

Department of Mathematics

Number Theory Seminar

Universal m-Gonal Form

Ms. Dayoon Park

Seoul National University

ABSTRACT. A (generalized) m-gonal number is a non-negative rational integer defined by $P_m(x) := \frac{(m-2)x^2-(m-4)x}{2}$ where $x \in \mathbb{Z}$. And we call $F_m(\mathbf{x}) = \sum_{i=1}^n a_i P_m(x_i)$ where $a_i \in \mathbb{N}$ as m-gonal form. Kane proved that there always exists a (unique, minimal) $\gamma_m \in \mathbb{N}$ such that if an m-gonal form $F_m(\mathbf{x})$ represents every positive rational integer up to γ_m , then $F_m(\mathbf{x})$ is universal, i.e., $F_m(\mathbf{x})$ represents every positive rational integer. There are some examples for γ_m which are concretely calculated for some small m's. $\gamma_3 = \gamma_6 = 8$ [Bosma and Kane], $\gamma_4 = 15$ [15-Theorem, Conway and Schneeberger], $\gamma_5 = 109$ [Ju] and $\gamma_8 = 60$ [Ju and Oh]. And Kane and Liu firstly suggested a question about the growth of γ_m as a function of m. Since $m-4 \leq \gamma_m$ for $6 \leq m$, the γ_m asymptotically increases as m increases. And they proved that for $m \geq 3$ and every $\epsilon > 0$, there exists an absolute (effective) constant C_ϵ such that $\gamma_m \leq C_\epsilon m^{7+\epsilon}$. In this talk, we will show that for m > 3, there is an absolute constant C such that $\gamma_m < C \cdot m$.

This is a joint work with B. M. Kim.

Date:	May 28, 2019 (Tuesday)
Time:	3:00 – 5:00pm
Venue:	Room 210, Run Run Shaw Bldg., HKU