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A Problem

• You want to do a BIG calculation, e.g. with 
(LOTS of) DNA data (數據)

• Looking for patterns 
(can save lives!)

• Your computer is slow…
• Share the work?  

• Problem:  Is it ethical to send? 



Cloud Computing: 
Basic idea

• Send the data to the “cloud”

• Cloud does some calculations

• Answers come back; combine answers centrally



A Concern

• Privacy issues (can you trust others?)

• Proposal: Can we find a way to have them do the 
calculations, but never see the data?

• We could “mess” with the data 

• Can they still do calculations?



Another Problem

• An authority (bank) keeps track of/protects money.

• Online cryptocurrency (e.g. Bitcoin): Shared 
protection, decentralized.



Bitcoin and Blockchain

• Transaction made
• Collectively agree
• Added to “chain”
• Cannot be reverted

• Important that it is secure (cryptography)
Credit: Amir Rosic, Blockgeeks.com



Encryption

• Problems:
1. Can we send data safely? (我們可以安全發送數據馬?)

a) Is someone listening?
b) Is the receiver trusted?

2. If the data is safely sent …
a) Can they do calculations?  Is it accurate? (計算可以做嗎?)
b) Can they figure out/guess the original data?

3. When the data comes back… (當數據發送回來…)
a) Can we get back the answer and/or original info?
b) Is it the same  as if we did it ourselves? Is it really faster?



Fundamental Rule of Encryption

• Can we scramble it?

• Idea of (modern) Encryption (加密的想法):

• Find problem 
• That is hard to solve,
• easy to check.

• We’ll see some examples later.



Back to the beginning…

• Goal:  Send an important message  

• Problem:  Trust your courier? Man in the middle?



A long time ago…



Caesar’s solution

• Caesar Cipher:  Every letter gets a number

• Shift with modular (clock) arithmetic:



Modular arithmetic

• On a clock, the times 3am and 3pm agree.
• Some call it 03:00 and 15:00.
• So we “pretend” that 3 and 15 are the same.
• Our day is a 24 hour repeating clock.
• Repeating after 26?



Modular arithmetic

• Example:
• Let’s consider a clock with 8 hours.
• If you start a class at 7 o’clock and it runs for 2 hours, 

what time will it say on the clock at the end? 
Try yourself…

• 7+2=9, so …

• It says 1 o’clock.
• We write .



Modular arithmetic

• Another example:
• Every non-leap year has 365 days.
• If your birthday was on Wednesday last year, what 

day will it be this year (not a leap year)?
• Day of week repeats every 7 days (“7-day clock”)
• (“clock rotates” 52 times)
• Remainder 1, so …
• Thursday



Some exercises

1. Find if .

2.Find if .

3.Find if .



Caesar’s solution

• Example:  Shift by 10 (spaces removed?):
• Secret message:  attack at midnight
• Number code: 1(20)(20)13(11) 1(20) (13)93(14)978(20)

• Caesar sends: kddkmu kd wsnxsqrd

• Unscrambled at other end:



Caesar’s solution

• Example:  Shift by 20 
• Secret message: Hi
• Number code: 89

• Add 20:  (28)(29)

• You send (try yourself): …
• You send: bc

(“Clock” has 26 hours)



Exercise

4.Break Caesar’s code to find the secret message!  
The encrypted message is “clxmwtyr ty xlesd”. 

Luckily, as a loyal attendee, you get the secret decoder 
information!  Thanks for coming!

The shift is 11.



Problem

• What if someone figures out the code?
• Someone steals: lddlnu ld wsnxsqrd
• Simple to reverse.
• Look for patterns/ make guesses:

(many ‘d’ in code, ‘t’ and ‘e’ common in English)

• Other options:  Instead of shift, maybe just replace?
• Still many letters are common.  Hmm…
• Is there a better code?



Another try

• Maybe try randomly sending {a,…,z}to{a,…,z}?

• Spartan army:

• Common letters still a problem.



A whole new world /
alphabet



Non-unique replacement

• Maybe try  randomly sending {a,…,z}to{a,…,z}?
• Replace ‘a’ with multiple choices

• ‘a’ ‘b’, ‘c’, ‘d’
• ‘b’ ‘b’, ‘e’, ‘f’

• Example:  Great Cipher/Grand Chiffre
• Replace syllables with similar-sounding choices
• Unbroken for long time

• Does ‘a’ always need to go to ‘t’?



Non-unique replacement

• Why is it better?
• A lot more choices
• Frequency counting harder (‘e’ common in French)

• Problems?
• Need to figure out how/when to switch
• Indicator of switch might make it less secure

• Example:  Capital letters for language switch
• Regular switching also can be detected



Polycipher

• Example:  Take different shifts.
• Shift 3, then 11, then 5, then 3, then 11, then 5, then …

• Input:   “Here is a message”
• Take out spaces/capitals:  “hereisamessage”
• Shift:  ‘h’+3 = ‘k’, ‘e’+11=‘p’, ‘r’+5 =‘w’… :

• Output:  “kpwhtxdxjvdfjp”
• Can still find patterns of repeated strings:

• “the” appears a lot if you have many phrases.



A new challenge…



Non-unique replacement, 
large numbers

• Try to increase number of choices? (增加選擇)

• Example:  Enigma machine

• Rotates, so ‘aaaa’ can become ‘rfgw’
(轉子旋轉了不同的字母出來了)



Enigma

• Plugboard: Fixed matching (‘a’ to ‘t’)
• First rotor (‘a’ to ‘x’), second rotor (‘x’ to ‘r’),

third rotor (‘r’ to ‘d’).  
• Reflector (‘d’ to ‘l’),
• Rotors (‘l’ to ‘z’ to ‘b’ to ‘m’)
• Output is ‘m’.  
• Right rotator turns (add with carry)



Enigma Decryption

• Process reverses itself: 
• If rotor sends ‘d’ to ‘x’, then it sends ‘x’ to ‘d’.  
• Gives extra symmetry (like a mirror)

• Key observation:  If reflector sends ‘d’ to ‘d’, then 
message comes back unchanged.
• Designed never to send ‘a’ to ‘a’
• Reduces total number of possibilities (a lot)



Downfall of Enigma

• Number of permutations (reorderings) of 26 letters: 
ଶ଺

• Number of permutations of 26 letters, none 
repeated:  
• 25 choices for ‘a’, 24 choices for ‘b’, …, overall: 

ଶହ

• Other symmetries help, too. (a matched to b is b 
matched to a, etc.)

• Common signals helped.  



A big jump forward…



Computer age

• Computer search not expected (沒預料到電腦)

• Computers search differently
• Naïve search still often not enough
• Algorithm designs, search for weakenesses
• Beginnings/foundations of computer science
• Eventually split off of math departments
• Something new needed for cryptography



One-Way Functions

• Idea:  What if there is an operation which is easy to 
do, but hard to reverse?做簡單, 顛倒計算很難

• Doing the operation is encryption, and reversing it 
is decryption.

• Authorized people know a secret that allows 
reversal.

• Example: 
• Multiply 3571 and 6997 to get 24986287.
• Given 24986287, can you find 3571 and 6997?



Prime Factorization and RSA

• Question:  Given an integer, can you find all of its 
factors (those integers which divide it equally)?

• Prime numbers are those whose only factors are 1 
and themselves. (素數)

• Break a number up into primes (try to divide by 2, 
then 3, then 5, …):  Prime factorization.

• RSA core idea:  Multiplying primes is fast/easy, 
prime factoring is slow/hard.

• Can you even find all possible primes?



Prime numbers

• Sieve of Eratosthenes (Greece, c. 276BC – 195BC):

"Sieve of Eratosthenes animation". Licensed under CC BY‐SA 3.0 via Wikimedia Commons 



Prime Factorization

• Example:  Consider 144
• Even:  Divide by 2:  now .
• Even:  Divide by 2:  now ଶ .
• Even:  Divide by 2: …  
• …
• Eventually get: 

ସ ସ ଶ



Prime Factorization

• Example:  Consider 481
• Not Even: … Try 3
• :  Remainder 1. No. Try 5 
• :  Remainder 1. No. Try 7 
• :  Remainder 5. No. Try 11 
• :  Remainder 8. No. Try 13 
• :



Prime Factorization

• What about bigger numbers?
• Try 132523411?
• Not 2, not 3, not 5, not 7, …,
• …, 1039 divides!

• Q: Is 127549 prime? 



RSA

• Problem:  Relatively slow if primes are big.

• Basic algorithm:
• Pick 2 large primes.  
• Multiply them together and give answer to others. 
• Others use this as “public key” to encrypt information
• You know secret primes (“private key”).



Passing of messages

• Alice wants to send Bob a message.
• Alice knows Bob’s public key (everyone does)
• Alice encrypts/locks information with public key
• Bob uses the private key to decrypt/unlock
• People in middle can see message, but it is locked



RSA details

• Encryption:
• Turn message M into number (e.g., ‘a’=1, ‘b’=2,…)
• Public key is and some (special) number N
• Compute 

௘

• Here “ ” means equals (clock arithmetic)
• Answer is sent

• “Special” and secret satisfy:
ௗ௘



RSA details

• Further details:
• is product of two primes
• is (basically) random
• Given and primes, can compute 
• Uses Fermat’s little Theorem: If p is prime, then

௣

• Decrypt:  Take ௗ ௘ௗ

• Security:  Not easy to find from and .



RSA Example

• Primes and .  
• Product is 
• Fermat’s little Theorem:

• ଵ଺

• ଵଶ

• 1 times 1 is 1 (also works with modular arith.), so 
• ݉ସ଼ ൌ ݉ଵ଺ ଷ ൌ 1	ሺ݉݀݋	17ሻ
• ݉ସ଼ ൌ ݉ଵଶ ସ ൌ 1	ሺ݉݀݋	13ሻ
• ݉ସ଼ ൌ 1	ሺ݉݀݋	17 ൈ 13ሻ



RSA Example

• Choose say 
• Want 
• Solve:  

• (so , , or ), 
• (so )

• Message 
• ଵଵ

• ଷହ



Other one-way functions

• Another choice:  ECC (elliptic curve cryptography)
• Elliptic curve is solutions to ( poly. degree 3)

ଶ

• Example:  
ଶ ଷ

• Points on curve:  
(0,0), (1,0), (-1,0), , , …



Elliptic curves

• Can graph the solutions:

• Between two points, there is a unique line
• Connects to one other point on the curve

By GYassineMrabetTalk CC BY‐SA 3.0, 



Elliptic curves: Addition (加法)

• Addition on points:
• Between two points, there is a unique line
• Connects to one other point on the line
• Rotate around -axis:
• Extra point “at infinity”

• Vertical lines add to infinity
• Infinity like zero ሺ0௖ሻ
• Why?



Elliptic curves: Addition and zero

• Addition with “infinity” : 
• Line between and infinity vertical
• Other point on line is 
• Rotate around -axis:
• Gives 
• So adding infinity does nothing
• Just like zero in addition!



Elliptic Curves:  Addition

• Example:  
• Curve: ଶ ଷ

• Points 
• Line between points: 

• slope = ଷିଵ
ଶିଵ

ൌ 2,

• ݕ ൌ ݔ2 ൅ ܾ → 1 ൌ 2 1 ൅ ܾ → ݕ ൌ ݔ2 െ 1

• Both equations at same time:
ଶ ଷ ଷ ଶ

ଶ



Elliptic Curves:  Addition

• Overall:  
஼

• Minus:  flip over -axis: ௖ ௖.
• So define ஼

• Given a point , can we compute 
஼ ஼ ஼ ஼ ஼

• Remember example: ஼ ஼ , 
஼ ஼



Elliptic Curves:  Addition

• Geometric interpretation of ஼ ? 
• Line with point and itself?
• Tangent line:

Kefa Rabah, Theory and Implementation of Elliptic Curve 
Cryptography, Journal of Applied Sciences 5 (2005), 604-633.



Elliptic Curves:  Addition

• Example:  Find ௖

• Curve: ଶ ଷ

• Points ௖

• Line between points: 

• slope = ିଷିଵ
ଶିଵ

ൌ െ4,

• ݕ ൌ െ4ݔ ൅ ܾ → 1 ൌ െ4 1 ൅ ܾ → ݕ ൌ െ4ݔ ൅ 5

• Both equations at same time:
ଶ ଷ

ଷ ଶ



Elliptic Curves:  Addition

• Overall:  
େ ஼

• Can continue like this …

• Find ஼ ஼ Elliptic curve 的乘法.

• Easy to teach a computer to repeat the process!
• Question:  How fast is calculation of ஼ ?



Elliptic Curves:  Fast Addition

• Add 100 times (100 sums, kind of slow)

• But …  Can easily double:
஼ ஼ ஼ ஼
஼ ஼ ஼ ஼

• Compute
஼ ஼ ஼ ஼

• Only double 6 times to get 64… 8 sums!



Binary numbers to the rescue

• Can write number in binary:
ଶ

ଷ ଶ ଵ ଴

• So ଶ
ଷ

• For ௡
஼ , only need to double times

• Note that is a lot less than ଵ଴

• Many less calculations, so faster



Elliptic curve cryptography

• One way function?
• Given ஼ , can you find ?  
• Easy in one way, seemingly hard in the other way
• Advantages/disadvantages of ECC:

• Adv.:  Smaller keys generally, fast to create
• Dis.: Complicated to implement

• Used in Blockchain.



Key Sharing?

• Can we share a key?  
• Session keys:

• If I send you my key:
• others can see it
• Someone steals your message, replaces with own

• Send you my key, encrypted with your public key
• You decrypt with private key
• Maybe someone in the middle pretended to be me?
• You send back confirmation encrypted with my public key



Back to the future…



Homomorphic Encryption

• Suppose you have everyone’s biological data.
• You want to compute some statistics/information.
• Your computer takes too long.
• You need help, but who can you trust?
• Idea:  What if others could do your calculations, but 

get no data?
• How would you do that?  Is it even possible?



Homomorphic Encryption

• You give the data in encrypted form (say )
• You want others to be able to add and multiply, but 

never see .
• What if 

ଵ ଶ ଵ ଶ
ଵ ଶ ଵ ଶ

• This is homomorphic Encryption.



Partial Homomorphic Encryption

• Is homomorphic cryptography possible?  Do we 
know some examples?

• Caesar (shift by 1):
ଵ ଶ ଵ ଶ
ଵ ଶ ଵ ଶ
ଵ ଶ ଵ ଶ
ଵ ଶ ଵ ଶ

• Some methods partially work:
• RSA:  ଵ ଶ ଵ ଶ



Homomorphic Encryption

• There are some rules …
• Needs to be safe … 

• Can‘t guess based on saving lots of encrypted messages
• In particular, everything is zeros/ones
• So can’t guess what is zero.

• A problem:  



Homomorphic Encryption

• Seems impossible to “hide” zero.
• Can it be “mostly true”?
• If “mostly true”, is the answer accurate?
• Should we give up?



Somewhat homomorphic encryption

• Gentry (2009):  Added some “noise” so that 
encryption is almost homomorphic.

• Is it accurate?
• Noise is “small” compared to main answer

• Allows many additions/multiplications
• Builds off of this to get homomorphic encryption:

• Noise cancellation method
• Takes a lot of operations, though



Homomorphic Encryption

• A trick:
• Is zero really zero?
• 12 o’clock is midnight, but also noon.  
• What if someone doesn’t know # hours on clock?
• We pick a number of hours, but don’t tell anyone!
• They read 26 o’clock, but don’t know the “real time”

• Pass info one way …
• Interpret the info differently yourself …



Homomorphic Encryption

• Now we have “a lot of zeros”
• 0 is zero
• 12 is zero
• 24 is zero
• 36 is zero
• …

• Problem:  Pattern too simple
• Can be guessed
• Not safe



Homomorphic Encryption

• Need to combine with other ideas
• Pass some data…
• Do something … 
• Get a value (secret)
• Now apply modular arithmetic (secret)

• Need to make sure others can’t compute value
• Otherwise they can guess pattern in modular arith.
• Starts to fall apart piece-by-piece
• Some new ideas out there … 




