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Abstract

We investigate mixed sums of triangular numbers and squares. We resolve a con-
jecture of Z.-W. Sun about representability of sums of this type by proving 6 of the 10
parts and giving counterexamples to the 4 other parts. We also show that the general-
ized Riemann hypothesis implies another conjecture of Z.-W. Sun about which explicit
natural numbers may be represented.
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1. Introduction

Sums of squares and sums of triangular numbers have been studied extensively, going as far
back as Fermat. Fermat asserted that every natural number was the sum of three triangular
numbers, four squares, five pentagonal numbers, etc. Lagrange showed this claim for sums
of four squares in 1770, while Gauss showed the result for three triangular numbers in 1796.
The full assertion was later shown by Cauchy in 1813.

More recently, Sun [18] has considered mixed hybrid sums involving both triangular
numbers and squares. That is, Sun has considered sums of the type

fa,b(x, y) := a1x
2
1 + · · ·+ am1x

2
m1

+ b1Ty1 + · · ·+ bm2Tym2
,

where ai and bi are natural numbers and Tn = n(n + 1)/2 is the n-th triangular number.
In [18], Sun investigates which sums with three terms represent every integer, so called

universal forms, reducing the possible candidates to a short list which he then conjectured
to be universal. Guo, Pan, and Sun [5] showed that at least all but one of these were indeed
universal, while Sun and Oh [10] showed that every natural number could be written as a
square plus an odd square plus a triangular number to complete the classification.

Theorem 1.1 (Sun and Oh, see [10]). Every natural number has the form

x2 + 8Ty + Tz.
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Sun then conjectured the following (cf. [19]).

Conjecture 1.2 (Sun [19]). Let m and n be any nonnegative integers. Then every suffi-
ciently large natural number can be written in any of the following forms:

2mx2 +2ny2 +Tz (1.1)

2mx2 +2nTy +Tz (1.2)

2mTx +2nTy +Tz (1.3)

x2 +2n · 3y2 +Tz (1.4)

x2 +2n · 3Ty +Tz (1.5)

2n · 3x2 +2Ty +Tz (1.6)

2n · 3Tx +2Ty +Tz (1.7)

2n · 5Tx +Ty +Tz (1.8)

2Tx +3Ty +4Tz (1.9)

2x2 +3y2 +2Tz. (1.10)

We will see first that this conjecture does not hold in general. For formulas (1.2), (1.3),
(1.7), and (1.8) we obtain explicit counterexamples to the conjecture.

Theorem 1.3.
x2 + 16Ty + Tz

does not represent any natural number of the form (p2 − 17)/8, where p is any prime
congruent to 1 or 3 modulo 8, and is hence a counterexample to (1.2).

4Tx + 4Ty + Tz

and
8Tx + Ty + Tz

represent precisely the natural numbers not of the form (a2− 9)/8 and (a2− 5)/4, respec-
tively, where a is any integer all of whose prime factors are congruent to 1 modulo 4. Hence
both are counterexamples to (1.3).

192Tx + 2Ty + Tz

does not represent any natural number of the form (3p2− 195)/8 with p a prime congruent
to 5 or 7 modulo 8, and hence it is a counterexample to (1.7).

160Tx + Ty + Tz

does not represent any natural number of the form (5p2−162)/8 with p is a prime congruent
to 5 or 7 modulo 8, and hence it is a counterexample to (1.8).

Remark 1.4. After submission, Sun has pointed out that the cases 4Tx + 4Ty + Tz and
8Tx + Ty + Tz are in fact implied in Oh and Sun’s paper [10], as follows.
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From Oh and Sun [10, Theorem 1.1(ii)],

{n ∈ Z+ : n 6= (2x + 1)2 + Ty + Tz, x, y, z ∈ Z}
= {2Tm : m > 0, and all prime divisors of 2m + 1 are congruent to 1 (mod 4)}.

It follows that a nonnegative integer n cannot be represented by 8Tx + Ty + Tz if and only
if n has the form 2Tm − 1 where 2m + 1 has no prime divisors congruent to 3 modulo 4.

By Sun [18, Theorem 1(iii)], and Oh-Sun [10, Theorem 2.1(ii)]

{n ∈ Z+ : n 6= (2x + 1)2 + (2y)2 + Tz, x, y, z ∈ Z}
= {Tm : m > 0, and all prime divisors of 2m + 1 are congruent to 1 (mod 4)}.

Observe that

n = 4Tx + 4Ty + Tz for some x, y, z ∈ Z
⇐⇒ 2n + 2 = (2x + 1)2 + (2y + 1)2 + 2Tz for some x, y, z ∈ Z
⇐⇒ n + 1 = (x + y + 1)2 + (x− y)2 + Tz for some x, y, z ∈ Z
⇐⇒ n + 1 = (2u + 1)2 + (2v)2 + Tz for some u, v, z ∈ Z.

Thus, an integer n cannot be represented by 4Tx + 4Ty + Tz if and only if n has the form
Tm − 1 with 2m + 1 having no prime divisors congruent to 3 modulo 4. Note also that the
“if” part is equivalent to Oh and Sun [10, Corollary 1.1(ii)].

Although such counterexamples to the conjecture exist, the nature of such counterex-
amples is tractable, and we will prove a revised version of the conjecture, resolving the
conjecture conclusively in each case.

Theorem 1.5. Let m and n be any nonnegative integers. Then for a sufficiently large
natural number r, depending on n and m, the following equations hold

1.
2mx2 + 2ny2 + Tz = r.

2.
2mx2 + 2nTy + Tz = r

whenever 8r + 2n + 1 is not a square. This condition is empty when n < 3.

3.
2mTx + 2nTy + Tz = r

whenever 8r+2n+2m+1 is not a square, or when n = 0 (or, symmetrically, m = 0)
and 8r + 2m + 2 (8r + 2n + 2, respectively) is twice a square.

4.
x2 + 2n · 3y2 + Tz = r

5.
x2 + 2n · 3Ty + Tz = r
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6.
2n · 3x2 + 2Ty + Tz = r

7.
2n · 3Tx + 2Ty + Tz = r

whenever 8r + 3 · 2n + 3 is not 3 times a square.

8.
2n · 5Tx + Ty + Tz = r

whenever 8r + 5 · 2n + 2 is not 10 times a square.

9.
2Tx + 3Ty + 4Tz = r.

10.
2x2 + 3y2 + 2Tz = r.

Remark 1.6. This result is best possible in the sense that Theorem 1.3 gives forms which
do not represent infinitely many natural numbers r such that 8r + c are in each of the
exceptional square classes tZ2 listed in Theorem 1.5. In particular, x2 + 16Ty + Tz does
not represent r if 8r + 17 = p2, whenever p is any prime congruent to 1 or 3 modulo 8,
4Tx + 4Ty + Tz and 8Tx + Ty + Tz do not represent r if 8r + 9 = a2 or 8r + 10 = 2a2,
respectively, whenever all prime divisors of a are congruent to 1 modulo 4, 192Tx+2Ty+Tz

and 160Tx +Ty +Tz do not represent r if 8r +195 = 3p2 or 8r +162 = 5p2, respectively,
whenever p is a prime congruent to 5 or 7 modulo 8. It is important to note that for any fixed
m,n our method will be sufficient to determine whether every sufficiently large integer is
represented, or if there are infinitely many natural numbers of the form 8r + c = tZ2 which
are not represented.

Sun also makes several concrete observations based on computational evidence for
many of these forms to determine what is “sufficiently large.” However, our proof relies
on a lower bound for the class numbers, and is hence ineffective, so that we cannot deter-
mine an explicit bound on r. Under the assumption of the Generalized Riemann Hypothesis
(GRH), we can verify that the list given by Sun is complete. Sun also makes the following
explicit conjecture (Conjecture 3 in [18]).

Conjecture 1.7. Every natural number can be written in the form x2 + 2y2 + 3Tz except
r = 23, in the form x2 +5y2 +2Tz except r = 19, in the form x2 +6y2 +Tz except r = 47,
and in the form 2x2 + 4y2 + Tz except r = 20.

Although our methods are not sufficient to completely resolve this conjecture, due to the
ineffective nature of our bounds, we are able to obtain a partial result and a conditional proof
of Conjecture 1.7, with the help of a computer, using the method of Ono and Soundararajan
[12] which was used to (conditionally) determine the integers represented by x2+y2+10z2.

Theorem 1.8. Every sufficiently large natural number may be written in each of the forms
given in Conjecture 1.7.

Moreover, assuming GRH for Dirichlet L-functions and GRH for the L-functions of
weight 2 new forms, Conjecture 1.7 holds.
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Table 1. Equivalent Quadratic Forms
Mixed Sum f Exceptional r Quadratic Form Q Congruence Exceptional r′

x2 + 2y2 + 3Tz {23} 2x2 + 3y2 + 4z2 3 (mod 8) {187}
x2 + 5y2 + 2Tz {19} x2 + y2 + 20z2 1 (mod 4) {77}
x2 + 6y2 + Tz {47} x2 + 2y2 + 12z2 1 (mod 8) {377}
2x2 + 4y2 + Tz {20} x2 + 4y2 + 32z2 1 (mod 8) {161}

Remark 1.9. In light of Theorem 1.8, there is an elliptic curve E for each form such that
any counterexample r to Conjecture 1.7 will give a (specific) discriminant Dr such that
L(χDr , s) has a Siegel zero or a (specific) discriminant D′

r such that the L-series of the
D′

r-th quadratic twist of E contains a Siegel zero. Here Dr and D′
r vary linearly in r as a

constant times 8r + c with c the constant in front of the term Tz

In our proof of Theorem 1.8, we also show that Conjecture 1.7 leads to the following
equivalent statements.

Proposition 1.10. In Table 1, the mixed sum f represents precisely every natural number
other than the exceptional set of r if and only if the quadratic form Q represents every
natural number in the given congruence class other than the exceptional set of r′.

Our methods will be based upon the theory of (ternary) quadratic forms and half-integral
weight modular forms. A good reference for quadratic forms is [6] and the survey paper of
Schulze-Pillot [13], while a good reference for modular forms is [11].

2. Representations by Sufficiently Large Integers

In this section we will show our main results, Theorems 1.5 and 1.3. We will first show the
main result and then show how the counterexamples arise naturally from our proof.

Proof of Theorem 1.5. Consider one of the forms of the conjecture written as

fa,b(x, y) = a1x
2
1 + · · ·+ am1x

2
m1

+ b1Ty1 + · · ·+ bm2Tym2
.

We first note that (extending the definition of triangular number to T−x = −x(−x + 1)/2
for symmetry), fa,b(x, y) = r if and only if

Qa,b(x, y) := 8a1x
2
1+ · · ·+8am1x

2
m1

+b1(2y1+1)2+ · · ·+bm2(2ym2 +1)2 = 8r+
m2∑
i=1

bi.

(2.1)
This is obtained simply by multiplying both sides of the equation by 8 and then adding∑m2

i=1 bi to both sides. Therefore, we will consider sums of the type Qa,b(x, y). Note that
in each of our cases Q = Qa,b is a (ternary) quadratic form (which we shall denote Q′ for
the quadratic form) with the added condition that the bi terms must be odd.

Consider the associated theta-series

θQ :=
∑

x,y,z∈Z
qQ(x,y,z) =

∑
r∈N

aQ(r)qr,
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where aQ(r) is the number of representations of r by Q. We may write, using inclu-
sion/exclusion,

θQ(x1,x2,y1) = θQ′(x1,x2,y1) − θQ′(x1,x2,2y1), (2.2)

θQ(x1,y1,y2) = θQ′(x1,y1,y2) − θQ′(x1,2y1,y2) − θQ′(x1,y1,2y2) + θQ′(x1,2y1,2y2), (2.3)

and

θQ(y1,y2,y3) = θQ′(y1,y2,y3) − θQ′(2y1,y2,y3) − θQ′(y1,2y2,y3) − θQ′(y1,y2,2y3)

+ θQ′(2y1,2y2,y3) + θQ′(2y1,y2,2y3) + θQ′(y1,2y2,2y3) − θQ′(2y1,2y2,2y3). (2.4)

Thus, θQ is a sum of finitely many modular forms (the theta-series of the above quadratic
forms), and is thus itself a modular form.

The theta-series of a ternary quadratic form decomposes as follows:

θQ′ = (θQ′ − θSpn(Q′)) + (θSpn(Q′) − θGen(Q′)) + θGen(Q′),

where θGen(Q′) denotes the weighted average over the genus and θSpn(Q′) denotes the
weighted average over the spinor genus. Moreover, (θQ′ − θSpn(Q′)) is a cuspidal mod-
ular form whose Shimura lift is also cuspidal, (θSpn(Q′) − θGen(Q′)) is a cuspidal modular
form in the space of lifts of one dimensional theta-series, where only tZ2 coefficients are
supported (all others are equal to zero) for finitely many squarefree integers t dividing the
discriminant (cf. Schulze-Pillot [13], p. 7-9). We will call ta2 a (primitive) spinor excep-
tion for Q′ if ta2 is not (primitively) represented by the spinor genus of Q′, and we will
call tZ2 a spinor exceptional class for Q′ if t is not represented by one of the spinor genera
in the genus of Q′. The r-th coefficient of the weighted average of the genus grows like
a certain class number (see Jones [6]) when r has bounded divisibility by the anisotropic
primes (primes p dividing twice the discriminant in which the number of representations
does not grow locally), and hence the r-th coefficient grows like

aθGen(Q′)(r) � r1/2−ε,

whenever r is locally represented, by Siegel’s (ineffective) lower bound for the class num-
bers [16]. Since the Shimura lift of (θQ′ − θSpn(Q′)) is cuspidal, Duke’s bound [2] gives

aθQ′−θSpn(Q′)(r) � r3/7+ε,

as observed by Duke and Schulze-Pillot [3]. Therefore, outside of the coefficients which
are supported by (θSpn(Q′) − θGen(Q′)) or (θSpn(Q′(x,y,2z)) − θGen(Q′(x,y,2z))), Equation (2.2)
gives in that case

aQ(r) = aθGen(Q′(x,y,z))
(r)− aθGen(Q′(x,y,2z))

(r) + O(r3/7+ε).

We now investigate the difference

aθGen(Q′(x,y,z))
(r)− aθGen(Q′(x,y,2z))

(r).

Using Siegel’s averaging formula, the coefficients of these forms are given by the product of
the limit of the number of solutions modulo a prime power pm divided by pm. Since these
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forms are equivalent p-adically for all primes p 6= 2, it follows that aθGen(Q′(x,y,2z))
(r) =

craθGen(Q′(x,y,z))
(r), where cr is a constant which only depends on r modulo a fixed power

of 2. Clearly cr ≤ 1, since the number of representations of r with z arbitrary is less than
or equal to the number of representations with z even. We then note that modulo a fixed
power of 2 this difference of local densities is equal to the number of solutions with z odd.
Moreover, Siegel’s averaging theorem [17] shows that r is represented by one of the forms
in the genus if and only if it is locally represented at all of the primes. Thus, cr = 1 if and
only if r is not locally represented by Q′ with z odd.

Taking c′r to be the weighted sum of the above cr from the inclusion/exclusion, the same
argument as above shows that Equations (2.3) and (2.4) also give

aQ(r) = (1− c′r)aθGen(Q′(x,y,z))
(r) + O(r3/7+ε)

for coefficients not supported by θSpn(Q′′) − θGen(Q′′) for any Q′′ occuring in the inclu-
sion/exclusion, where 1− c′r = 0 if and only if r is not locally represented.

Thus, any sufficiently large integer which is locally represented by Q and has bounded
divisibility by the anisotropic primes, other than (possibly) spinor exceptional square
classes tZ2, with t a squarefree divisor of twice the discriminant of Q′, are represented
globally by Q.

We will now proceed to show that each of the forms (1.1), (1.2), (1.3), (1.4), (1.5), (1.6),
(1.7), (1.8), (1.9), and (1.10) give a form Qa,b which locally represents every integer of the
form

8r +
m2∑
i=1

bi

from Equation (2.1). We will then show which possible exceptional square classes may
occur in each case.

We first note that the anisotropic primes must divide twice the discriminant and hence
in each case these can only be 2, 3, or 5. The prime 2 can be ignored, since the congruence
conditions modulo 8 of the integers we would like to represent by Qa,b in each of our
examples automatically implies bounded divisibility at 2. For those cases where 3 and 5
occur in the discriminant we use the fact that 2 is invertible p-adically so that we only need
to check the local conditions at 3 and 5 for n = 0 or n = 1 and m = 0 or m = 1, verifying
in each case that 3 and 5 are not anisotropic. Therefore we only need to check p-adically at
each prime for existence of a solution.

It is well known that a solution exists for primes p relatively prime to the discriminant,
so we only need to consider primes which divide the discriminant. For (1.1), (1.2), and
(1.3), the discriminant is a power of 2, so we only need to consider solutions modulo a
sufficiently large power of 2. Checking a fixed power of 2 and applying Hensel’s lemma
shows that the 2-adic conditions are indeed satisfied in each case.

Therefore, other than spinor exceptional square classes, we have the desired result for
these three types of forms. Since the discriminants of each of these forms are a power of 2,
the only possible spinor exceptional classes are Z2 and 2Z2, so t = 1 or t = 2.

For forms of type (1.1) we note that 8r + 1 is never 2 times a square and for a square
(2a + 1)2 = 8r + 1 we have the explicit solution x = y = 0 and z = a, so we obtain the
desired statement.
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For forms of type (1.2), 8r + 2n + 1 is even if and only if n = 0 (and in that case 2
(mod 8)). But in this case we have the solution x = 0 and y = z = a for 2(2a + 1)2, so
t = 2 does not appear in our analysis. When n < 3, 8r + 2n + 1 is not 1 or 0 mod 8, so
squares do not appear in our analysis when n < 3. The case t = 1 gives the condition of
the theorem.

For forms of type (1.3) 8r + 2n + 2m + 1 is even if and only if m > 0 and n = 0 (up to
symmetry), so we only need to consider twice a square when n = 0. The case t = 1 gives
the other condition of the theorem.

Forms of type (1.4), (1.5), (1.6), (1.7), (1.9) and (1.10) give Q′ with discriminant a
power of two times 3. Therefore, for these forms we need to check the local condition at 2
and at 3. The 2-adic argument for forms of type (1.4), (1.5), (1.6), (1.7) follow exactly as
above for the previous 3 types of forms, using Hensel’s Lemma. For the 3-adic argument
we only need to show that there is a solution modulo 9 and then use Hensel’s Lemma. Since
2 is invertible modulo a 3 power, we only need to consider the cases n = 0 or n = 1. A
simple check shows that the local conditions are satisfied in this case. The local conditions
for the forms (1.9) and (1.10) follow directly by direct calculation.

Therefore, the result holds outside of the spinor exceptional square classes for these
forms. For (1.9) and (1.10) the genus only has one spinor genus so there are no spinor
exceptional square classes, and these follow immediately. For all others, the only possible
spinor exceptional classes are Z2, 2Z2, 3Z2, and 6Z2. For (1.4), 8r + 1 = ta2 only has a
solution modulo 8 if t1 = 1, but in this case we have the solution x = y = 0 and z = a.
For forms of type (1.5) we have

8r + 3 · 2n + 1 ≡


1 if n ≥ 3
5 if n = 2
7 if n = 1
4 if n = 0

(mod 8)

Hence we only need to consider the spinor exceptional class with t = 1 for n ≥ 3 and t = 2
for n = 1. A quick check shows that 2Z2 is not a spinor exceptional class for n = 1 since
the genus equals the spinor genus in this case. Therefore only the case t = 1 is possible.
However, Schulze Pillot [14] gives necessary and sufficient conditions p-adically for t to
be a spinor exception. We will only need here the necessary condition 3-adically (which
is due to Kneser [9]). Earnest, Hsia, and Hung have given an easy determination of when
these conditions are satisfied [4]. They show that the necessary condition implies that if p
is ramified in Q(

√
−td) then

Lp
∼= b1x

2 + b23ry2 + b33sz2

with bi being p-adic units and 0 < r < s. However, we have 3 ramified in Q(
√
−3 · 2n+3t)

whenever 3 does not divide t, and r = 0 in our case, so it follows that 1 cannot be a spinor
exception for 8x2 + 2n3y2 + z2 for any n. But our sum (2.3) only contains quadratic forms
of this type, and the result follows.

For (1.6), the congruence 8r + 3 ≡ 3 (mod 8) implies that only t = 3 may occur, but
x = 0, y = z = a gives a solution to 3a2. For (1.7) the congruence condition modulo 8
implies that only t = 6 is possible for n = 0, t = 1 for n = 1, and t = 3 is possible for
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n ≥ 3. A quick check for n = 0 and n = 1 show that these spinor exceptions do not occur,
and we are left with the remaining condition.

Finally we show the result for forms of type (1.8). In this case, the discriminant is a
power of 2 times 5, and the local conditions are shown as above. The only possible spinor
exceptional classes are those with t = 1, t = 2, t = 5, and t = 10. We again look at
the congruence conditions modulo 8 to determine that the only possible spinor exceptions
equal to 8r + 5 · 2n + 2 are twice a square or 10 times a square when n ≥ 3. As in the case
of (1.5) we then argue 5-adically to show that 5 must be a divisor of t, so the case t = 2
cannot occur.

We will now show that our counterexamples to the original conjecture are of the excep-
tional type arising from spinor exceptional square classes in the associated quadratic form,
as evidenced in the above proof.

Proof of Theorem 1.3. In light of Theorem 1.5, for each of the counterexamples we will
show that the associated form Q does not represent ta2 for infinitely many integers a, with
tZ2 the possible spinor exceptional square class which occurs as a condition in the given
statement.

We will first show the case for 4Tx + 4Ty + Tz . The associated form Q′(x, y, z) :=
4x2 +4y2 + z2 is genus 1. Local conditions (modulo 8) show that the difference of sums to
obtain 8r+9 is Q(x, y, z) = Q′(x, y, z)−Q′(x, 2y, z), since otherwise the local conditions
are not satisfied. However, Q′′(x, y, z) := 4x2 + 16y2 + z2 is spinor genus 1. Therefore,
θQ′ − θSpn(Q′) = 0, θGen(Q′) − θSpn(Q′) = 0, and θQ′′ − θSpn(Q′′) = 0, so that, calculating
the constant in front of θGen(Q′) exactly,

θQ = cθGen(Q′) − (θSpn(Q′′) − θGen(Q′′)),

so that aQ(8r + 9) = 2aQ′′′(8r + 9), where Q′′′ = 4x2 + 4y2 + 5z2 + 4xz is the (unique)
representative of the other spinor genus in the genus of Q′′. Therefore, r will be represented
if and only if 8r + 9 is represented by Q′′′, which is spinor genus 1 (and satisfies local
conditions), and hence represents every integer of this type except for the spinor exceptions.
However 1 is a spinor exception for Q′′′, so it follows from the work of Schulze-Pillot [14]
that if p is a prime which splits in K = Q(

√
−16) = Q(i) then Q′′′ will not represent p2,

and hence neither will Q. To determine completely the integers not represented by Q′′′, one
may then follow Schulze-Pillot [14] to see that the integers r not represented are precisely
those for which 8r + 9 is a square which has divisors that all split in Q(i), which occurs if
and only if every prime divisor of 8r + 9 is congruent to 1 modulo 4.

For 8Tx+Ty+Tz , we similarly have that 8x2+y2+z2 is genus 1 and that 32x2+y2+z2

is spinor regular with 2Z2 a spinor exceptional square class. Again K = Q(
√
−8 · 2) =

Q(i). Therefore, the integers not represented by 8Tx + Ty + Tz are precisely those r for
which 8r + 10 is twice a square a where all of the divisors of a are congruent to 1 modulo
4. We include this case as a second counterexample to (1.3) to show that both conditions
which we have in the theorem are necessary.

For x2 + 16Ty + Tz , the inclusion/exclusion sum gives Q′(x, y, z)−Q′(x, 2y, z) with
Q′ = 8x2 + 16y2 + z2, a genus 1 form. Since Z2 is a spinor exceptional square class for
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32x2 + 16y2 + z2 we argue as above to obtain 8r + 17 is not represented by Q if and only
if 8r + 17 is a square with all divisors split in Q(

√
−2).

For the other cases, tZ2 will be a spinor exceptional square class for both Q′(x, y, z)
and Q′(2x, y, z) which is represented by both Q′(x, y, z) and Q′(2x, y, z). Therefore, for
any prime p which is inert in K := Q(

√
−td) (Here d is the discriminant of the form,

which is the same up to a square for both quadratic forms), then tp2 will not be represented
primitively by the spinor genus of Q′(x, y, z) or Q′(2x, y, z), and hence not by these forms
(see [15], page 352).

For 192Tx + 2Ty + Tz we have the spinor exceptional class from t = 3. Clearly,
Q(x, y, z) does not represent t = 3, because the odd condition dictates that the smallest
integer represented by Q is 192 + 2 + 1 = 195. Therefore, the number of representa-
tions of t = 3 by Q′(x, y, z) and Q′(2x, y, z) are equal. Fix an arbitrary prime p inert
in K = Q(

√
−2). Since there are no primitive representations of tp2 by Q′(x, y, z) and

Q′(2x, y, z), it follows that the number of representations of tp2 by Q′(x, y, z) equals the
number of representation of tp2 by Q′(2x, y, z). For 160Tx + Ty + Tz , we have t = 10 and
K = Q(i), and the argument follows as above.

3. GRH and Mixed Sums

In [8], the author considers sums of the type fa,b where a = 0. Using the decomposition
given in Equation (2.4), an algorithm is shown to determine, conditional upon GRH, which
integers are represented by f0,b. This is based upon an algorithm described by Ono and
Soundararajan [12] to determine the integers represented by the particular form x2 + y2 +
10z2, as generalized to more general forms by the author in [7]. We will briefly explain the
theory behind the algorithm and then use the algorithm to conclude Theorem 1.8.

We start by decomposing the associated quadratic form Q′ as described in the previous
section, namely

θQ′ = (θQ′ − θSpn(Q′)) + (θSpn(Q′) − θGen(Q′)) + θGen(Q′).

For (θSpn(Q′) − θGen(Q′)), we use the results of Schulze-Pillot [14] to determine all (prim-
itive) spinor exceptions. Outside of these finitely many square classes, we have a cuspi-
dal weight 3/2 modular form g := (θQ′ − θSpn(Q′)) whose Shimura lift is cuspidal plus
EQ′ := θGen(Q′). Since the Shimura lift of g is cuspidal and the Hecke operators commute
with the Shimura lift, we may further decompose g into

g =
m∑

i=1

bigi,

where gi are a fixed set of weight 3/2 eigenforms which each lift to weight 2 normalized
eigenforms Gi (aGi(1) = 1) under our choice of Shimura lift. One then uses the following
result of Waldspurger [20].

Theorem (Waldspurger). Let a weight 3/2 Hecke eigenform gi of level N with Nebentypus
χ whose Shimura lift is Gi. Then if r1/r2 ∈ Qx2

p for every p | N ,

a2
gi

(r1)L(Gi,

(
−1
·

)
χ−1χr2 , 1)χ

(
r2

r1

)
r
1/2
2 = a2

gi
(r2)L(Gi,

(
−1
·

)
χ−1χr1 , 1)r1/2

1 ,



On Two Conjectures about Mixed Sums of Squares and Triangular Numbers 85

where L(Gi, χ
′, s) is the L-series of Gi twisted by the character χ′.

We then find a representative r2 modulo squares in Qp so that the coefficient agi(r2) 6= 0
(if one exists). If we define

ci :=
a2

gi
(r2)

r
1/2
2 L(Gi,

(−1
·

)
χ−1χr2 , 1)

then for each r1 equivalent to r2 modulo squares, we have

a2
gi

(r1) =
ci

χ(r1/r2)
L(Gi, χ

′
r1

, 1)r1/2
1 .

Now we note that to obtain the theta series for Q we are taking the sums and dif-
ferences of finitely many of these theta series for quadratic forms Q′′, and in each case
EQ′′ = cQ′′EQ′ , where cQ′′ is some constant which only depends modulo squares 2-
adically. But, as shown above,

∑
Q′′ cQ′′ > 0 whenever the integer is represented locally

with the appropriate odd conditions. Thus, taking the sum of each of these from the appro-
priate Equation (2.2), (2.3), or (2.4) we have, for integers represented locally,

aQ(r) = caE(r) +
m∑

i=1

bi

√
ci

χ(r/r2)
L(Gi, χ′

r, 1)r1/2.

For r square free, the coefficients aE(r) are certain class numbers, so Dirichlet’s class
number formula (cf. [1]) allows us to write

aE(r) = c′L(χ′′
r , 1)r1/2,

where L(χ′′
r , s) is the L-series of the appropriate character χ′′

r . We then simply note that r is
not represented by Q if and only if aQ(r) = 0, and then rearrange and divide by L(χ′′, 1),
bounding the ratios L(Gi, χ

′
r, 1)/L(χ′′, 1)2 using the bounds in [7].

We now use this algorithm to solve the conjecture assuming GRH.

Proof of Theorem 1.8. We first note that in each of these cases we have Q(x, y, z) =
Q′(x, y, z) − Q′(x, y, 2z) with Q′(x, y, z) = 8ax2 + 8by2 + cTz for some a, b, with
c = 1, 2 or 3. Thus there are no solutions to 8r + c = Q′(x, y, 2z) (mod 8), so
Q(x, y, z) = Q′(x, y, z). We check the local conditions for Q′ and note that Q′ does
not have c as a spinor exception (the only one possible because of the congruence condi-
tions modulo 8) in each case (one can merely check trivially that it represents c). Therefore,
every sufficiently large integer is represented by the form.

We now proceed to show Proposition 1.10 and then use our algorithm given above to
determine the integers represented in each case. In each case, the resulting form is genus
two and thus will decompose as E + g, with E the weighted average among the genus and
g a Hecke eigenform (hence, since g has rational coefficients, its lift G will be the L-series
of an elliptic curve). We then in each case use an argument similar to that given in [7] to
determine (unconditionally) that all of the non squarefree integers must be represented by
the form.
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For r = x2+5y2+2Tz , we get Q′(x, y, z) = 8x2+40y2+2z2. But Q′(x, y, z) = 8r+2
if and only if

4x2 + 20y2 + z2 = 4r + 1.

However, solutions to x2
2 + 20y2

2 + z2 = 8r + 1 can only exist if x is even (up to symmetry
of x and z), so we have half the number of solutions to

x2 + 20y2 + z2 = 4r + 1,

giving the assertion of Proposition 1.10. We then use our algorithm to show the integers
(not) represented by x2+20y2+z2 and check which are 1 modulo 4. This form is genus 2, so
the theta series decomposes as E +g with g a Hecke eigenform. Using the algorithm in [8],
all squarefree integers 1 mod 4 greater than 12288 (we get three different bounds depending
on the value of

(
−20
4r+1

)
, and take the largest one) are represented by x2 + 20y2 + z2. A

quick computer check then verifies that the only squarefree integer smaller than 108 which
is 1 modulo 4 and not represented by x2 + 20y2 + z2 is 77.

For x2 +2y2 +3Tz , we need to find solutions to 8r +3 = 8x2 +16y2 +3z2. However,
any solution to 2x2

2 + 4y2
2 + 3z2 = 8r + 3 must have x and y even, so this is equivalent to

2x2 + 4y2 + 3z2 = 8r + 3 and we get the assertion of Proposition 1.10. The form is genus
2, so the theta series decomposes as E + g with g a Hecke eigenform. We then use the
algorithm in [8] to show that every squarefree integer which is 3 modulo 8, relatively prime
to 3 and greater than 1.89× 109 is represented by 2x2 + 4y2 + 3z2, while those which are
not relatively prime to 3 and greater than 21291 are represented. We then do a quick check
by computer to verify that every natural number less than 5 × 1010, other than 187, which
is congruent to 3 modulo 8 is represented by 2x2 + 4y2 + 3z2.

Next we consider x2 + 6y2 + Tz . In this case we have solutions to 8r + 1 = 8x2 +
48y2 + z2. But the number of solutions to 2x2 + 12y2 + z2 = 8r + 1 equals the number of
solutions to 8r+1 = 8x2+48y2+z2, so r is represented if and only if 8r+1 is represented
by 2x2 + 12y2 + z2, verifying the statement in Proposition 1.10. As above, our algorithm
shows the result for every natural number less than 1.6× 108. We then check by computer
to verify that every natural number less than 2× 109, other than 377, which is congruent to
1 modulo 8 is represented by 2x2 + 12y2 + z2.

Finally, for 2x2 + 4y2 + Tz , we need to find solutions to 8r + 1 = 16x2 + 32y2 + z2.
Similarly to above, the number of solutions to 8r+1 = 4x2 +32y2 +z2 equals the number
of solutions of 8r+1 = 16x2 +32y2 +z2, verifying the statement in Proposition 1.10. Our
algorithm shows the result for every natural number greater than 5.2× 108. We then check
by computer to verify that every natural number less than 5 × 1010, other than 161, which
is congruent to 1 modulo 8 is represented by 4x2 + 32y2 + z2.
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