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2 BASIC PRINCIPLES

1 Preface

This guide is developed under the Teaching Development Grant (TDG) project entitled ‘Promoting

Teaching and Learning of Professional Writing in Mathematics’ (Principal Investigator: K. H. Law,

Department of Mathematics; Co-investigators: S. Boynton and C. Tait, Centre for Applied English

Studies) at The University of Hong Kong. The first version was released in January 2015 upon

completion of the project, while continual updates and enrichments to the contents are expected.

All mathematics students have to write mathematics to some extent, but then unlike in the teaching

of other languages (mathematics is certainly a language in its own right!) there is seldom a course that

specifically teaches students how to write properly in the mathematical language. Furthermore, the

way university mathematics teachers expect students to write is often different from how students used

to write in mathematics homework or examinations in secondary school. One of the main purposes of

the project is therefore to bridge the gap and raise students’ awareness of the importance of proper

mathematical writing.

It is hoped that this guide will serve as a reference to students on how to write mathematics, as

well as a resource for both mathematics and English teachers.

2 Basic Principles

Although there is no well-defined rules in writing mathematics (unlike the subject of mathematics

itself in which everything seems to be rigorously defined), there are some basic elements which should

be remembered.

2.1 Using Complete Sentences

One of the misconceptions students have about writing mathematics (which probably arises from their

writing habits in secondary school) is that the writing should be composed mostly of equations and

mathematical symbols. This is not true at all. By contrast, a piece of mathematical writing should

contain mostly words, supplemented by equations and mathematical symbols. Take any mathematics

textbook to verify this. Even in their worked examples, the solutions contain mostly words.

One of the very first basic principles in writing mathematics is therefore to write structurally in

complete sentences. Take what you are reading now as an example. You can see that the whole

subsection on ‘using complete sentences’ is divided into several paragraphs, each divided into several

sentences. Each sentence is a complete sentence.

There can be equations and mathematical symbols, but still they form a complete sentence when

properly read. Some examples are as follows.
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2 BASIC PRINCIPLES

Sentence containing equations and

mathematical symbols
How it is read as a complete sentence

Hence x+ 1 > 3. Hence x plus 1 is greater than 3.

Since x > 2, it follows that x2+3x > 22+3(2) =

10.

Since x is greater than 2, it follows that x

squared plus three x is greater than two squared

plus three times two which is equal to 10.

Thus n 6= 0 ∀n ∈ A.
Thus n is not equal to 0 for all n that belongs

to A.

On the other hand, the following lists some examples which are not complete sentences and hence

should not appear in a piece of mathematical writing.

• Since x is positive.

• If this is not true.

• When two triangles are similar.

2.2 Starting Sentences with Capital Letters

This sounds pretty much natural, as this is how you write an English passage. However, when it

comes to writing mathematics, sometimes we may be tempted to start a sentence with a small letter

because it is a symbol or a variable with which we want to use to start the sentence. Here are a couple

of examples, and how they may be modified:

Sentence starting with a small letter How it may be modified

p is not a prime number if it is divisible by 3 and

greater than 3.

If the number p is divisible by 3 and greater than

3, then it is not a prime number.

x2 +x+ 1 = 0 has no real root since its discrim-

inant is negative.

The equation x2 + x + 1 = 0 has no real root

since its discriminant is negative

Some even suggest that we should never start a sentence with a symbol or a variable, even if that

is in capital letter. In that case similar modifications as above may be applied.

2.3 Commas between Variables

We often separate variables by commas, for instance

• Let a, b, c be positive real numbers. Then
a+ b+ c

3
≥ 3
√
abc.

However, consider the following sentence:
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3 THE USE OF ENGLISH

• In addition to p, q is also a prime number.

What’s the problem? As we read, one naturally sees ‘in addition to p, q’, so we expect that p

and q have some property, and apart from them there is yet another number with the same property.

But then this is not what the sentence intends to convey. This is somehow related to the previous

subsection when we mentioned that we should not start a sentence with a variable in lower case — it

turns out that starting a clause with a lower case can be confusing too when the previous clause also

ends with a lower case variable.

Again, we may apply some modification to make the sentence more readable:

• In addition to p, the number q is also prime.

Here are two more examples. Can you rewrite them?

• Since x > 1, x− 1 > 0 and so
√
x− 1 is well-defined.

• As a quadratic equation in x, x2y + xy2 + xy + 1 = 0 has discriminant (y2 + y)2 − 4y.

3 The Use of English

While the use of English does not affect the actual mathematical reasoning, it is still an important

aspect students should be aware of. A piece of mathematics written in good English helps the reader

follow the argument more easily. The examples here are taken out of their original contexts for

simplicity. A lot of these mistakes are made probably because most of the students are not native

English speakers. We try to split the errors into several categories, but often one will find that some

of the examples fit under multiple categories.

3.1 Grammatical Errors

Grammar refers to the way words are put together to form phrases and sentences. A grammatical

error is when these rules for grammatical structure are broken.

3.1.1 The use of articles

The definite article the indicates that its noun is a specific one which the reader should know. There is

only one binomial theorem and therefore we say ‘the binomial theorem’. On the other hand when we

define x to be some non-negative number, very often it does not tell the reader which specific number

we want it to be, and thus the indefinite article ‘a/an’ should be used instead. Whether ‘a’ or ‘an’

should be used depends on the pronunciation of the word or letter following it.
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3 THE USE OF ENGLISH

Wrong Correct Comments

Construct a m× n table. Construct an m× n table.

When the letters m and n are pronounced

there is actually a vowel sound /e/ at the

beginning of each letter. This means that

the article ‘an’ should be used.

1. By binomial theorem, we

have...

2. By the Pythagoras’

Theorem, ABC is a

right-angled triangle.

1. By the binomial theo-

rem, we have...

2. By Pythagoras’ Theo-

rem, ABC is a right-

angled triangle.

When referring to a specific theorem (e.g.

the Fundamental Theorem of Calculus)

use ‘the’ (the definite article). However,

when referring to a theorem from a named

person use the zero article.

By (a), the g is continuous.

1. By (a), g is continuous.

2. By (a), the function g is

continuous.

When naming something with a letter

(e.g. g) use the zero article. When using

the noun function use the definite article

(e.g. the function g).

1. Let x be non-negative

number.

2. Let x be the non-

negative number.

1. Let x be a non-negative

number.

2. Let x be non-negative.

When using the phrase ‘negative’ or ‘non-

negative number’ use the indefinite article

because ‘a’ means any number. When us-

ing ‘non-negative’ as an adjective then use

the zero article.

Let x be a positive. Let x be positive.
Use the adjective form and not the noun

form.

3.1.2 The difference between singular and plural

In general, most nouns have more than one form depending on the corresponding quantity. If there

are more than one object, the plural form is required; whereas the singular form is used if there is

only one.

Wrong Correct Comments

Throwing two fair dices once,

we have 6 × 6 = 36 different

possible outcomes.

Throwing two fair dice once,

we have 6 × 6 = 36 different

possible outcomes.

The singular form is ‘die’, the plural form

is ‘dice’ (without ‘s’). In modern English

sometimes ’dice’ is also accepted as the

singular form.
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3 THE USE OF ENGLISH

Wrong Correct Comments

Every square are rectan-

gles.

1. Every square is a rectan-

gle.

2. All squares are rectan-

gles.

1. Every + singular form of noun.

2. All + plural form of noun.

Assume P (k) is true for some

positive integers k, i.e. k(k+

1) is divisible by 2.

Assume P (k) is true for some

positive integer k, i.e. k(k+1)

is divisible by 2.

There is only one integer here (namely k);

therefore it should be in singular form.

Let A be a square matrice. Let A be a square matrix. ‘Matrices’ is the plural form of ‘matrix’.

Let A be the vertice of the

pyramid.

Let A be the vertex of the

pyramid.
‘Vertices’ is the plural form of ‘vertex’.

(0, 0) is the only local max-

ima.

(0, 0) is the only local maxi-

mum.
‘Maxima’ is the plural form of ‘maximum’.

3.1.3 The different verb forms

Similar to nouns, most verbs have more than one forms, and you need to be aware of which ones are

correct and which ones are wrong.

Wrong Correct Comments

1. There exists real numbers

m and n such that m > n.

2. There exist a real number

m such that m > 1.

1. There exist real numbers

m and n such that m > n.

2. There exists a real number

m such that m > 1.

Make sure the subject agrees with the

verb. Whether to use ‘exists’ or ‘exist’ de-

pends on whether the noun that follows is

in singular or plural form.

There exist no integer k such

that 3k = 2.

There exists no integer k such

that 3k = 2.
‘Integer’ in this example is singular.

Replace a by −a, we have

f(−a) = (−a)2 = a2 = f(a).

1. Replacing a by −a, we

have f(−a) = (−a)2 =

a2 = f(a).

2. If we replace a by −a,

we have f(−a) = (−a)2 =

a2 = f(a).

‘Replacing’ has the same meaning as ‘If

we replace’; ‘-ing’ clauses can go at the

beginning of a sentence and are a depen-

dent clause.
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3 THE USE OF ENGLISH

Wrong Correct Comments

Hence we get x < 0, contra-

dicts to (1).

1. Hence we get x < 0, which

contradicts (1).

2. Hence we get x < 0, which

is a contradiction to (1).

The verb form ‘contradict’ does not have

a dependent preposition, i.e. ‘contradict

something’. The noun form ‘contradic-

tion’ does have a dependent preposition

‘to’. The relevant phrase is ‘which is a

contradiction to’.

Thus contradiction.

1. Thus a contradiction oc-

curs.

2. Thus there is a contra-

diction.

In the wrong version there is no verb form

in the sentence. The two correct sentences

contain a verb.

3.1.4 Verb-to-be and verb-to-do

Two of the most frequently used verbs in English are the verb-to-be and the verb-to-do. They are

also two of the most frequently misused verbs in English as well as mathematical writing.

Wrong Correct Comments

1. It is a rational number be-

tween 1 and 2.

2. There has a rational num-

ber between 1 and 2.

There is a rational number

between 1 and 2.

The phrase ‘there is’ is usually used to in-

troduce new information (which does not

refer back to previous information); when

we say ‘it is’ there should be something

(in this example a rational number) intro-

duced before. ‘There has’ is a grammati-

cal mistake; always use ‘there is/are’ (the

verb-to-be).

A real number x whose square

is negative is not exist.

A real number x whose square

is negative does not exist.

Use the auxiliary verb ‘do’ to form the

negative.

This sequence is not con-

verge.

1. This sequence does not

converge.

2. This sequence is not con-

vergent.

1. Use the auxiliary verb ‘do’ to form the

negative.

2. Use the adjective form (convergent)

when using the verb-to-be.
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3 THE USE OF ENGLISH

3.1.5 Converting between different word forms

Most words can be changed slightly to convert from one word form to another, such as converge (verb)

and convergent (adjective). You have to be aware of the differences between the different word forms.

Wrong Correct Comments

1. Besides from completing

the square, we can use

differentiation to find the

minimum value of x2−4x+

8.

2. Beside completing the

square, we can use differ-

entiation to find the mini-

mum value of x2 − 4x+ 8.

Besides completing the

square, we can use differen-

tiation to find the minimum

value of x2 − 4x+ 8.

In this sentence ‘besides’ is used in a de-

pendent clause, and should be followed by

the -ing form of the verb.

1. The total increasement

in surface area is 6 cm2.

2. The surface area in-

creases 6 cm2.

1. The total increase in sur-

face area is 6 cm2.

2. The surface area in-

creases by 6 cm2.

The noun form and the verb form are the

same (‘increase’), albeit pronounced dif-

ferently. The word ’increasement’ does

not exist. But in the verb form ‘increase’

is followed by the dependent preposition

‘by’, i.e. ‘increase by an amount’.

The maximal possible value

of f(x) is 3.

The maximum/largest pos-

sible value of f(x) is 3.

The adjective form of the noun ‘maxi-

mum’ is the same (maximum). In this ex-

ample the superlative ‘largest’ can also be

used’. ‘Maximal’ has a slightly different

meaning in mathematics.

The slanted height of the

cone is 10 cm.

The slant height of the cone

is 10 cm.

‘Slant height’ is a compound noun (two

nouns combined) like ‘traffic light’.

The function y = x2 con-

caves upward.

The function y = x2 is con-

cave upward.

‘Concave’ is an adjective rather than a

verb.

For every rational number x,

can be written as x =
p

q
.

Every rational number x can

be written as x =
p

q
.

When using this phrase only use one

clause. The phrase ‘every rational num-

ber x’ is the subject of this clause.

One plus one equals to two.

1. One plus one equals two.

2. One plus one is equal to

two.

This is a confusion between the verb form

and adjective form. The verb form does

not have a dependent preposition.
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3 THE USE OF ENGLISH

Wrong Correct Comments

1. The followings are equiv-

alent.

2. The possible values of x are

as follow:

3. The result is followed.

1. The following state-

ments are equivalent.

2. The possible values of x are

as follows:

3. The result follows.

‘The following’ is used in phrases such

as ‘we have the following’. ‘As follows’

is used in phrases such as ‘the proper-

ties/values/results are as follows’. In the

incorrect example ‘follow’ is used in pas-

sive voice which means followed by some-

thing. In the correct examples ‘follow’ is

used in the active voice because after this

expression comes the evidence for the re-

sult(s).

3.2 Lexical Errors

A lexical error is making the wrong choice of word for the stylistic context. The sentence is not nec-

essarily grammatically wrong, but does not mean exactly what the author wants to convey.

3.2.1 The order of words

The wordings in the following examples can be slightly revised so that it reads more smoothly.

Wrong Correct Comments

1. Let x is non-negative.

2. Let a prime number be

x.

3. Let the width of the

rectangle be y.

1. Let x be non-negative.

2. Let x be a prime num-

ber.

3. Let y be the width of the

rectangle.

‘Let’ is used with a bare infinitive form of

a verb in the first example. In the sec-

ond and third examples the convention is

‘let + x, y, etc + be + the value which is

assigned to x, y, etc’ .

Since the divisor (x−1)(x−2)

is of degree 2, 1 is the max-

imum degree of the re-

mainder.

Since the divisor (x−1)(x−2)

is of degree 2, the maximum

degree of the remainder is

1.

The description of the value (the terminol-

ogy) goes first in a clause, the value/figure

goes last.

The smallest value of x2 pos-

sible is 0.

The smallest possible value of

x2 is 0.

The word order is ‘smallest/largest + pos-

sible + value’.

Let x be a real positive

number.

Let x be a positive real

number.

The word order should be : ‘posi-

tive/negative + real + number’.
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3 THE USE OF ENGLISH

Wrong Correct Comments

For all even numbers N , we

will show that 3 +N is odd.

We will show that 3 +N is

odd for every even number N .

The phrase ‘we will show that’ usually be-

gins a sentence, although the other way

round is not wrong.

If f is a strictly continuous

increasing function, ...

A strictly increasing con-

tinuous function, ...

Keep the words ‘strictly’ and ‘increasing’

together when describing a function.

3.2.2 Choice of words

A common type of problems in mathematical writing is the use of wrong words. In this part we look

at some general examples of such in English. The wrong usage of mathematical terminology in a

particular subject area will be dealt with in Section 5.

Wrong Correct Comments

A prime number is a natural

number that has no positive

factors other than 1 and itself.

For instance, if k is a natu-

ral number and k = pq, where

both p, q > 1, then k is not a

prime number.

A prime number is a natural

number that has no positive

factors other than 1 and itself

(for instance, 2 is a prime

number). In other words, if

k is a natural number and k =

pq with p, q > 1, then k is not

a prime.

‘In other words’ is used to introduce an

explanation or clarification of an idea or

concept. ‘For instance’ is used to give an

example of the idea or concept.

1. Therefore x is rational,

e.g. x =
p

q
for some in-

tegers p and q.

2. Let dxe be the least integer

greater than or equal to x,

i.e. dπe = 4.

1. Therefore x is rational, i.e.

x =
p

q
for some integers p

and q.

2. Let dxe be the least integer

greater than or equal to x,

e.g. dπe = 4.

‘e.g.’ (from the Latin phrase exempli gra-

tia) means ‘for example’; whereas ‘i.e.’

(from the Latin phrase id est) means ‘that

is’. The former uses an example to illus-

trate a concept, while the latter gives an

alternative explanation.

3.2.3 Other lexical errors

There are often more than one grammatically correct way to express something, but sometimes some

choices of wordsings are more suitable than the others.
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3 THE USE OF ENGLISH

Wrong Correct Comments

Assume the contrary that

not all of them are zeros.

1. Assume on the contrary

that not all of them are ze-

ros.

2. Assume the contrary,

i.e. not all of them are

zeros.

‘On the contrary’ is used as an adverb

phrase with the verb assume. On the

other hand, ‘the contrary’ is a noun and

the object of the verb ‘assume’. In this

case add another clause which gives infor-

mation about the assumption.

Let m and n be odd and

even.

1. Let m and n be odd and

even respectively.

2. Let m be odd and n be

even.

The wrong example is ambiguous because

it does not precisely state which is odd

and which is even. The two corrected ex-

amples show two possible variations which

are much clearer.

This equation has finite solu-

tions.

1. This equation has finitely

many solutions.

2. This equation has a finite

number of solutions.

Here ‘finite’ is used to describe the num-

ber of solutions, rather than the solutions

themselves.

The equation x+3 = 2x+4−
x− 1 has infinite solutions.

The equation x + 3 = 2x +

4−x−1 has infinitely many

solutions.

Again, ‘infinite’ refers to the number of

solutions rather than the solutions them-

selves.

3.3 Other Issues

In this section we collect some other miscellaneous issues as well as some conventional issues. In English

language, conventions are a courtesy to the reader, making writing easier to read by putting it in a

form that the reader expects and is comfortable with. It includes things such as sentence formations

(e.g. complete sentences, punctuation) and conventions of print (e.g. spelling, capitalisation). Many

of these do not exist in oral language, so you have to consciously learn them in written language.

3.3.1 Words with similar pronunciations

Some words sound the same (or similar) when pronounced, but are in fact spelt differently, and may

have different meanings.

12



3 THE USE OF ENGLISH

Wrong Correct Comments

The number x can not be ra-

tional.

The number x cannot be ra-

tional.

‘Cannot’ and ‘can not’ have different

meanings. For example ‘he cannot do it’

means he does not have the ability to do

it, while ‘he can not do it’ usually implies

he has the ability to do it but also has the

option of not doing it.

Without lost of generality, we

have...

Without loss of generality, we

have...

The noun form ‘loss’ is used in this con-

text.

1. This proofs that x > 0.

2. This completes the prove.

1. This proves that x > 0.

2. This completes the proof.

‘Proof’ is a noun whereas ‘prove’ is the

corresponding verb.

3.3.2 Frequently confused words

Some words are often misused in mathematical writing.

Wrong Correct Comments

Rotate 4ABC clockwisely

by 90◦.

Rotate 4ABC clockwise by

90◦.

‘Clockwise’ is already an adverb. The

word ‘clockwisely’ does not exist.

The numbers a, b and c are

pairwisely different.

The numbers a, b and c are

pairwise different.

Again, the word ‘pairwisely’ does not ex-

ist.

Here is a counter example. Here is a counterexample.

Here ‘counter’ is not a word, but rather a

prefix attached to ‘example’ meaning ‘the

opposite’.

Let x be a non zero number. Let x be a nonzero number.
Again, ‘non’ is not a word, but rather a

prefix attached to ‘zero’ meaning ‘not’.

From this we deduct that the

equation has no solution.

From this we deduce that the

equation has no solution.

Although ‘deduction’ is the noun for both

the verbs ‘deduct’ and ‘deduce’, the two

verbs have different meanings. ‘Deduct’

means ‘subtract’, while ‘deduce’ means

‘draw a logical conclusion’.
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4 THE USE OF SYMBOLS

3.3.3 Use of linking verbs and punctuation

Connectives are very important in mathematical writing as they show the logical relationship between

different sentences. There are some conventions and rules on the use of such words.

Note also that there should only be one verb in a simple sentence. When there is more than one

verb, we need a conjunction (e.g. ‘and’) to properly link the phrases together.

Wrong Correct Comments

If x > 0.Then 2x > 0. If x > 0, then 2x > 0.

When using ‘if’ for assumption, always fol-

low it up with something in the same sen-

tence. ‘If x > 0’ is not a complete sen-

tence.

When x > 0.Then 2x > 0. When x > 0, 2x > 0.

Same as using ‘if’, when using ‘when’

for assumption, always follow it up with

something in the same sentence. ‘When

x > 0’ is not a complete sentence.

Since x is non-negative.We

have x+ 1 > 0.

Since x is non-negative, we

have x+ 1 > 0.

‘Since’ is used to join dependent clauses

to independent clauses and therefore must

go in sentences which have two clauses.

‘Since x is non-negative’ is not a complete

sentence.

Let x be non-negative, then

x+ 1 > 0.

Let x be non-negative. Then

x+ 1 > 0.

When using ‘let’ and ‘then’ to list steps

of proofs use two sentences, one for each

step.

Suppose x is non-negative,

then have x+ 1 > 0.

Suppose x is non-negative.

Then have x+ 1 > 0.

When using ‘suppose’ and ‘then’ to list

steps of proofs use two sentences.

3.3.4 Spelling

Make sure that you spell the words correctly. Apart from those mentioned in Sections 3.3.1 and 3.3.2,

some words tend to be misspelt a lot. Surprisingly, it is not uncommon for students to misspell true

as ture and false as flase, two words which occur a lot in mathematical writing.

4 The Use of Symbols

Equations are essentially made up from symbols – numbers, equality sign, variables and so on. There

are many other symbols in mathematics as well. It is important that symbols be used properly, for

otherwise the resulting sentence may deviate from the intended meaning.

14



4 THE USE OF SYMBOLS

4.1 The Symbols ‘=’ and ‘6=’

The symbol ‘=’ is probably one of the very first mathematical symbols one learns. It means the

expressions on its two sides are the same. This symbol is also one of the most misused symbols, as

people abuse it in various situations. The symbol ‘ 6=’, on the other hand, means the two sides are not

equal, and we have to be careful about its usage too.

4.1.1 Are they equal?

When using the equal sign, make sure that the expressions on the two sides are indeed equal.

Wrong Correct Comments

By first principles, the deriva-

tive of x2 is

lim
h→0

f(x+ h)− f(x)

h

===
(x2 + 2xh+ h2)− x2

h

(x2 + 2xh+ h2)− x2

h

(x2 + 2xh+ h2)− x2

h

= 2x

By first principles, the deriva-

tive of x2 is

lim
h→0

f(x+ h)− f(x)

h

=== lim
h→0

(x2 + 2xh+ h2)− x2

h
lim
h→0

(x2 + 2xh+ h2)− x2

h
lim
h→0

(x2 + 2xh+ h2)− x2

h

= 2x

The answer is correct but it is wrong to

omit the limits in the working out. As

the argument stands Line 1 and Line 2 in

the wrong example are surely not equal

(neither do Line 2 and Line 3).

To find the third derivative of

xex, we have

xexxexxex= xex + ex= xex + ex= xex + ex

= xex + 2ex= xex + 2ex= xex + 2ex

= xex + 3ex

To find the third derivative of

xex, we have

d3

dx3
(xex)

d3

dx3
(xex)

d3

dx3
(xex)=

d2

dx2
(xex + ex)=

d2

dx2
(xex + ex)=

d2

dx2
(xex + ex)

=
d

dx
(xex + 2ex)=

d

dx
(xex + 2ex)=

d

dx
(xex + 2ex)

= xex + 3ex

In the first (wrong) example, the expres-

sions are clearly not equal.

Since the derivative is 2x, the

slope of the tangent at (2, 5) is

4. Hence the equation of the

tangent is

y − 5

x− 2
= 4 === y = 4x− 3.

Since the derivative is 2x, the

slope of the tangent at (2, 5) is

4. Hence the equation of the

tangent is

y − 5

x− 2
= 4,

which is the same as

y = 4x− 3.

What the wrong example intended to say

was that the equation ‘
y − 5

x− 2
= 4’ is

‘equal’ to the equation ‘y = 4x−3’. But as

it stands it says much more than that —

— for example the middle equality reads

4 = y, which does not make sense.

15



4 THE USE OF SYMBOLS

Wrong Correct Comments

We row reduce the matrix to

find [
1 0

2 4

]
===

[
1 0

0 1

]
.

Hence it is invertible.

We row reduce the matrix to

find [
1 0

2 4

]
→→→

[
1 0

0 1

]
.

Hence it is invertible.

The matrices are row equivalent but not

equal (we say two matrices are equal if and

only if all their entries are the same). The

proper way is to use an arrow; usually we

also indicate the operations carried out,

for example,
−2R1+R2−−−−−−→ means we add −2

times row 1 to row 2.

4.1.2 Non-transitivity of 6=

The symbols ‘=’ and ‘ 6=’, like many others, are used to describe the relationship between two things.

Sometimes more than two things are involved and we may still use these symbols successively, e.g.

1 < 2 < 3, but only when the symbol is transitive — in this example ‘<’ is transitive since if 1 < 2

and 2 < 3, then we must have 1 < 3. Likewise, ‘=’ is transitive. However, ‘ 6=’ is not.

Wrong Correct Comments

Since a 6= b 6= ca 6= b 6= ca 6= b 6= c, we have...

1. Since a 6= b,a 6= b,a 6= b, b 6= c,b 6= c,b 6= c, and

a 6= ca 6= ca 6= c, we have...

2. Since a, b, ca, b, ca, b, c are pair-

wise distinct, we have...

The wrong example intended to mean that

all three values a, b and c are different but

with the way it is written, a and c could

be equal (for example consider 1 6= 2 6= 1).

4.1.3 Proper order

As previously mentioned, ‘=’ is transitive and so we can equate three or more expressions in a single

chain of equalities. However, we have to be careful about the order.
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4 THE USE OF SYMBOLS

Wrong Correct Comments

Since
x4y4

8
= 2, we have

x4y4 = (xy)4x4y4 = (xy)4x4y4 = (xy)4 = 8×2 = 16 and

so xy = 4
√

16 = 2.

Since
x4y4

8
= 2, we have

(xy)4 = x4y4(xy)4 = x4y4(xy)4 = x4y4 = 8×2 = 16 and

so xy = 4
√

16 = 2.

When studying a chain of equalities, one

naturally tries to figure out why each

equality sign holds. In the wrong example,

one can understand why x4y4 = (xy)4,

but then for the second inequality (xy)4 =

8×2, one gets stuck. In fact it is x4y4 that

is equal to 8 × 2, so switching the order

makes it much easier to follow.

4.2 The Symbols ‘⇒’ and ‘⇔’

The first symbol means ‘implies’ and the second symbol means ‘is equivalent to’ (or ‘if and only if’).

They are used to relate different statements and are some of the most frequently used symbols. Yet,

they are also some of the most commonly misused symbols.

Wrong Correct Comments

If x = 1 ⇒x = 1 ⇒x = 1 ⇒ x+ 1 = 2.
1. If x = 1, then x+ 1 = 2.

2. x = 1⇒x = 1⇒x = 1⇒ x+ 1 = 2.

The easiest way to see what is wrong is to

convert back to English. The wrong ex-

ample reads ‘if x equals 1, implies x + 1

equals 2’, which clearly does not seem cor-

rect. Note that the correct example reads

‘x equals 1 implies x + 1 equals 2’, which

is perfectly fine.

Hence we have

x+ 1 = 5⇒⇒⇒ x = 4.

Hence we have x + 1 = 5,

which implies x = 4.

The problem in the wrong example is that

the statement ‘x+ 1 = 5⇒ x = 4’ is true

regardless to what happens before, con-

trary to what we expect by the use of the

connective ‘hence’. The intended mean-

ing was that the previous argument im-

plies that x + 1 = 5, which then implies

x = 4.

Note that one may try to interpret the

wrong example as

(Hence we have x+ 1 = 5)

⇒ (x = 4)

but this is not correct either since ‘hence

we have x + 1 = 5’ is not a statement

(while ‘x+ 1 = 5’ is).

17



4 THE USE OF SYMBOLS

Wrong Correct Comments

The quadratic function has a

critical point at (2, 3). From

this we see that the point

(2, 3) must be a maximum.

⇒⇒⇒ x = 2 .

The quadratic function has a

critical point at (2, 3). From

this we see that the point

(2, 3) must be a maximum

and therefore x = 2.

In general try not to use a symbol in the

middle of nowhere. In the wrong exam-

ple it is unclear which statement implies

x = 2. Note that ‘⇒ x = 2’ is an incom-

plete sentence and it must be preceded by

a statement. While ‘the point (2, 3) must

be a maximum’ is a statement, ‘from this

we see that the point (2, 3) must be a max-

imum’ is not.

4.3 The Symbols ‘∀’ and ‘∃’

The symbol ‘∀’ reads ‘for all’ and the symbol ‘∃’ reads ‘there exists’ and that is precisely what they

mean. To see whether the symbols are used correctly, the easiest way to read the sentence to see if it

is a grammatically correct complete sentence and if it makes sense.

Wrong Correct Comments

1. Let A be the set of positive

odd numbers. Then 2|a +

1 ∃∃∃ a ∈ A.

2. If f(0) < 0, f(1) > 0 and

f is continuous, then ∀∀∀ c ∈
[0, 1] s.t. f(c) = 0.

1. Let A be the set of positive

odd numbers. Then 2|a +

1 ∀∀∀ a ∈ A.

2. If f(0) < 0, f(1) > 0 and

f is continuous, then ∃∃∃ c ∈
[0, 1] s.t. f(c) = 0.

The wrong examples mixed up the mean-

ing of the symbols ‘∀’ and ‘∃’.

f(c) = 0 ∃∃∃ c ∈ [0, 1]

1. ∃ c ∈ [0, 1] s.t.∃ c ∈ [0, 1] s.t.∃ c ∈ [0, 1] s.t. f(c) = 0

2. f(c) = 0 for some c ∈
[0, 1]

‘∃’ means ‘there exists’ rather than ‘for

some’. Note there is no proper symbol for

‘for some’.

∃ x ∈ R ∀∀∀ x > 1000 ∃ x ∈ R s.t. x > 1000 ‘∀’ means ‘for all’, not ‘such that’.

Since maxS = 1, we have x ≤
1 for ∀∀∀ x ∈ A.

Since maxS = 1, we have x ≤
1 ∀∀∀ x ∈ A.

‘∀’ reads ‘for all’, so ‘for ∀’ would read ‘for

for all’ which is wrong.
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4 THE USE OF SYMBOLS

Wrong Correct Comments

∀∀∀ x ∈ R s.t. x2 ≥ 0 x2 ≥ 0 ∀∀∀ x ∈ R

‘∀ x ∈ R s.t. x2 ≥ 0’ is not even a

complete sentence (try to read it). When

‘such that’ follows ‘for all’, we do not re-

ally mean ‘for all’, bur rather ‘for those

which satisfy the subsequent condition’.

For example, ‘for all positive even inte-

gers n such that n > 6, we can write n

as the sum of two odd primes’ — here we

do not really mean ‘for all positive even

integers n’, but only those which satisfy

the subsequent condition described after

‘such that’, i.e. n > 6.

4.4 The Symbols ‘∈’ and ‘⊆’

The first symbol is set membership and simply reads ‘in’ or ‘belongs to’ and we use it to denote that

a certain element lies in a set, for example 2 ∈ N or π ∈ R. The second one means ‘subset’ and we

use it to denote that a collection of elements all lie in a certain set, for example Z ⊆ Q ⊆ R.

Wrong Correct Comments

1. (0, 1) ∈∈∈ R

2. If x = 5, then x ⊆⊆⊆ R.

1. (0, 1) ⊆⊆⊆ R

2. If x = 5, then x ∈∈∈ R.

An interval is a subset of R, and so the

subset symbol ‘⊆’ should be used. In the

second example x is a real number, so

the set membership symbol ‘∈’ should be

used.

4.5 Overusing Symbols

We conclude this section with a warning on using symbols. While using symbols correctly is essential

for presenting mathematics accurately and concisely as we have shown throughout this section, there

is always a danger of overusing them. For example, consider the following definition of a function f(x)

being continuous at the point a:

• ∀ε > 0 ∃δ > 0 s.t. |x− a| < δ ⇒ |f(x)− f(a)| < ε.

While it is perfectly sound and correct, it is a bit difficult to read. Reducing the use of symbols would

give

• For all ε > 0, there exists δ > 0 such that |f(x)− f(a)| < ε whenever |x− a| < δ.
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5 THE USE OF TERMINOLOGY

In fact, in professional mathematical writing, symbols are usually kept to a minimum except

when discussing logic. Of course sometimes we may want to use symbols to save time (e.g. in exam

situations). The bottom line is that they are used correctly and form part of complete sentences, and

that the whole argument is reasonably readable.

5 The Use of Terminology

The principle of using mathematical terminology is basically choosing the right word for the right

occasion. Here we split the examples according to the subject area.

5.1 Elementary Algebra

Here we refer to things such as functions, polynomials and so on (as opposed to abstract algebra),

which most secondary school students should know.

Wrong Correct Comments

1. Suppose p(x) = ax + b,

where a and b are con-

stant.

2. Hence p(x) and q(x) are

constants polynomials.

1. Suppose p(x) = ax + b,

where a and b are con-

stants.

2. Hence p(x) and q(x) are

constant polynomials.

The word ‘constant’ can be used as an ad-

jective or a noun. As an adjective, it is

used to describe the non-varying property

of functions. As a noun, it is used to re-

fer to a fixed and well-defined number and

has a plural form ‘constants’.

Since 6 = 2 × 3, so 6 divides

3.

1. Since 6 = 2× 3, so 6 is di-

visible by 3.

2. Since 6 = 2 × 3, so 3 di-

vides 6.

A rule of thumb is that if a divides b

(where a, b are positive integers), then a

must be the smaller number.

We can move the graph of

y = ex to the left by 1 unit to

obtain the graph of y = ex+1.

We can translate the graph

of y = ex to the left by 1

unit to obtain the graph of

y = ex+1.

When referring to moving graphs by a

fixed vector the verb ‘translate’ is used.

The multiplication of two

positive numbers is positive.

The product of two positive

numbers is positive.
The result of multiplication is ‘product’.

We count the number of inte-

gers between 1 and 100 which

are not prime numbers.

We count the number of inte-

gers between 1 and 100 which

are not prime.

There is redundant information in the

wrong example (‘integers’ are ‘numbers’).

The convention is to use only the adjec-

tive.
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5 THE USE OF TERMINOLOGY

Wrong Correct Comments

The thousand digit of 12345

is 2.

The thousands digit of 12345

is 2.

When referring to digits use the terms

‘unit digit’, ‘tens digit’, ‘hundreds digit’,

etc.

The tenth digit of 12.34 is 1. The tens digit of 12.34 is 1.

The tenth digit refers to the digit imme-

diately to the right of the decimal point,

i.e. 3 in this example.

1. N is divisible by 7 when

N2 is divisible by 7.

2. Let f(x) = 2x. If x = 3,

f(x) = 6.

1. N is divisible by 7 if N2 is

divisible by 7.

2. Let f(x) = 2x. When x =

3, f(x) = 6.

In mathematical proofs the convention is

to use ‘if’ rather than ‘when’ for describing

a condition. But in the second example,

it is more popular to use ‘when’ since we

are talking about a variable taking on a

certain value.

5.2 Geometry

Plane geometry is another popular topic in the mathematics syllabus of secondary school.

Wrong Correct Comments

Denote the centre of the

circumcentre of ABC by O.

Denote the circumcentre of

ABC by O.

‘Circumcentre’ is the centre of the circum-

scribed circle.

1. The quadrilateral ABCD

is concyclic.

2. The points A, B, C and D

are cyclic.

1. The quadrilateral ABCD

is cyclic.

2. The points A, B, C and D

are concyclic.

‘Concyclic’ is used to describe points

whereas ‘cyclic’ is used to describe poly-

gons.

Let ABCD form a square.

1. Let ABCD be a square.

2. The points A, B, C and D

form a square.

The correct examples are the mathemati-

cal conventions.

The length of the perimeter

of the circle is 4π cm.

1. The length of the circum-

ference of the circle is 4π

cm.

2. The perimeter of the cir-

cle is 4π cm.

In mathematics ‘circumference’ is the

outer boundary of a circle, while ‘perime-

ter’ means ‘length of the boundary’.
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5 THE USE OF TERMINOLOGY

5.3 Mathematical Induction

Mathematical induction is a widely used technique of proof in many branches of mathematics. Study

the following proof. Can you point out all the problems in it?

Question

Show that 1 + 2 + · · ·+ n =
n(n+ 1)

2
for all positive integers n.

Solution

Let S(n) be the statement 1 + 2 + · · ·+ n =
n(n+ 1)

2
for all positive integers n.

• S(1) is true since

1 + 2 + · · ·+ 1 =
1(1 + 1)

2

1 = 1

• Assume S(k) is true for all positive integers k, s.t. 1 + 2 + · · ·+ k =
k(k + 1)

2
.

• When S(k + 1), we have

S(k + 1) = 1 + 2 + · · ·+ (k + 1)

=
k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2

=
(k + 1)[(k + 1) + 1]

2

Hence n = k + 1 is also true.

By the principal of mathematical induction, S(n) is true for all positive integers n.

There are close to ten errors in the proof. How many can you find?

Wrong Correct Comments

Let S(n) be the statement

1 + 2 + · · ·+ n =
n(n+ 1)

2
1 + 2 + · · ·+ n =

n(n+ 1)

2
1 + 2 + · · ·+ n =

n(n+ 1)

2
for all positive integers nnn.

Let S(n) be the statement

1 + 2 + · · ·+ n =
n(n+ 1)

2
1 + 2 + · · ·+ n =

n(n+ 1)

2
1 + 2 + · · ·+ n =

n(n+ 1)

2
.

S(n) is a statement that depends on the

value of n. We want to prove that S(n) is

true for all n.

1 + 2 + · · ·+ 11 + 2 + · · ·+ 11 + 2 + · · ·+ 1 111

We start adding from 1 and end at n.

When n = 1, there is only one term and

we should not write ‘+2’ at all.
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5 THE USE OF TERMINOLOGY

Wrong Correct Comments

1 + 2 + · · ·+ 11 + 2 + · · ·+ 11 + 2 + · · ·+ 1 =
1(1 + 1)

2
=

1(1 + 1)

2
=

1(1 + 1)

2

111 = 1= 1= 1

LHS = 1= 1= 1

RHS =
1(1 + 1)

2
= 1=

1(1 + 1)

2
= 1=

1(1 + 1)

2
= 1

When proving an equality, we do not sim-

plify both sides simultaneously. We may

either start from one side and reach the

other, or simplify both sides separately to

obtain the same value or expression.

Assume S(k) is true for all

positive integers k.

Assume S(k) is true for some

positive integer k.

‘S(k) is true for all k’ is precisely the state-

ment we need to prove, and therefore it

does not make sense to assume S(k) is true

for all k.

s.t. 1+2+· · ·+k =
k(k + 1)

2
. i.e. 1+2+· · ·+k =

k(k + 1)

2
.

Here we want to use the phrase ‘that is’

rather than ‘such that’, because we want

to explain what we mean by S(k) is true,

rather than to talk about some conse-

quences.

When S(k + 1)S(k + 1)S(k + 1) When n = k + 1n = k + 1n = k + 1

When we say ‘when n = · · · ’, we are dis-

cussing what happens under that particu-

lar value of n. Here we need to prove that

S(k + 1) is true, so we cannot say ‘when

S(k + 1)’.

S(k + 1) = 1 + 2 + · · ·+ (k + 1)S(k + 1) = 1 + 2 + · · ·+ (k + 1)S(k + 1) = 1 + 2 + · · ·+ (k + 1) LHS = 1 + 2 + · · ·+ (k + 1)= 1 + 2 + · · ·+ (k + 1)= 1 + 2 + · · ·+ (k + 1)
S(k + 1) is a statement and cannot be

equal to 1 + 2 + · · ·+ (k + 1).

Hence n = k + 1n = k + 1n = k + 1 is also true. Hence S(k + 1)S(k + 1)S(k + 1) is also true.

Only a statement can be true or false.

S(k + 1) is a statement, but n = k + 1 is

not a statement since n and k are dummy

variables and we cannot say n = k + 1 is

true or false.

By the principal of math-

ematical induction, P (n) is

true for all n ≥ 2.

By the principle of math-

ematical induction, P (n) is

true for all n ≥ 2.

‘Principal’ is the head of a school and

‘principle’ is a general law or primary

truth.

5.4 Functions and Calculus

These errors are specific to the use of terminology in the concepts of functions, limits, differentiation

and integration.
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Wrong Correct Comments

−1 is not the domain of
√
x.

1. −1 is not in the domain

of
√
x.

2. −1 is not an element of

the domain of
√
x.

‘Domain’ is a set and the intended mean-

ing here is to clarify whether −1 is an el-

ement of this set.

The differentiation of x2 is

2x.
The derivative of x2 is 2x.

‘Differentiation’ is the process of finding

the derivative.

To solve for the points of in-

tersection of the graphs, we

suppose x+ 1 = 2x+ 3.

To solve for the points of in-

tersection of the graphs, we

set x+ 1 = 2x+ 3.

‘Suppose’ is used for assumption. In this

example there is no assumption; rather we

assign two expressions to be equal to find

x.

The function f(x) = 3x is

strictly increasing in the in-

terval [0, 1].

The function f(x) = 3x is

strictly increasing on the in-

terval [0, 1].

It is a mathematical convention to say ‘on

an interval’ rather than ‘in an interval’.

Let f(x) = sinx. When f(0)f(0)f(0),

we have sin 0 = 0sin 0 = 0sin 0 = 0.

Let f(x) = sinx.

When x = 0x = 0x = 0, we have

f(0) = sin 0 = 0f(0) = sin 0 = 0f(0) = sin 0 = 0.

The statement sin 0 = 0 is true regardless

of what happens to f(0). Also, there must

be a condition following the word ‘when’.

For example, you could say ‘when x is 2,

the value of f(x) is 5’. But in the example,

f(0) is not a condition.

Note that ln(sin 0) has no

solution.

Note that ln(sin 0) is unde-

fined.

We can only say that an equation (with

some sort of variable) has no solution; but

here ln(sin 0) is a value (although unde-

fined).

The (k + 1)-th derivative of

sinx is

dkd

dxkx

dkd

dxkx

dkd

dxkx
(sinx) =

dk

dxk
(cosx).

The (k + 1)-th derivative of

sinx is

dk

dxk
dk

dxk
dk

dxk

(
d

dx

d

dx

d

dx
(sinx)

)
=

dk

dxk
(cosx).

The notation in the first example is wrong.

5.5 Linear Algebra

These errors are specific to the use of terminology in the theory of matrices and vector spaces.
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Wrong Correct Comments

The second entry of A is 2. The (1,2)-entry of A is 2.

It is unclear what the ‘second’ entry of a

matrix is — whether it is the second ele-

ment in the first row or the first element

in the second row.

Since A is 3×4 and B is 4×5,

the matrix A×BA×BA×B is 3× 5.

Since A is 3×4 and B is 4×5,

the matrix ABABAB is 3× 5.

Although not wrong, it is not a common

practice to denote the multiplication of

matrices using the ‘×’ sign. Most of the

time no symbol is used at all.

The matrix A is positive.
The entries of the matrix

A are positive.
‘Positive’ is used to describe real numbers.

For the (2, 3)(2, 3)(2, 3)-entry of AAA =

2 + 3 = 5.

1. The (2, 3)(2, 3)(2, 3)-entry of AAA =

2 + 3 = 5.

2. For the (2, 3)-entry of A, it

is equal to 2 + 3 = 5.

‘The (2, 3)-entry of A’ can be equal to a

number, but ‘for the (2, 3)-entry of A’ is a

phrase and cannot be equal to a number.

When E is a Type III, ...

1. When E is of Type III, ...

2. When E is a Type III el-

ementary matrix, ...

‘Type III’ is an adjective, so it should be

followed by a noun, or we add the prepo-

sition ‘of’ beforehand.

If A is rank 3, then it must

be invertible.

1. If A has rank 3, then it

must be invertible.

2. If A is of rank 3, then it

must be invertible.

3. If rank A = 3, then it

must be invertible.

‘A is rank 3’ is not a proper complete sen-

tence.

We solve the characteristic

polynomial of A as follows.

1. We find the characteristic

polynomial of A as follows.

2. We solve the characteristic

equation of A as follows.

We can ‘solve’ an equation but not a poly-

nomial.
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Wrong Correct Comments

The matrix A is linearly in-

dependent and so must be in-

vertible.

The rows of the matrix A

are linearly independent and

so must be invertible.

Linear independence refers to elements of

a vector space (e.g. row/column vectors).

The intended meaning here is that the row

vectors of A (multiple objects) are linearly

independent, not the matrix A itself (a

single object) being linearly independent.

Hence x,yx,yx,y is a basis. Hence {x,y}{x,y}{x,y} is a basis.
A basis is a set of vectors in a vector space

and therefore must be expressed as a set.

Since A has rank 2, we have

NullA = 3NullA = 3NullA = 3.

Since A has rank 2, we have

dim(NullA) = 3dim(NullA) = 3dim(NullA) = 3.

NullA refers to the null space of A and

cannot be equal to a number. What is

equal to 3 is the dimension of its null space

(also called its nullity).

Since A has rank 2, the rank

of its null space is 3.

Since A has rank 2, the di-

mension of its null space is

3.

‘Null space’ is not a matrix and hence has

no rank.

If a 3× 3 matrix is invertible,

its number of rank is 3.

If a 3× 3 matrix is invertible,

its rank is 3.
‘Rank’ is already a number.

6 Miscellaneous

6.1 Handwriting

It is important to write in a neat and legible manner. The following lists some frequently confused

characters:

• ‘t’ vs ‘+’

• ‘1’ vs ‘l’ vs ‘I’ (in particular the natural logarithm is ‘ln’, not ‘In’ !)

• ‘x’ vs ‘×’

• ‘p’ vs ‘ρ’

• ‘a’ vs ‘α’ vs ‘2’

• ‘0’ vs ‘6’ vs ‘σ’

On a side note, Greek letters are extensively used by mathematicians (26 English letters are often

insufficient!). One should learn all the Greek letters in order to master the mathematical language.
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6.2 Presentation

Always write in clear order (avoid writing in ‘two columns’ on the same page as it usually hinders

reading) and cross out unwanted materials (cross out those and only those words which you don’t want;

crossing out one word more or one word fewer can lead to a totally different meaning). Highlighting

the final answer sometimes also helps make the overall presentation neater.

Also, there are certain expressions such as
1

2x
and

1

2
x which you need to distinguish carefully.

Sometimes it also helps by writing with proper indentation. For example,

............ There are two cases:

Case 1: ............

............

Case 2: ............

............

Combining the two cases, ............

is more readable than

............ There are two cases. For the first case, ........................ For the second case,

........................ Combining the two cases, ............

6.3 Avoiding Isolated Equations

We began this writing guide by saying that complete sentences should be used in mathematical writing.

We conclude it by saying that complete paragraphs should be used. In short, this means we should

avoid writing a few isolated equations without explaining the logical relationship between them. For

example, consider the following:

5x+ 1 = 16

5x = 15

x = 3

This is probably how primary and secondary school students ‘write mathematics’. Indeed these can

be considered as complete sentences. (Try to read them: ‘5 times x plus 1 is equal to 16. 5 times x is

equal to 15. x is equal to 3.’ Three complete sentences!) However when put together this makes no

sense — what are we trying to say? Are we assuming the first equation holds? Or is it true that the

first equation does hold because of some reason? Furthermore, what is the relationship between these

equations? These are important issues and must be clarified by using proper connectives or symbols.

For instance, two possible ways to connect these equations together are as follows:

1. According to the question, we have 5x + 1 = 16. Since 5x + 1 = 16 ⇔ 5x = 15 ⇔ x = 3, we

conclude that the value of x is 3.
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2. It follows from our previous discussion that 5x + 1 = 16. This is equivalent to 5x + 1 = 15, or

x = 3.

If you are still not convinced of the importance of avoiding isolated equations, consider the following

(wrong) demonstration:

√
x− 2 = x− 4

x− 2 = x2 − 8x+ 16

x2 − 9x+ 18 = 0

(x− 3)(x− 6) = 0

x = 3 or 6

Yet if we plug x = 3 into the original equation, the two sides are not equal. Some would argue

that since we have squared both sides, it is necessary that we check the ‘solutions’ obtained at the

end. However this explanation is neither complete nor convincing — apart from naturally asking why

(squaring both sides would matter), you can easily find many other examples in which you would end

up with such ‘wrong solutions’ even though you haven’t squared both sides in the process. Ultimately,

it is the relationship between different equations that matters.

The above can be rewritten as follows:

• To solve the equation
√
x− 2 = x− 4, we note that

√
x− 2 = x− 4 =⇒ x− 2 = x2 − 8x+ 16

=⇒ x2 − 9x+ 18 = 0

=⇒ (x− 3)(x− 6) = 0

Hence the only possible values of x are 3 and 6. When x = 3, the left hand side of the equation

is 1 while the right hand side is −1; when x = 6 both sides are equal to 2. Thus we conclude

that x = 6 is the only solution.

As the last piece of advice, try to learn mathematical writing by reading how professional math-

ematicians write. Pay special attention to how words and symbols are integrated to form complete

sentences, and how complete sentences are linked together by connectives to form coherent paragraphs

that present rigorous mathematical arguments.
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