#### THE UNIVERSITY



#### OF HONG KONG

## Institute of Mathematical Research Department of Mathematics

## **GEOMETRY SEMINAR**

# Rank of Hermitian polynomials and local orthogonal maps

## **Professor Sui-Chung NG**

East China Normal University

Date: July 15, 2025 (Tuesday)

Time: 4:30 - 5:30pm

Venue: Rm 210, Run Run Shaw Bldg., HKU

### **Abstract**

A Hermitian polynomial on  $\mathbb{C}^n$  is a real-valued polynomial  $h(z,\bar{z}) \in \mathbb{C}[z,\bar{z}]$ , where  $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$ . It follows from the diagonalizability of Hermitian matrices that there exist linearly independent holomorphic polynomials  $f_1, \ldots, f_p, g_1, \ldots, g_q \in \mathbb{C}[z]$  such that  $h(z,\bar{z}) = |f_1|^2 + \cdots + |f_p|^2 - |g_1|^2 - \cdots - |g_q|^2$ , in which p,q are uniquely determined by  $h(z,\bar{z})$ . We call r := p + q the rank of  $h(z,\bar{z})$ . Motivated by the study of the proper holomorphic maps between the complex unit balls, Ebenfelt raised a conjecture, called the SOS conjecture, regarding the rank of a Hermitian polynomial of the form  $||z||^2 A(z,\bar{z})$ . We are going to discuss how this purely algebraic problem can be studied geometrically using local orthogonal maps between complex projective spaces.