THE UNIVERSITY

OF HONG KONG

Institute of Mathematical Research Department of Mathematics

Numerical Analysis Seminar

Can hyperinterpolation part with quadrature exactness?

Professor Congpei An School of Mathematics and Statistics, Guizhou University

Abstract We discuss the approximation of continuous functions on the unit sphere by spherical polynomials of degree n via hyperinterpolation. Hyperinterpolation of degree n is a discrete approximation of the L2-orthogonal projection of degree n with its Fourier coefficients evaluated by a positive-weight quadrature rule that exactly integrates all spherical polynomials of degree at most 2n. This talk aims to bypass this quadrature exactness assumption by replacing it with the Marcinkiewicz--Zygmund property. Consequently, hyperinterpolation can be constructed by a positive-weight quadrature rule--not necessarily with quadrature exactness. This scheme is called unfettered hyperinterpolation. We provide a reasonable error estimate for unfettered hyperinterpolation. The error estimate generally consists of two terms: a term representing the error estimate of the original hyperinterpolation of full quadrature exactness and another introduced as compensation for the loss of exactness degrees. A guide to controlling the newly introduced term in practice is provided. In particular, if the quadrature points form a quasi-Monte Carlo design, then there is a refined error estimate. Numerical experiments verify the error estimates and the practical guide.

Date: April 9, 2025 (Wednesday)

Time: 11:00 am - 12:00 noon

Venue: ZOOM: https://hku.zoom.us/j/

Meeting ID: 913 6532 3891

Password: 310656