THE UNIVERSITY

OF HONG KONG

Institute of Mathematical Research Department of Mathematics#

Probability Theory Seminar

Random walk on dynamical percolation: separating critical and supercritical regimes

Professor Yuval Peres

Beijing institute of Math. Sciences and Applications (BIMSA)

Abstract

In Dynamical Percolation, each edge is open with probability p, refreshing its status at rate $\mu > 0$. This process was introduced in the 1990s by Haggstrom, Steif and the speaker, motivated by a question of Malliavin. Remarkable results on exceptional times in two dimensions were obtained by Schramm, Steif, Garban and Pete. We study random walk on dynamical percolation in the lattice Z^d , where the walk moves along open edges at rate 1. Let $p_c = p_c(d)$ denote the critical value for static percolation. In the critical regime $p = p_c$, we prove that if d = 2 or d > 10, then the mean squared displacement is $O(t, \mu^a)$ where a = a(d) > 0. For $p > p_c$, we prove that the mean squared displacement is of order t, uniformly in $0 < \mu < 1$, refining earlier results obtained with Sousi and Steif. (For $p < p_c$ and $\mu < 1$, it is known that the mean squared displacement is of order $t\mu$.) We will show simulations to illustrate the process. (Joint work with Chenlin Gu, Jianping Jiang, Zhan Shi, Hao Wu and Fan Yang.)

Date:	December 2, 2024 (Monday)
Time:	4:30 – 5:30 pm
Venue:	Room 210, Run Run Shaw Building,
	ПКО

All are welcome