via a BSC, X − Y .
The channel Y − U is an Erasure Channel.

Example (Ordentlich-Shamai): For the Gaussian model: Y =
√

(snr)X +N ,
where (X,N) are unit norm independent Gaussians: Take U to be a
deterministic function of Y , say describes the m last digits of a b long
(b→∞) binary description of Y , such that I(U ;Y ) = H(U) = R (m is R
dependent). Evidently I(U ;X)→ 0, as I(Y ;U,X)→ R+ I(X;Y ).
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“Information Bottleneck Problems: An Outlook”

Abstract:

This talk focuses on variants of the bottleneck problem taking an information theoretic per-
spective. The intimate connections of this setting to: Remote Source-Coding; Information
Combining; Common Reconstruction; The Wyner-Ahlswede-Korner Problem; The Efficiency
of Investment Information; CEO Source Coding under Log-Loss and others will be high-
lighted. We discuss the distributed information bottleneck problem with emphasis on the
Gaussian model and highlight the basic connections to the uplink Cloud Radio Access Net-
works (CRAN) with oblivious processing, referring also in an example to the ’cost’ of such a
processing. For this model, the optimal tradeoffs between rates (i.e. complexity) and infor-
mation (i.e. accuracy) in the discrete and vector Gaussian frameworks is determined, taking
an information-estimation viewpoint. The concluding overview addresses the dual problem
of the privacy funnel, as well as connections to the finite block length bottleneck features
(related to the Courtade-Kumar conjecture) and entropy complexity measures (rather than
mutual-information). Some interesting problems are mentioned such as the characterization
of the optimal power limited inputs (‘features’) maximizing the ‘accuracy’ for the Gaussian
information bottleneck, under ‘complexity’ constraints.
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