THE UNIVERSITY

OF HONG KONG

Institute of Mathematical Research Department of Mathematics

Optimization and Machine Learning Seminar

Non-convex Bayesian Learning via Stochastic Gradient Markov Chain Monte Carlo

Dr. Wei Deng

Machine Learning Researcher at Morgan Stanley

Abstract

The training of modern deep neural networks (DNNs) boils down to a nonconvex Bayesian learning problem. A standard tool to handle the problem is Langevin Monte Carlo, which, however, can be arbitrarily slow and often fails to explore the multi-modal posterior given a limited time.

As a result, advanced techniques are still required.

In this talk, we start with the replica exchange Langevin Monte Carlo (also known as parallel tempering), which is a Markov jump process that proposes appropriate swaps between exploration and exploitation to achieve accelerations. However, the naive extension of swaps to big data problems leads to a large bias, and bias-corrected swaps are required. Such a mechanism leads to few effective swaps and insignificant accelerations. To alleviate this issue, we first propose a control variates method to reduce the variance of noisy energy estimators and show a potential to accelerate the exponential convergence. We also present the population-chain replica exchange and propose a generalized deterministic even-odd scheme to track the non-reversibility and obtain an optimal round trip rate.

Date: February 18, 2022 (Friday) Time: 10:00 – 11:00am (Hong Kong Time) Venue: ZOOM: <u>https://hku.zoom.us/j/</u> Meeting ID: 940 0962 9889 Password: 286660

All are welcome