THE UNIVERSITY

OF HONG KONG

Institute of Mathematical Research Department of Mathematics

Number Theory Seminar

On the Universal Sums of Generalized Heptagonal Numbers

Mr. Ramanujam Kamaraj

Department of Mathematics, The University of Hong Kong

Abstract

For a given $m \in \mathbb{N}$ with $m \geq 3$ and $x \in \mathbb{Z}$, the *x*-th generalized *m*-gonal number is denoted by

$$p_m(x) := \frac{(m-2)x^2 - (m-4)x}{2}.$$
(1)

Particularly, a generalized heptagonal number is of the form, $p_7(x) = \frac{5x^2 - 3x}{2}$. A sum of such generalized *m*-gonal numbers is given by

$$n = \sum_{j=1}^{l} a_j p_m(x_j),$$
 (2)

where $\mathbf{a} \in \mathbb{N}^{l}$. Such a sum is considered universal for a given choice of \mathbf{a} , if the sum is solvable for all positive integers n. Specifically, we are interested in determining whether a sum is universal or not, given the choice of \mathbf{a} , for m = 7.

We define γ_m to be the smallest positive integer such that a sum of generalized *m*-gonal numbers is universal if and only if it represents all positive integers up to γ_m . Bosma and Kane established $\gamma_6 = \gamma_3 = 8$. Conway-Schneeberger 15 theorem implies $\gamma_4 = 15$ and Ju proved that $\gamma_5 = 109$.

In this joint collaborative project with Prof. Tomiyasu of Kyushu University and Prof. Kane of HKU, we use modular forms theory to get an explicit upper bound for γ_7 . In particular, our main theorem in this project is that $\gamma_7 \leq 3.896 \cdot 10^{106}$. Although, based on the data obtained, we believe that γ_7 is as small as 131.

> Date: April 4, 2022 (Monday) Time: 2:00 – 3:00pm (Hong Kong Time) Venue: ZOOM: <u>https://hku.zoom.us/j/</u> Meeting ID: 232 576 6007

> > All are welcome