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Abstract

We prove a refinement of the ¢-core conjecture proven by Granville and Ono. We
show that for every n > g there are at least g partitions of n which are tg-core par-
titions but not g-core partitions unless t = g = 2 and n = 4 or n = 10. When
investigating the case t = g = 2, we study the number of solutions to the equation
2 ((1'2"1) + (ygl)) + (”2'1) =nwithz,y,z € Z.
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1. Introduction and Statement of Results

The theory of ¢-core partitions has played a role in a variety of areas. For example, when
t = p is prime they characterize p-modularly irreducible representations of the symmetric
group .S,,. Due to this connection, they have been studied by representation theorists such
asin [8, 9, 14, 17]. They also played a role in establishing cranks in [6] and [5], which were
used to show a combinatorial proof of Ramanujan’s famous congruences for the partition
function.

The Ferrers-Young diagram of the partition A = (A\1,...,Ag) of n = A; + -+ + A\g is
formed by arranging n nodes in rows so that there are \; nodes in the i-th row. The hook
number of a node is the number of nodes in the Ferrers-Young diagram to the right of the
node plus the number of nodes below this node, plus one for the node itself.

Definition 1.1. A t-core partition of n is a partition of n whose Ferrers-Young diagram has
no hook numbers which are a multiple of t.

Granville and Ono [7], using Lagrange’s Four Square Theorem and the theory of mod-
ular forms, have shown that every nonnegative integer n may be partitioned by a t-core
partition whenever ¢ > 4 and otherwise the set of such n has measure zero. Using this re-
sult when ¢ = p is a prime, Granville and Ono completed the classification of simple groups
with defect zero Brauer p-blocks. We shall show the following refinement of this theorem.
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Theorem 1.2. Let n,t, g be positive integers such that tg > 4 andt > 1. Then there exists
a tg-core partition of n which is not a g-core if and only if n > g. Moreover, there are at
least g such partitions unless g =t = 2 and n = 4 or n = 10, in which case there is one.

Remark 1.3. This is best possible in the sense that every partition of n < g is a g-core and
when n = g there are precisely g such partitions.

Studying the case when ¢ = 2 leads to an investigation of sums of triangular numbers.
Gauss showed the following famous Eureka Theorem to determine representability by sums
of triangular numbers.

Theorem 1.4 (Gauss). Every nonnegative integer n can be represented in the form
z+1 n y+1 n z+1
2 2 2

Let us next consider sums of the form

Qu(z,y,2) := ($;1> Tk <<y;rl> " <Z;1>>

We will see that a result similar to Theorem 1.4 holds for ()2, which determines the number
of 4-core partitions.

with x,y, z € Z.

Theorem 1.5. Let n be a nonnegative integer. Then the equation Q2(x,y, z) = n has more
than one solution unless n = 0,1,4 (in which case it has exactly one), and it has more
than two solutions unless n = 0,1,2,4,10,11, 16, 31. Also, there are at least three 4-core
partitions of n unlessn = 0,1,2,4,10,11, 16, 31.

Remark 1.6. Note that since 2 is not a triangular number Qi (x,y, z) = 2 cannot have a
solution for k > 2, and hence k = 1 and k = 2 are the only positive choices of k for which
Qr(z,y, z) = n always has a solution.

2. Sums of Triangular Numbers and 4-core Partitions

Investigating the case ¢ = g = 2 quickly leads to determining the number of solutions to
Q2($7 Y, Z) =n.

Proof of Theorem 1.5. 1t is well known that the generating function for ¢-cores is

O 1 — gin)t
vi(g) =[] U-d7) — n) @.1)
n=1 — 4
and clearly satisfies
Yan(@) = Yald”) s (9). 22)

Thus, the generating function for 4-cores may be written as

U2 (q®)*¥2(q).
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However, it is well known that ¢2(q) = >, < q(ngl), so the number of 4-core partitions of
n is precisely the number of solutions to Q2 (x, 1, z) = n. Observing this, Ono has shown
in [11] that the number of 4-core partitions of n is precisely equal to the number of solutions
to 8n 4+ 5 = x2 + 2y% 4 222, Using the fact that 2> + 2y% + 222 is a genus 1 quadratic
form, Ono and Sze [13] showed that the number of solutions is exactly

1
3 > h(-4D). (2.3)

D|8n+5
Bnts 2

Here h(—D) is the class number of O_p, the size of the group of fractional ideals of the
order O_p modulo the principal ideals. We are interested in when (2.3) is 1 or 2. Due to
the factor of %, this corresponds to the classification of orders with class number 1, 2, 3, and
4. Given the class number of O_p for a fundamental discriminant — D, Dirichlet’s class
number formula gives the class number for O _ 2 explicitly, so it suffices to determine the
imaginary quadratic fields with class number less than 5. Using Baker [3, 4] and Stark’s
[15, 16] independent solutions to Gauss’s class number one and class number 2 problems,
(2.3) equals 1 only when n = 0,1, or 4. By determining an effective lower bound for the
class number, Oesterlé [10] solved the class number 3 problem, and Arno [1] solved the
class number 4 problem, showing in our case that there are two solutions precisely when
n =2,10,11, 16, or 31. O

Remark 2.1. Let an integer N be given. Using Oesterlé’s bound [10]

*

1 2
h(—d) > %H <1 - M) Ind,

pld

where the * indicates that the largest prime divisor is not included, or the known lists for
imaginary quadratic fields with class number less than 2N when N is small enough, one
can extend this argument to give a complete list of n for which (2.3) is less than N, or,
equivalently, there are less than N 4-core partitions of n.

3. Partitions which are ¢g-core but not g-core

We will use the theory of modular forms, Theorem 1.4, Theorem 1.5, and the generating
function for partitions which are simultaneously s-cores and ¢-cores (denoted here as s/t-
cores) to show Theorem 1.2.

Proof of Theorem 1.2. We first note that for n < g every partition of n is clearly a g-core
since every hook number is less than g. This concludes the only if portion of the statement.
Assume that g > 4. Here we will have the stronger result that there are always at least
g tg/sg-core partitions of n which are not g-cores for any s > 1 and ¢ > 1. In [2] it was
established that the generating function for partitions which are sg/(tg)-cores is given by

(¥s,(¢7))? - 1g(q), (3.1)
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where 1), is the generating function for partitions which are s/t-cores and 94(q) =:
Ym0 @ng" is the generating function for g-core partitions. In [2], the statement of equa-
tion (3.1) is restricted to the case where s and ¢ are relatively prime, but the result holds
more generally by using equation (2.2). From (3.1), the generating function for partitions
which are sg/tg-core but not g-core is

[(¥s,6(g))? = 1] - y(q).- (3.2)

We know from Granville and Ono [7] that a,, > 0 for every n. Noting that the unique
partition (1) of 1 is always an s/t-core, equation (3.2) equals

D bag" = [9a° + O(@*)] - > and",

n>0 n>0

where the coefficients in O(ng) are all nonnegative. Hence forevery n > 0, by, g > ga,, >
g. This establishes the result for g > 4.

Now consider ¢ < 4 and ¢t > 4. Using equation (2.2) and subtracting 14(q), the
generating function for ¢g-cores which are not g-cores is

[(¥e(q?))” — 1] - 1hq(q).-

Since every integer n is partitioned by a t-core, it follows that the generating function may
be written as

/ !
> 907" + e | D and" = D gaw " T+ apemg™ T,
n>1 n>0 n/>0,m>1

where ¢, > 0 and a,, is the number of g-core partitions of n. Let an integer n > g be
given. Then n = n’ + gm for some 0 < n’ < g and m > 1. Clearly a,, > 0 because
every partition is a g-core, so that we know there exist at least g such tg-core partitions of
n which are not g-cores, establishing the result when ¢ > 4. The only remaining cases are
t=9g=2,t=g=3,t=2and g = 3, and, finally, ¢ = 3 and g = 2.

For t = g = 2, the generating function for 4-cores which are not 2-cores is the number
of solutions to Q2(x,y,z) = n minus the number of solutions to n = (x;rl), so that we
have the desired bound by Theorem 1.5, since n = 2,4,11,16, and 31 are not triangular
numbers.

When tg = 6, we use (2.2) to write the generating function for 6-cores as

(P2(q®)*¥s(q) = D ang™

n>0

We first check n < 10 by hand for ¢ = 2 and ¢ = 3. Noting that the n-th coefficient of
¥3(q) is the number of ways that n may be written as the sum of 3 triangular numbers,
Theorem 1.4 gives

(¥2(e)® =D (1 +en)g™,

n>0
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where e,, > 0. For g = 3, we obtain the generating function

> (A +en)g®™ | -s(q)

n>1

for 6-cores which are not 3-cores, so that the result follows for n > 10 from the fact that
there is a 3-core for 0,1,2,4,5,6,8,9, 10. For g = 2, we note that it sufficies to show that
an > 3. Since there is a 3-core of 0,1,2,4,5,6,8,9, 10, it follows that for a,, > 3 when
n > 10.

The only remaining case is { = g = 3. We again check n < 10 by hand. The generating
function for 9-cores is given as above by

¥3(q*)s(q). (3.3)

As observed by Ono in [12], ¥3(¢%)? is a weight 3 Eisenstein series on I'g(3) with Dirichlet
character e(n) = (%), so it can be expanded as

Y3(g*)® =Y oac(n)g® Y,

n>1

o2.(n) = Za <%> D2

Din

where

It is easy to check that o3 .(n) > 0 for every n. Therefore, as above, subtracting 13(q)
from (3.3) gives

Y 02(n)g? Y | 4s(g).

n>2

Hence, the result follows analogously to the other cases for n > 10, since there is a 3-core
partition of 0,1,2,4,5,6,8,9, and 10. O
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