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1 Introduction

A partition of n € N is a finite sequence of positive integers aq, ..., a; such
that a; > a9 > --- > q; and Zle a; = n. We will call such a partition
standard. 'This definition can be extended to include partitions with parts
of size zero, by allowing a; to be zero. We define p(n) to be the number
of partitions of n. There are many counting problems which use p(n). For
instance, if we have n computers, and we want to count the number of ways
to assign n identical tasks to these computers, allowing multiple tasks to run
on the same computer, then this is simply p(n). The rate at which p (n) grows
with respect to n is surprising. The following asymptotic, due to Hardy and
Ramanujan [6], is well known.
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For more information involving partition theory, see [1].

The Ferrers-Young Diagram of the partition aq, ..., a; is a pictorial rep-
resentation of a partition consisting of k rows of nodes with a; nodes in the
i" row. For instance, consider partition P with n = 10, a; = 5, as = 3, and
az = 2, we get the following Ferrers-Young Diagram:
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We will reference a node v with the ordered pair of (row,, column,), indicat-
ing v’s position in the diagram. We also define the Ferrers-Young Diagram



for a partition with parts of size zero in the natural way (i.e. we will allow
the Ferrers-Young diagram to have some empty rows).

In the Ferrers-Young Diagram, the number of nodes directly to the right
of a node plus the number of nodes directly below the node plus one for the
node itself forms the node’s hook number. Partition P from the previous
example has the following hook numbers:
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We define the hook number for nodes in the Ferrers-Young Diagrams
of partitions with parts of size zero in the same manner, except that when
calculating the first column’s nodes’ hook numbers, we shall replace “the
number of nodes directly below the node” with “the number of rows below
the node.” If we add an empty row to our partition P, then we would have
the following hook numbers:
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The rem hook of a node v is the set of nodes on the right-hand boundary
of the Ferrers-Young diagram connecting the node at the right end of v’s row
to the node at the bottom of v’s column. For instance, the rim hook for (2,1)
in P’s diagram is {(3, 1), (3,2), (2,2),(2,3)}. The size of the rim hook set of
a node is identical to the hook number of that node. The nodes in the rim
hook for (2,1) are marked below by an X, and (2,1) is marked with a o.
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For a set A with 0 € A, we will define A* to be the set A\ {0}. For some
t € N* and a partition p, we call p a t-core if its Ferrers-Young Diagram has
no hook numbers which are a multiple of . Counting the number of ¢-core
partitions of n is useful in approximating p(n)[4].
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The topic of this thesis is the study of the existence and structure of
partitions that are simultaneously s and ¢ cores, for some s,t € N*, which
we shall denote as s/t-cores. This question was first addressed by Jackie
Kohles, who considered s/t-cores for s and t relatively prime[9].

The Ferrers-Young Diagram of any 2-core must be triangular, since the
length must differ by exactly 1 from each row to the next. Therefore, there
is a 2-core partition of £ if and only if £ is a triangular number, a number of
the form @ = Z;le. Furthermore, this 2-core partition of k is unique.
While it is known that dn € N* such that no 3-core of n exists, there is no
known classification of which n have this property. Ono recently showed that
for every n € N*| t-core partitions of n exist for every ¢ > 4[5]. For ¢ prime,
this result was of independent interest in the Representation Theory of S,,; in
particular, it turns out that a ¢-core partition of n gives us an object known
as a defect zero t Brauer block[8]. In section 3, we shall define and explore
this relationship between the representation theory of S, and the theory of
partitions.

Our investigation of this subject hinges on another visual representation
of a partition, called an abacus. Given t € N*, a t-abacus has t columns
numbered from 0 to ¢t — 1, and any number of rows starting with row 0.
Some of the positions of this abacus are occupied by beads. Moving beads
up and down in a column will play an important role in this representation,
so we will consider an abacus with beads on strings that form the columns.
A mapping from the natural numbers to positions on the abacus is defined as
follows: the number kt+j, 0 < j < t—1, corresponds to position (k, j) in the
abacus. We shall henceforth refer to the number corresponding to a position
in the abacus as the position’s structure number. We will use the notation
St, to denote the set of structure numbers of the positions occupied by beads
in the t-abacus representation of the partition p. If we are given a partition
p, the t-abacus representation of p is the t-abacus with structure numbers
equal to the first column hook numbers of the Ferrers-Young Diagram of p.
Thus, St, equals the set of first column hook numbers. If we do not allow
the structure number 0, then there is an isomorphism between partitions
and t-abacus representations. The 3-abacus representation of our partition



P would be as follows:
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If we include the structure number 0, then we have an isomorphism be-
tween the set of all t-abacus representations and the Ferrers-Young Diagrams
of partitions with parts of size zero. However, if we remove all of the empty
rows in the Ferrer-Young Diagram with zero part sizes, then we get a stan-
dard Ferrers-Young Diagram. The action on an abacus corresponding to
removing one of these rows is called a rotation. In a rotation, each structure
number is reduced by one, and the bead in the (0,0) position is removed.

The relationship between ¢-cores and t-abacus representations will be use-
ful in our investigation of t-cores. Therefore, we will use the following lemma
from [8,3, and 11].

Lemma 1. A partition is a t-core if and only if Vi,j7 € N, a bead in the
(1 + 1,7) position of the t-abacus implies that there is a bead in the (i, j)
position, and there is no bead in the (0,0) position.

Observing that the above abacus does not fulfill the necessary properties
from this lemma gives us that P is not a 3-core.

Using an abacus argument, Jackie Kohles investigated s/t-cores with s
and ¢ relatively prime. In [9], she reached the following result:

Theorem 1. (Kohles) When s € N and t € N are relatively prime, there are

()
ezactly ~=7 s/t-cores.

We now state the central results of this thesis. We begin by considering
s/t-cores for s and t not relatively prime. A partition is a ged(s,t)-core if
and only if it has no hook numbers which are a multiple of ged(s,t). But in
this case, it must not have any hook numbers which are a multiple of s or
t. Therefore, it is an s/t-core. So it is only interesting to consider partitions
which are s/t-cores and not gcd(s,t)-cores. Although there are only finitely
many s/t-cores when ged(s,t) = 1, we will show that

Theorem 2. For distinct s € N* and t € N* such that ged(s,t) > 1 there
are infinitely many s/t-cores which are not ged(s,t)-cores.
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We define s’ := m and t' := m so that we may easily reference
these values henceforth in the paper. Furthermore, we determine a complete
gcd(s, t)-abacus description of these partitions given a similar (as of yet un-
determined) representation of s'/t'-cores, based on the following definition:
We say that the partition p is placed in the i column of the k-abacus of
q if the row numbers of the beads in the i** column of the k-abacus of ¢
are identical to the structure numbers of p. For instance, the partition with
structure numbers 2,4, and 6 (i.e. the partition (4, 3,2)) is placed in the 1%

column of the following 3-abacus, marked here with o’s:
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Theorem 3. A partition p with no parts of size zero is an s/t-core with
ged(s,t) > 1 if and only if the partition placed in each column of the ged(s, t)-
abacus of p is an s'[t'-core partition, possibly with part sizes of zero. The
partition placed in the 0™ column, however, cannot have parts of size zero.

Our investigation of s/t-core partitions goes further than the above result,
however. We add additional interesting properties to s/t-cores and giving a
description of these partitions. One such property involves transposing the
Ferrers-Young Diagram of a partition p about the diagonal, so that the first
column becomes the first row and the first row becomes the first column.
We call this new partition the conjugate of partition p. The following is the
Ferrers-Young Diagram of the conjugate of P.
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If the conjugate of a partition p is exactly p, then we call p self-conjugate.
One use of self-conjugate partitions is to determine the parity of the number
of partitions of n € N with a given property that is invariant with respect
to conjugation. If the number of self-conjugate partitions with property 7' is
even, then there must be an even number of partitions with property 7', and
otherwise there are an odd number of partitions with property 7', since the
other partitions are paired with their conjugates. A well known result, due
to G.H. Hardy, gives a correspondence between self-conjugate partitions and
partitions with distinct odd parts[7]. An alternate proof of this is included
in our discussion of conjugation in section 6.

Theorem 4. (Hardy) The number of self-conjugate partitions of an integer
n € N is identical to the number of partitions of n with distinct odd parts[7].

As discussed earlier, we are interested in adding the property of self-
conjugacy to our s/t-cores. We find the following description of s/t-cores
that have the additional contstraint of self-conjugacy:

Theorem 5. The ged(s,t)-abacus representation for self-conjugate simulta-
neous s/t-cores is as follows:

1) If gcd(s, t) is even, then the partitions placed in columns O, . . ., w -
1 are arbitrary s'/t'-core partition. Furthermore, the partition placed in the
(ged(s,t) — 1 — 1) column is the conjugate of the partition placed in the i
column.

2) If ged(s,t) = 2k + 1, then the partitions placed in columns 0, ... k —
1 are arbitrary s'/t'-cores, the partition placed in the k™ column is a self
conjugate s'/t'-core, and the partition placed in the (2k — i)™ column is the

conjugate of the partition placed in the i column.

Given a partition p, we define the t-core of p to be the partition ascer-
tained by successively removing rim hooks having length divisible by ¢ until
no node has a hook number which is a multiple of ¢. Thus, p is a t-core if
and only if the t-core of p equals p. It is easy to verify that the 3-core of P
is the depicted by the Ferrers-Young Diagram on the right:
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It turns out that the k-core of a partition can easily be determined using
the abacus representation. Removing a rim hook of a node that has a hook
number which is a multiple of £ in the Ferrers-Young diagram is equivalent
to raising a bead in the k-abacus representation by one row[8]. It is easy to
see that raising a bead by one row will change the overall partition size by
k, the same size as the rim hook. To find the k-core, we begin by pushing all
beads to the top. However, this may leave a bead in the (0,0) position. Thus,
we then perform rotations until we have a standard partition. If the k-core of
p is the empty partition, then we say that the partition has empty k-core. If
the i column of the k-abacus of a partition has b; beads, then this property
is identical to having by < by < ...bx_; < by — 1, since pushing these beads
up will give an empty partition. We call a partition which is an er-core with
empty r-core an (e, r)-core. For example, the partition 1,2, 3,3,3,3,3,8,9,10
of 45 is a (2,5)-core. An investigation of the 10-abacus shows that it is a
10-core.
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Inspecting the 5-abacus representation of this partition reveals that it indeed
has empty 5-core.
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A thorough investigation of (e, r)-cores can be found in [13]. In this thesis,
we are intested in characterizing partitions that are simultaneously (e, r) and
(€', r)-cores, which we shall denote (e, )/ (€', r)-cores. It is worth noting that
these are merely er/e'r-cores with empty r-core. We find that the classifica-
tion of (e,r)/(€’, r)-cores is similar to the description given for er/e'r-cores.
Thus, the structure of (e, r)/(€,r)-cores follows from theorem 3.

Corollary 1. A partition p with no parts of size zero is an (e, r)/(€',r)-core
with e, e, r € N, r > 1 if and only if the partition placed in each column of
the r-abacus of p is an e/€'-core partition, possibly with parts of size zero, and
if we consider b; to be the number of beads in the i column of the r-abacus,
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then by < by < --- < b,y < by — 1. The partition placed in the 0% column,
however, cannot have parts of size zero.

The result given by corollary 1 gives us an interesting result about the
number of (e, r)/(€’,r)-cores with respect to e/e’-cores.
Corollary 2. A bijection exists between (e,r)/(€',r)-cores and e/e'-cores.

e+e
Additionally, if ged(e,e') = 1, then there are (eje,) (e,r)/(€',r)-cores.

The generating function of a sequence ay, as, . .. is denoted by > 7 a;q".
When speaking about generation functions for partitions of with a particular
property, we will say that the generating function for partitions of property
Zis Y anq”, where a, is the number of partitions of n with property Z.
For instance, when a, is the number of ¢-core partitions of n, a well known
result by Garvan, Kim and Stanton [4] is that the generating function for

t-cores is . o o
o) ==Y ang" =] %-
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We determine the generating functions for the properties discussed in this
thesis. Due to the independence of the columns in the descriptions for the
s/t-cores, our results about generating functions are centered around a lemma
giving us the generating functions of partitions which have a given structure
on each of their columns, but no dependence between the columns, which is
proven in section 5. Consider the sets of partitions without parts of size zero
Ty, T, ..., Tr_1. We are interested in finding the generating function for the
set, of partitions 7" such that for every partition in 7" the partition placed in
the i"" column is a partition from the set T}, except that the partition placed
in every column but the 0" column may have additional parts of size zero,
and T contains all of partitions with this property. We can think of T" as
a sort of direct product of Ty, Ti,...,Ty_1, due to the independence of the
columns. Let 0;(¢) be the generating function for partitions in 7;.

Lemma 2. If §,(q) is the generating function for partitions in T;, then the
generating function for T is

TTs ) TT (="
(leéi(q )>Hﬁ
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Additionally, it should be noted that if each column has the same gener-
ating function (q), this becomes

ey [T

n=1

We determine the generating functions for the properties discussed in
this thesis. Our generating functions are based on an unknown generating
function for m/n-cores when m and n are relatively prime. We will use the
symbol 1, »(¢) to represent the generating function for m/n-cores. However,
Vm.n(q) is simply a polynomial when m and n are relatively prime, since there
are only finitely many m/n-cores.

Theorem 6. The generating function for s/t-core partitions is

ged(s,t)
¢s,t(Q) - (zps’,t’(ngd(s,t)))

We also determine the generating function for simultaneous (e, r)/(e, r')-
cores. It is interesting to note that this is identical to the generating function
for er/e'r-cores without the multiplication by ¢,(¢). This seems to make
sense due to the fact that we have “removed” the r-core part of this partition.

" Pged(s,t) (q) .

Theorem 7. The generating function for (e,r)/(€',r)-cores is

(we,e’ (qr ) )7‘

Adding self-conjugacy to our partitions gives a slightly more complicated
generating function. For the remaining generating functions we will use v(q)
to denote the generating function for self-conjugate k-cores and (,,(q) to
represent the generating function for self-conjugate m/n-cores.

Adding the property of self-conjugacy to our s/t-cores gives the following
generating function:

Theorem 8. If gcd(s,t) = 2k + 1 for some k € N, then the generating
function for self-conjugate s/t-cores is

cals k cals
Cot(@) = Vged(s.) () (Vor (9 “H))" G (q7°75).
If gcd(s,t) = 2k for some k € N, then

Cs,t(q) - ngcd(s,t) (Q) (¢s’,t’(q2ng(s’t)))k.



The generating function for self-conjugate (e, r)/(e’, r)-cores is related to
Cererr(¢) in a very similar manner to the way that the generating function
for (e,r)/(e',r)-cores is related to er/e'r-cores , except that this time we are
dividing by 7,(q), instead of ©,(q).

Theorem 9. Ifr =2k +1 for some k € N, then the generating function for
self-congugate (e,r)/ (€, r)-cores is

(we,e’ (qZT))k Ce,e’ (qr)

If r = 2k for some k € N, then the generating function for (e,r)/(e',r)-
cores 8

(e (¢*)"

Although we were unable to determine the generating function for m/n-
cores when m and n are relatively prime, we were interested in investigation
the m/n-core with the largest number of rows in its Ferrers-Young Diagram.
We refer to these as mazimum m/n-cores. We show the following results
about these partitions.

Theorem 10. The partition P consisting exactly of the structure numbers
which are not nonnegative linear combinations of m and n is an m/n-core.
In addition, its Ferrers- Young Diagram has the most possible number of rows.

Theorem 11. Mazimum m/n-cores are self-conjugate.

Theorem 12. For m,n € N, m and n relatively prime, Mazimum m/n-
cores partition the number

(m?* = 1)(n* —1)
24 '

It is left as an open problem that this is the largest number that an m/n-
core can partition. If this is the case, this result gives a stopping point for the
calculation of these generating functions. Additionally, this result will give
us an interesting connection to representation theory which we will discuss
in section 3.

The remainder of the thesis is organized in the following manner. In sec-
tion 2, we will investigate interesting results from Partition Theory that will
be of use in our characterization of s/t-cores. Our interest in section 3 will
be to explore the relationship between ¢-cores and Representation Theory.
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The first new results are given in section 4. Here we prove theorems 3 and
2, giving a characterization of s/t-cores, concluding that there are infinitely
many s/t-cores which are not ged(s,t)-cores when s and ¢ are not relatively
prime. We also characterize (e, r)/(¢’, r)-cores, proving corollary 1. In section
5, we investigate these characterizations further by determining the generat-
ing functions for s/t-cores and (e, r)/(€’, r)-cores, proving theorems 6 and 7
and corollary 2. We also prove theorem 15, the extension of Ono’s theorem
(Theorem 14). This result shows the existence of an s/t-core, that is not a
ged(s, t)-core, of every n > ged(s,t) for s and ¢ not relatively prime. To at-
tain these results, we first prove lemma 2. To show the power of this lemma
we proceed to give nice proofs of well known results as corollaries. We then
explore conjugation of a partition in section 6. After determining the abacus
structure of the conjugate of a partition, we determine a sufficient and nec-
essary condition for self-conjugation based on the abacus representation. We
give here a proof of theorem 4. We then characterize self-conjugate s/t-cores
and (e, r)/ (€, r)-cores in section 7, proving theorem 5. In section 8, we deter-
mine the generating functions for self-conjugate s/t-cores, proving theorem 8.
We also prove the generating function for self-conjugate (e, r)/(e’,r) — cores
given in theorem 9 in section 8. Finally, in section 9, we determine the prop-
erties of maximum s/t-cores with s and ¢ relatively prime. We characterize
these partitions in theorem 10, show that they are all self-conjugate in theo-
rem 11, and end with a proof of the size of the maximum s/t-cores given in
theorem 12. This result forms a nice connection to Representation Theory,
which we will discuss in section 3.

2 A Useful Result from Partition Theory

Many of our arguments involve the abacus representation of a partition, so
we find it useful to state here a theorem which will allow us to determine
the size of a partition based on its abacus representation. A simple proof of
the results can be realized by imagining adding one bead to the abacus at a
time, and checking the change in size of the overall partition based on that
bead being added. Let a partition A be given. Consider the k-abacus of this
partition. James and Kerber in [8] obtain a natural correspondence between
the partition A and a (k + 1)-tuple of partitions

(A(k)a AO, Ala ) Ak—l)
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such that Ay is the k-core of A and each A; is the partition placed in the
i" column of the k-abacus of A. We will use the notation |A] to denote the
size of the number that is partitioned by A, A to denote the conjugate of
A, and HK(A) to denote the set of hook numbers of A.

This correspondence has the properties that

k—1
(1) [A] = Al + D KIAY
1=0

(2) If n € Hk(Aw)), then k{n

(3) Hk(A) = (Uk-Hk(Ai) —H’) U Hk(A ).

Furthermore, under this correspondence A° corresponds with the (k+1)-
tuple
(Aflc)? Az—la Az—% S Ag)

Thus we are placing the conjugate of A; in the (k — 1 — 7)™ column, and the
k-core is the conjugate of our previous k-core.

3 Representation Theory

Here we investigate the relationship between partition theory and the Rep-
resentation Theory of the Symmetric Group. An ordinary representation of
Sy is a homomorphism ¢ from S, to Gl,,(C) where Gl,,(C) is the group
of all invertible m x m matrices with complex coefficients. We call m the
dimension of the representation ¢.

Of course, the elements of Gl,,(C) can be viewed as linear transformations
on C™. We call a representation ¢ irreducible if there is no subspace C' C C™
such that Vg € S, ¢(¢9)”(C) C C, where the notation f~(X) means the
image of f over the set X. For example, if f is the function f(x) := 22 and
we have the set X := {3,5,13}, then f>(X) = {9,25,169}. The direct sum
of the representations ¢y, @1, ..., ¢k, @;_, i is the representation such that
(B, vi)(g9) == D, (¢i(g)) where the direct sum for matrices is defined in
the following way: If we have the matrices X : V — V and YV : W — W,
then X @Y is a matrix acting on 2-tuples of elements in V' and W, such that
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forveVandwe W, (X®Y)(v,w) = (X(v),Y(w)). Thus, the matrix
X @Y is the block matrix
X 0
(0 7)

A represention is completely reducible if it can be written as a direct sum
of irreducible representations. This means that under a change of basis for
the matrices given by the representation is possible to write all of the matrices
as a direct sum where for every matrix it is in the above form with the non-
zero blocks forming an irreducible representation. We call these summands
constituents of the representation.

Theorem. (Maschke’s Theorem) Every representation of a finite group hav-
ing positive dimension is completely reducible.

Modules play an important role in representation theory. A G-module,
where GG is a group with the identity element e, is a vector space V' along
with a group action for g € G, v €V, gv: G x V — V such that for all
g,hedG, ¢,deC and v,w e V:

ev=v, (gh)v=g(hv), and g(ev + dw) = ¢(gv) + d(gv)

W is a submodule of V if for every w € W gw € W. V is an irreducible
module if it has no non-trivial submodules. Consider, for a representation ¢
of G, gv = ¢(g)v, where on the right hand side the operation is the normal
multiplication. Since ¢ is a homomorphism, we find that ¢ fulfills all of the
requirements for the group action on V[2]. Therefore V" along with ¢ can be
viewed as a G-module.

Two important examples of representations of S, are the reqular repre-
sentation and the defining representation. The defining representation acting
on g € S, returns an n X n matrix with coefficients of 0 and 1, having a 1 in
the (7, j) position if and only if g(i) = j. We call ¢(g) the permutation matriz
of g. Consider an enumeration of the elements of S, as ¢1,92,...,gn. If X
is the matrix obtained by the regular representation operating on g, then X
is an n! x n! matrix with 0 and 1 coefficients, where X;; = 1 if and only
if gg; = g;. We will use Rg, to represent the regular representation of S,,.
This representation will help us later to determine the number of irreducible
representations of S,,.

We will now proceed to given an overview of the rest of the section. Our
goal is to establish a bijection between the partitions of n and the irreducible
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representations of S,,. We determine the existence of this bijection first, and
then give a natural correspondence. The connection between the Represen-
tation Theory of S, and partition theory is based on the cycle structure
of permutations. We will therefore investigate the set of conjugacy classes,
which are determined by the cycle structure. We will manipulate this set to
find a basis for the set of x € CS,, such that x commutes with every other
element in CS,,, where CS,, = {Z:il ¢igi ¢ € Cg; € S, }. Along the way,
we will develop the theory of characters, which will allow us to check if a
representation is irreducible, and to break it into its irreducible constituents.
A representation of S, which contains every irreducible as a constituent is
found, and it is determined that this representation indeed has p(n) irre-
ducibles. A nice correspondence is then determined between the irreducible
representations and the partitions.

Consider the conjugacy classes of S,,. The conjugacy class of a permu-
tation p is the set of all permutations of the form 7wpm—!. Let 7,1 € S, be
given. If ¢ (i) = iy, then

mprH(w(iy)) = m(1h(ir)) = w(ia).

Therefore, for every cycle in 1, there is a corresponding cycle in wir—*
of the same length. Moreover, if ¢» and p have the same cyle structure,
then a permutation 7 can be constructed such that p = mi7=!. Thus,
the cycle structure completely defines the conjugacy classes. However, the
cycle structure is merely a partition of the number n. This gives a nice
correspondence between the conjugacy classes and partitions of n.

Since every representation can be broken into a direct sum of irreducible
representations, then, under a certain basis, the corresponding matrix can
be separated into a block matrix with each block along the diagonal being
an irreducible representation, and all other blocks being zero. For example,
if we have the direct sum X® @ X® where X® is irreducible, then under
a certain basis, we would have the following matrix.

XM o
0o X®@
Moreover, since we can order the bases in any order for the matrix, we can

write every representation in the form @7_, m; X®, where X is irreducible,
and mX = @, X.
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If we have an action gv of a group GG on a vector space V', and a corre-
sponding action gw on a vector space W, then we call the linear transfor-
mation ® : V' — W a G-homomorphism if ®(gv) = g®(v). If these vector
spaces are modules, then consider the basis B for V and C' for W. Choose
X(g) and Y'(g), the matrices of the representations corresponding to V" and
W with respect to these bases. We can write the matrix of ® on these bases
as T such that TX(g) = Y(g)T. It is clear that ® is an isomorphism if and
only if there is such a 1" which is invertible.

It is known that ker(®) is a subspace of the vector space V. Moreover, if
we have v € ker(®), then Vg € G ®(gv) = gP(v) = g0 =0, so gv € ker(®P).
Therefore, ker(®) is a submodule of V, since it is closed under the action of G
on V. A similar argument can be used to show that im(®) is a submodule of
W. Since these are submodules, we know that if the modules are irreducible,
then both of these submodules must either be the entire space or the trivial
subspace {0}. This leads to the following result, due to Shur[12].

Theorem. (Shur’s Lemma): If V and W are irreducible modules and @ :
V — W is a G-homomorphism, then either

1. @ is an isomorphism, or

2. @ is the zero map.

For a representation X, a useful object in algebra is the Commutant
algebra
Com X :={T:TX(g) = X(g9)T Vg € G},

The corresponding result to Shur’s Lemma for matrices gives us a Ty which
is either invertible or the zero matrix. Consider an irreducible representation
X(g). Let T be given such that TX (g) = X(g)T Vg € G. Then

(T—eX =TX —cX =XT —cX = XT — X(cI) = X(T — ¢l).

Therefore T'—cl must be invertible or the zero matrix for all ¢ € C. Therefore,
if ¢ is an eigenvalue of the matrix 7', then (7" — ¢I) is not invertible, so it
must be the case that T' = ¢l for some ¢ € C.

We also define the Endomorphism algebra:

EndV :={p:V =V :¢isaG— homomorphism}.

We have already discussed the isomorphism between these two sets. We
wish to use the commutant algebra to determine the number of distinct
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irreducibles which are contained in a representation. We would like to know
what the commutant algebra looks like for different representations. Since we
know that we can write a representation as @le m; X @, with X® irreducible
and X #£ X®@ consider a representation X = X1 @ X® . Then, if we
have T' € Com X,

Thus,

TX = T(lvl)X(l) T(172)X(2) — X(I)T(lvl) X(I)T(LZ) — XT
T X TopX® ’ XOT,

N

This gives us the set of equations

— — o —

Thus, since X ) is irreducible, and XV # X®) we know that T(; 1) = c1 1y,
for some ¢; € C, T(19) = T(2,1) = 0, and T{p2) = c214, for some ¢, € C, where
d; = dim(X®). So T = ¢,1, @ ¢4, This can be shown more generally. For
X = @le X0 7= @le ¢il4,. In the case where we have m copies of the
same irreducible X then the matrix 7" fulfills the the equation

Tip XV = XWOT, 5 Vi, je{1,2}

Thus, in this case, we get for some choice of ¢; j

T — ( canlay, ca2la )
cenla, ce2la

T can be defined using an operation on two matrices X and Y, called the
tensor product of X and Y, where

X®Y = X(2,1)Y X(2,2)
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So T can be written as C ® I;,. In general, for a representation X =
Zle m; X®, we have that Com X = {@le(Ymi ®1g) @ Y € M,,
where M, is the set of all m; X m; matrices.

The center of aring S, Zg := {x € S : xy = yx Yy € S}. For example,
consider C,,;, € ZMmi, where M,,, is the set of all m; x m; matrices. But if we
then consider the matrices which give the i row with right multiplication,
and i column with left multiplication (i.e. the matrix with all zeros except
a one in the (i,4) position), then it is obvious that since these matrices are
equivalent, that all entries off of the diagonal must be zero. Moreover, if we
use the matrices which swap two rows with right multiplication and columns
with left multiplication (i.e. the matrix with ones in the (i,j) and (j,1)
positions and zeros otherwise), then we will get that the value along the
diagonal is a constant. Therefore, C,,, = ¢;1,,, for some ¢; € C.

Since Zcom x will be used to form an isomorphism to conjugacy classes,
we would like to classify Zcom x. Let C' € Zoom x, T € Com X be given.
Choose Chy,, Yy, such that C' = @' (Cpn, @ Iy,) and T = @F_, (Y, ® I,).
Using the definitions of @ and ®, it can easily be shown that (A®B)(C®D) =
AC@®BD and (A®B)(C®D) = AC®BD for all square matrices A, B, C, D
such that dim(A) = dim(C) and dim(B) = dim(D). Using these result, it
is easy to show that, since C' € Zcom x,

k k
PV Cr, @ Is,) =TC = CT = @P(Crn, Vo, @ 1))

However, this can only occur when Cy,,, Yy, = Y5, Cr; VY5, € My, But then
Cm; € Zm,,,, and we already know that all members of this set are merely a
constant times the identity. So C' = @le Cilp, @14, Thus dim(Zeem x) =k,
since we can choose any values for the ¢;’s. Remembering that there is an
isomorphism from Com X to End V gives us that dim(Zgnqe v) = k.

A useful tool for determining distinctions between representations is the
character of the representation. The character of X (g) is the trace of the
matrix X (g), where the trace is the sum of the diagonal elements. The trace
is invariant under change of basis, so tr(XY X 1) = ¢r(Y). We may think of
the character of a representation as a vector of size |G|, where the value for
g; of the vector is the trace of X (g;).

Under the same group, two characters have the same dimension, |G|, so
we can therefore consider the normal inner product on two characters y and
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1y for representations of G,

1 -
() =1 > x(9)i(9)

gelG

Moreover, if an orthonormal basis is chosen for V', then we can choose a
matrix representation Y for the representation with character ¢ such that

Y(g ) = Y(g)™t = Y(g) , and thus ¢(g) = tr(Y(g)) = tr(Y (g 1)T) =
tr(Y(g™")) =(g™").

Theorem 13. Two irreducible representations X with character x and Y
with character ¢ are identical if and only if (x,v) = 1, and otherwise,

o)y =0 [12].

Since the trace of a direct sum is the sum of the traces, it is easy to see
that if we have the representation X := @le m; X then y = Zle mix®,
where y is the character for the representation X, and x( is the character
for X@. Moreover,

k k
(X)) = <Z miy®, X(j)> =3 s (3, XD) = m;.
=1 i=1

We are now able to show the importance of the regular representation.
Since the regular representation has only 0’s and 1’s, the character will be
the number of ones along the diagonal of the matrix, or the number of fixed
points under left multiplication. However, if gh = h for some h € S,,, then
g = ghh™' = hh™! = e, so the trace of the matrix for the the regular rep-
resentation X (g) is 0 if g # e, and it is |S,| otherwise. Indeed, since the
homomorphism must map the identity to the identity matrix, we must have
for any representation that the trace is |S,|. Consider writing the regular
representation as @le m; X@. We can assume that all of the irreducibles
are mentioned here, but that only finitely many m;’s are nonzero, since we
have a finite dimensional representation. From above, we have that the num-
ber of copies of X, m; =< x, x >= ﬁ D ges x(9)xP(g~"). However,

we have shown that x(¢g) = 0 if g # e, and x(e) = |S,|. Thus, we have
m; = ‘S—tl'|5n|x(i)(e) = dim(X@). Therefore, we have that every irreducible
is included in the regular representation and the number of times each irre-
ducible occurs is identical to its dimension.
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It is now sufficient to show that k& = p(n), to get the isomorphism that
we desire. Consider the module C(S, ), the module with elements in S,
and constants from C. It is all of the the sums of the form Z;io cigi. It
has already been determined that dim(Zgnq c(s,)) = dim(Zcom x) = k.
Consider 0, € End C(S,), 0,(w) := wv. Then an isomorphism between
EndC(S, ) and C(S,) exists. Consider the mapping 6(v) := 6,. However,
ker(0) = {v € C(S,) : 0(v) =0} = {v € C(S,) : O,(9) =0Vg € S,} C
{v e C(S,) : 0,(e) =0} ={v e C(S,) : 0 =ve=uv}={0}. Moreover,
let © € End C(S,,) be given. Choose v € C(S,,) such that O(e) = v. Then
O(g9) = ©(ge) = gO(e) = gv = 0,(g). So the mapping is also surjective.
Also, ©(vw) = 0y, = 0,,0,. So © forms an anti-isomorphism between C(S,,)
and End C(S,). So if we have v € Zg(,), w € C(S,), then

0,0, = O(wv) = O(vw) = 6,,0,.
S0 0y € Zpnac(s,)- Also, if we have 0, € Zpnacs,) and 0, € EndC(S,), then
O(wv) = 0,0, = 0,0, = O(vw) = wv = vw.

Thus we the centers of EndC(S,) and C(S,) are isomorphic. So k =
dim(Zgnac(s,)) = dim(Zes,)). Let z = Y1, cigi € Zgs,) be given. Let
h € S, be given. Since z € Zgs,), 25:1 ¢igi =2 =hzh ! = Ll cihgih™1.
But then, as we cycle through all of the h € S;,, we get that every element
of g;’s conjugacy class, each with coefficient equal to ¢;. Thus, if we have
m Conjugacy classes K1, ..., K,,, then we can consider z; := EgeKi g, and
rewrite z as z = Z:’;l ¢;z;. Moreover, it has been shown that these z; form
a basis for the space[12], and thus k& = m. Therefore, an isomorphism has
been determined between the number of irreducible representations and the
number of conjugacy classes of S,,, which we already determined was the
same as the number of partitions of n.

[t remains to determine the combinatorial correspondence between the
irreducibles and partitions. The argument involves ordering the partitions in
such a way that the representation for the 7** element in the ordering contains
exactly one irreducible constituent that does not occur in any of the preceding
representations. This correspondence is based on the lexicographical ordering
of partitions. In this ordering, a partition ay, ..., a, of n is greater than the
partition by, . .., b; if and only if

for some i1 € Na; >b, and a; =b;V j €N, j <.
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It is clear that this ordering is a total ordering of the partitions. We also
need to define the induced representation of a representation . If H C GG is
given, then the induced representation of 1) from H to G is determined in the
following manner: if e = g1, ..., gja/u = g||o| are each a representative from

g
distinct (left) cosets of H in G, then the induced representation, as given in

[2] is:

Yletge)  plergge) oo Y(eggia/m)
G1G (g) = gy tge)  wlgygge) - Y93 996/m)
H T : : :
T/J(Q\E;I/mge) w(gfgl/y\g!h) T w(gﬁ/mggm/m)

where ¢(g) =0if g ¢ H
Let partition A = Ay,..., Az of n be given. Consider the following subset
of S,:

k
Sy = @ SUSIZ A )1 (Siy ) +1)
i=1

where, for a set A, S, is the set of all permutations of the elements of A. So
Sy is simply the set of permutations that permute the first A; elements in
any way, the next Ay elements in any way, independently, etc. For example,
if we had the partition A = (5, 3,2), then

Sx = Sf123.4,5 D Sge,7.81 D Sy,10}-

This is clearly a subset of Sio. It is easy to see that Si,) = S,, and Sy ~
@le Sy,- For A= (1,1,...,1), we clearly have S\ = e, the identity element.
It turns out that if we induce the identity representation from Sy to S,, then
we will be able to determine the irreducibles.

For A = (n), the partition of n with only n,X H = G, so the induced
representation of the identity representation is the identity representation.
Order the partitions in reverse lexicographic order, giving each a superscript
corresponding to its position in the ordering. Remember that each represen-
tation is a direct sum of irreducible representations. It turns out that if we
look at the induced representations [ ng for A\ in our ordering, then we will
get exactly one new irreducible representation going from A% to A(+1[12].
We will call this irreducible representation t,a+1). It turns out that if we
consider the sign representation A, where A(m) = sgn(w), then, abusing the
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N notation, where ¥ N ¢ = {z : x irreducible, < Y,z ># 0,< p,x ># 0}
(i.e. the irreducible constituents that ¢ and ¢ have in common), we have,
with A® denoting the conjugate of A, the following equality given in [8]:

YA =115 NATS,

Since we know that there are the same number of partitions as irreducible
representations, we know that we have found all of the irreducible repre-
sentations in this construction. We will now show the preceding process to
determine the irreducible representations of S;. We only need to give the
induced representation from Sy ), since 1 Tgi’m: Iand I Tg?l T Rg,. Here
we use e to represent the identity element. We consider rei)fesentatives €,
(23), and (13) of the cosets. Since these are all their own inverses, we will not
write the inverse when determining the induced representations. We will also
use 1) to represent the representation Is,,, that is 0 for everything outside

of 5(2’1).
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We will try now to determine the constituents of this representation.

c 1
Consider V := ¢c | :ceC) and W := Ca tc1,09 € C
C —C1 — Co

It is easy to check that for every g € S5, v € V, I Tg‘; ) (9)v € V and
Yw e W, I 15, (9w € W. So V and W are submodules of C*. Con-

1 -2 0
sider the (orthonormal) basis | 1 | of V, and the basis 1 |, 1
1 1 -1

of W. We know that there are corresponding representations y and ¢y
for the submodules V' and W, respectively, which are also representations
of S3. Additionally, we know that [ Tg; L= v O pow. There must also
be exactly one more irreducible in this répresentation than the number of
irreducibles in [ Tgi’g): I, since it is second in the reverse lexicographic or-
dering (3),(2,1),(1,1,1). Therefore, as it is clear that ¢y = I, since it is

a one-dimensional representation, we have that ¢y is irreducible, and it is

1
unique from /g, and Ag,. Therefore, once we do a change of basisto [ 1 |,
1
-2 0
1 , and 1 we get the following matrices for the representation
1 -1
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100
o(e) =010
0 01
10 0
p(12)) ={ 01 0
0 0 —1
1 0 0
p((13)) =10 —5 5
0 —32 1
2 2
1 0 0
p((23) =|0 —5 —3
0 =3 1
2 2
1 0 0
o((123) =0~ 1
0o —2 1
2 2
1 0 0
o((132) = [0 —4 -
0

N [w
DN [ =D =

Under this basis, It is obvious that ¢y is the identity representation. We get
the following matrices for oy .

ot =( V)

ewta2) = (%)
owti3) =( 23 1)
one) = (1 )
GE O
ontz) = (¢ 1)

Therefore, we have determined the unknown irreducible representation of
Ss of dimension 2. We now have a complete classification of the irreducible
representations of S3. This concludes our example.
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There is a change of bases such that Yg € S, the entries of the ¢(g)
matrix are all integers[8]. This allows us to consider all of the entries of ¢(g)
(modp). We call one of these representations p-modularly irreducible if it is
irreducible with respect to GI((Z,,-)), in the same way that we determined
irreducibility above. Since we know that these p-modular representations
are direct summands of p-modularly irreducible representations, we can con-
struct a graph, called the Brauer Graph, where, for irreducible representa-
tions ¢, ¢, an edge exists between ¢(modp) and t(modp) if f they have
an p-modularly irreducible constituent in common. This breaks up the irre-
ducible (in the non-modular sense) representations into equivalence classes.
Each equivalence class consists of a connected subgraph which is isolated
from the rest of the graph. These equivalence classes are called p-blocks. If a
p-block contains only one element, then the representation corresponding to
this p-block is said to have defect 0 p-block. It was found that the partitions
corresponding to these irreducible representations were exactly the p-core
partitions[8]. We have already noted that a partition theory result proved
by Ono in [5] showed

Theorem 14. Vi ¢ N*, t > 4, n > 1, 3 a t-core partition of n.

Therefore, this means that there is a defect 0 p-block representation of .S,
for every prime p > 4. This brings an interesting question about simultaneous
p/q-cores, p,q prime. It would be interesting to find out for which n €
N there exists p/g-core partitions, since this would tell us when there is a
representation with defect 0 p-block and defect 0 ¢-block. It is particularly
interesting since there are only finitely many of these.

In our investigation of this question, we found that

Theorem 15. Vk > 4, m,n € N, ged(m,n) =1, j €N, j > k, there ezists
a mk/nk-core partition of j which is not a k-core partition.

Unfortunately, since mk,nk are not prime, this result does not give us
any information in representation theory, since (Zpy,-) and (Zpg,-) do not
form groups.

An interesting result which connects the research involved in this thesis
with representation theory is listed below.

24 :

This theorem implies that, specifically when m and n are prime, the
largest k£ € N such that there is a partition of k£ that has both a defect zero

m block and a defect zero n block is when k& = %

Theorem 16. With ged(m,n) = 1, the size of mazimum m/n-cores is
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4 The General Structure of s/t-cores with ged(s,t) >
1

We begin with a mapping that determines the correspondence between posi-
tions of beads in the k-abacus for a partition P with beads in the kn-abacus
for P. We will use this mapping to determine a mapping from the ged(s, t)-
abacus of P to both the s-abacus and t-abacus of P. This will allow us to
determine the s/t-core property while investigating only the ged(s, t)-abacus.

Lemma 3. For a given partition p, the following mapping defines the cor-
respondence of bead positions in the k-abacus representation of p to bead
positions in the kn-abacus.

(an+¢,b) <> (a,ck+0),0<c<n, 0<b<k

Proof. Consider a bead in the (an + ¢,b) position of the k-abacus. The
structure number corresponding to this bead is

k(an +c¢) + b= kan + kc+ b = a(kn) + (ck + b).

Thus, the structure number corresponds to a bead in the (a, ck + b) position
of the kn-abacus. O

We now determine a ged(s, t)-abacus classification of s/t-cores based on
the structure of s'/t'-cores:

Theorem 3. A standard partition p is an s/t-core with s,t € N, ged(s,t) >
1 if and only if the partition placed in each column of the ged(s,t)-abacus
of p is an s'[t'-core partition, possibly with part sizes of zero. The partition
placed in the 0" column, however, cannot have part sizes of zero.

Proof. Consider first the restrictions on a s'/t-core partition from lemma 1.
Let a standard s'/t'-core partition p be given. Assume that n € St,. Since
the partition is an s'-core, we must also have

n—is' € St,, Vie N:n—is' >0

as each column in its s’-abacus must be filled in from the top. Since it is also
a t'-core, we thus have

n—is — jt' € St, Vi,j € N:n—is' — jt' > 0.
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Since p is a standard partition, 0 ¢ St,. It follows that
{is' + '}y N St, =10

Consider the mapping from the ged(s,t)-abacus to the s-abacus, from
lemma 3:

(as’ +¢,i) <> (a,c- ged(s,t) +1i), 0 < e < s, 0<i< ged(s,t).

An equivalent mapping is made between the ged(s,t) and the t-abacus.
Since the image under this mapping of the k™ column of the ged(s, t)-abacus
goes to the set of columns {l : | = k(mod gcd(s,t))} of the s-abacus, the
abacus mapping can be decomposed into independent column mappings.

Consider the k™ column of the ged(s,t) abacus. Let the bead in the
(as' +¢)™ row of the k™ column be filled. This maps to the a'* row,
(ged(s,t) - ¢ + k)™ column of the s-abacus. Then, the bead in the

(as' + ¢ — i)™ = ((a —i)s' + )"
row of the k%" column will map to the (a — 7)™ row, (ged(s,t) - ¢+ k)™ col-
umn of the s-abacus. Since, in the s-abacus, this bead is in the same column
as the bead mapped from the (as' + ¢)” row, k™ column of the ged(s,t)-
abacus, but has a smaller row number, and because we have an s-core, we
must have this bead filled in. The argument that the position in the k™
column, (as’ — jt' + ¢)™ row must be filled in is identical. Therefore, the
partition placed in the & column of p has the s’/t' restrictions from lemma
1, and therefore must be an s'/t'-core. Furthermore, since p cannot have zero
part sizes, the partition placed in the 0" column is cannot have zero part
sizes. This concludes the proof. O

It is easy to see from this classification that there are infinitely many s/¢-
cores which are not gcd(s,t)-cores when s and ¢ are not relatively prime.

Theorem 2. if s # t, gcd(s,t) > 1, there are infinitely many simultaneous
s/t-cores which are not ged(s,t)-cores.

Proof. Consider the partition A such that \; = 1, of 1. This partition is
trivially an s'/t'-core. Now consider the partition which has beads only in
the first column of the ged(s,t)-abacus, and A placed in the first column,
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adding any number of parts of size zero to A\. We know that the first column
must exist, since ged(s,t) > 1. This is an s/t-core by Theorem 3, and it is
not a ged(s, t)-core because the beads in the first column are not all pushed
up. U

We find a similar description for (e, r)/(€’,r)-core partitions.

Corollary 1. A standard partition p is an (e,r)/(€',r)-core with e, e',r €
N, r > 1 if and only if the partition placed in each column of the r-abacus of
p is an e/€e'-core partition, possibly with parts of size zero, and if we consider
b; to be the number of beads in the i'™ column of the r-abacus, then by < by <
v < by < by —1. The partition placed in the 0" column, however, cannot
have parts of size zero.

Proof. Tt is clear that an (e, r)/(€’, r)-core is simply an er /e'r-core with empty
r-core. Therefore, since all (e, r)/(e’,r)-cores are er/e'r-cores, they must all
have the properties listed in theorem 3. Additionally, if we take the r-core
of a partition, it is clear that this will be the empty partition if and only if
the r-abacus has bg < b; <---<b,_; < by — 1. O

5 Generating Functions based on the columns
of a k-abacus

Consider sets of standard partitions 1g, 717, ...,Tx_1. We are interested in
finding the generating function for the set of partitions 7' consisting of all
partitions p such that the partition placed in the i column of the k-abacus
of p is a partition from the set T; with some number of parts of size zero
added. We can think of T as a sort of direct product of Ty, T3, ...,T),_1, due
to the independence of the columns. Let ¢;(¢) be the generating function for
partitions in 7;.

Lemma 2. If ¢;(q) is the generating function for partitions in T;, then the
generating function for T is

o ) T L= d™)
(g%(q )) 11 e

=1
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Additionally, it should be noted that if each column has the same generating
function ¥(q), this becomes

0 kn\k

CITRI | R el
n=1 q
Proof. Let (po,...,pr_1,t) be given such that p; € T; and |p;| = \; fori =
0,...,k — 1, and ¢ is a k-core partition such that [t| = Ar. Consider the
partition P, with p; placed in the 7" column of the k-abacus. Choose the
column j of P, with the most beads. Consider the partition P, which is
identical to P; except that zero part sizes are added to the partition placed
in every column such that they all have the same number of beads as j. Since
we may add zero part sizes to each of the columns, it is clear that P, € T.
From [8], as indicated in section 2, we know that P, partitions the number

“(5)

since k-coring the partition will give us a k-core of size 0. It is important
to note that this result is independent of the column in which the p;’s are
placed. We know that since t is a k-core, we can completely determine ¢
based on the number of beads placed in each column, #;. Now consider the
partition P which is identical to the P, except that the the partition placed
in the i** column of P has an addition t; zero part sizes. It is trivial to see
that P € T. P will be a partition of size

k—1
k- (Z Ai> + k.
1=0

This mapping is obviously injective. To show surjectivity, we will reverse the
mapping in the following way: Take P € T'. Consider ¢, the k-core of P, with
t; beads in the i"® column of its k-abacus. Add zero part sizes to P until the
partition placed in each column has at least ¢; zero part sizes. This partition
is still identical to P, but now allowing zero part sizes. Now we may reverse
the mapping given above, to get the correct n + 1-tuple. Therefore, we have
an isomorphism.

Therefore, we have defined an isomorphism between (k + 1)-tuples of k
partitions of the desired structures and a k-core, to partitions in T', with the
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corresponding size being completely determined by the (k + 1)-tuple. Note
that the generating function for a k-core is [~ (lffzz)k
Stanton, and Kim in [4]. Since we may choose any combination of partitions

in our (k4 1)-tuple, we get the generating function

k—1 ) 00 (1 _qkn)k
(g%(q )) 'Hﬁ'

=1

, as given by Garvan,

O

In addition to the assumptions made for lemma 2, we will assume that
the partitions also have empty k-core.

Lemma 4. The generating function for partitions in'T’, as described in Lemma
2, with empty k-core is

k—1

[T e

i=0

Additionally, it should be noted that if each column has the same gener-
ating function (q), this becomes

(¥ (™))"

Proof. Since the r-core entry of the (k+1)-tuple used in Lemma 2 will always
be 0, the proof follows the proof of Lemma 2 without the final step of adding
an arbitrary k-core structure. O

We can use this to show that
Corollary 2. An isomorphism exists between (m, k)/(n, k)-cores and m/n-

m+n
cores. Additionally, if (m,n) =1, then there are (") (m, k)/(n, k)-cores.

m+n

Proof. We may obtain an isomorphism from the mapping taken in the proof
of Lemma 2, ignoring the k-core part. The second statement follows directly
from the results that Kohles had involving the number of m/n-cores[9].. O

To show the strength of the method proven in lemmas 2 and 4 we give
alternate proofs herein for the following well known results.
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Corollary 3. The generating function for (e, r)-cores is
(10_0[ (1 o ane)e> "
o 1 _ an
Proof. 1t can be shown using the mapping given in lemma 3 that a partition
is an (e, r)-core if and only if the partition placed every column is an e-core,

with the overall partition having empty r-core. We know that the generating
function for e-cores is
ﬁ (1 _ qne)e
n

n=1 1- q
Using lemma 4, replacing ¢ with ¢" and multiplying these identical generating
functions together gives us the desired generating function. O

Corollary 4. The generating function for km-cores is

ﬁ (1 _ qkmn>k (1 _ qkn)k B 1 — qkmn ﬁ (1 _ qkmn)km

n=1

Proof. Tt is clear that the a partition is a km-core if and only if the partition
placed in each column of the k-abacus is an m-core. Therefore, from Lemma
2, the desired generating function is attained. O

Theorem 15. Vk > 4, m,n € N, ged(m,n) =1, j € N, j > k, there ezists
a mk/nk-core partition of j which is not a k-core partition.

Proof. Consider the sets T = {(1)},T; = 0¥i € N, 0 <4 < k. We would like
to determine the generating function for the set 7" of partitions which have
a choice from Tj in the i column as described in lemma 2. It is easy to see
that the generating functions are ¢y = 1+ ¢ and ¢; = 1. Then, from lemma
2, we have that the generating function is

0 1 — qkn)k
N | i
(1+4") 11 ¢
However, if we remove all of the k-cores, then we get the generating function
(1- q (1- q e - q
(1+ —
¢") H1 ]1 — =y H
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This gives us the result that if there is a k-core partition of n € N then there
is a mk/nk-core partition of n + k which is not a k-core. Using theorem 14,
proven by Ono, we know that for every n € N*, since k > 4 there is a k-core
partition of n. Thus we know that Vn > k we have an mk/nk-core partition
that is not a k-core. Additionally, the partition with the single structure
number £, attained by not adding any k-core part to the partition forced by
the T;’s, is not a k core, but it is an mk/nk-core, and has size k. Thus we
have shown the desired result. O

We now use the developed method to prove the generating functions for
the partitions which we have investigated thus far.

Theorem 6. If pi(q) is the generating function for k-core partitions, and
Umn(q) is the generating function for simultaneous m/n-core partitions with
gced(m,n) = 1, then the generating function for simultaneous mk/nk-core
partitions is

(me,n (qk)) ¢ " Pk (q) .

Proof. Since we have shown that a partition is an mk/nk-core if and only
if the partition placed in each column is an m/n-core from theorem 3, this
follows immediately from Lemma 2. O

When m = 2 and n = 3 there is a nice structure to the generating
function, which is depicted in the following example:

Example 2. There is only one simultaneous 2/3-core partition, namely, the
single partition of 1. Therefore, the generating function for 2/3-cores is 1+ g.
Thus the generating function for 2k/3k-cores is

T = oo () TS

=1 1=0 =1

Theorem 7. ifi). . (q) is the generating function for simultaneous e/e' cores,
then the generating function for simultaneous (e, r)/(€',r) cores is

(1/)6,8’ (qr))r .

Proof. We know that a partition is an (e, r)/(e’, r)-core if and only if it is an
er [e'r-core with empty r-core. This occurs if and only if the partition placed
in each column is an e/e’-core and the overall partition has empty r-core.
Therefore, this follows immediately from Lemma 4. O
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6 Conjugation
Let a partition A be given. Let n be the largest structure number for A.

Theorem 17. The partition A°, the conjugate of A, is determined in the
following manner. Pair structure numbers as follows:

(,0),(n — 1,1),...,(n—i,i),, (n — LgJ,LgJ).

Thenn —i € Sty iffi¢ Stye VieN:i<n

Proof. Consider the Ferrers-Young Diagram of A. Let m be the number of
nodes in the (i + 1)% column and £ be the difference between the number of
nodes in the i and (i + 1)*" columns. Then the difference between the i*"
and (i 4+ 1)* largest structure numbers of A° will be k + 1. These columns
will differ by & iff the {m +1,m + 2,...,m + k} rows are all of length i,
the m'™ row has more than i nodes, and the (m+ &+ 1) row has less than i
nodes. The structure numbers corresponding to these rows in A will differ by
1. It is trivial to show that the largest structure number of A will also be the
largest structure number of A¢. Therefore, starting at the first column of the
Ferrers-Young Diagram, corresponding to the structure number n, we may
choose k such that n — k£ — 1 is the next structure number of A¢, and A has
structure numbers {1,2,...,k}, corresponding to equal part sizes of 1 in the
Ferrers-Young Diagram. Additionally, since the (k + 1) row does not have
the same part size, A will not have the structure number £ + 1. Thus, if we
continue this process for all of the columns of the Ferrers-Young Diagram,
we find that n — ¢ € Stpe iff A does not have a structure number <. O

It can easily be observed that taking this operation modulo an integer
will result in an operation which will only depend on the columns. Thus, we
got the following result involving conjugating t-cores

Corollary 5. If we have a t-core with t-abacus column lengths
(0, 01,02, . Ck, e Ct—l) R

where Cy > C;, Vi € N, i <t and k > iVi : C, = C;, then the lengths of A°

are

(0,C,=Cro1,Cr—Cla, ..., Cr—C1,Ck, Cpy—Cy—1—1,C,—Ci_o—1, ..., Cr—Cl11—1)
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Proof. Theorem 17 gives the process which, taken modulo ¢, will give us this
result. O

Furthermore, we determine the properties necessary and condition for
self-conjugacy of a partition.

Corollary 6. A is self-conjugate iff for every pair of structure numbers
(n—1i,4), A contains exactly one of the structure numbers.

Proof. Since the conjugate partition A¢ has the structure number ¢ iff A does
not have the structure number n — 7, this follows directly from Theorem
17. ]

Fix 0 < k < t, k = n(modt) so that the k™ column of the normalized
t-abacus will serve as our “pivot” column for the conjugation operation.

Corollary 7. A t-core partition is self conjugate iff for every pair of columns
of the t-abacus (i, k —1i) such that 0 <i < LgJ, Ci+Cyr_; = Cy. Additionally,
for every pair of columns of the t-abacus (k+i,t—1—1), Cy;4+Cy_1_; = Cr—1.

Proof. This follows directly from Corollary 5. O

The above characterization of self-conjugate partitions in corollary 7 leads
itself to a nice alternate proof of the generating function for all self conjugate
partitions.

Theorem 4. The generating function for all self conjugate partitions is iden-
tical to the generating function for partitioning n with distinct odd integers,
namely

Proof. Let a self conjugate partition A be given. Choose the largest structure
number 2k+1 of A. Based on Theorem 17, Vi € {0, ..., k}, A has exactly one
of the structure numbers (i,2k + 1 — ). Consider generating the partition A
by entering structure numbers one at a time, starting with 2k + 1, then 1 or
2k+1—1, then 2 or 2k+1—2, etc. When a structure number is added, it adds
a part size of its structure number minus the number of structure numbers
less than itself. It also takes away 1 from the part sizes of all structure
numbers greater than itself. Therefore, it adds its structure number minus
the number of structure numbers currently in the partition to the overall
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partition size. Since there are ¢ structure numbers in the partition when
we choose to add either the structure number ¢ or 2k + 1 — 7, we either add
i—i=0or2k+1—i—i=2(k—1i)+1 to the overall partition size. Therefore,
since we are adding only distinct odd integers, we have exactly the number
of ways to partition n with distinct odd integers. This gives us the desired
generating function [[07 (1 + ¢*"). O

7 General Structure Theorem for Self-Conjugate
s/t-cores With ged(s,t) > 1

Theorem 5. The general structure for self-conjugate simultaneous s/t-cores
15 as follows:

1) If ged(s,t) is even, place ngés’t) simultaneous s'/t'-cores in columns
0,..., W—l. Next, place the conjugate of eachi™ column in the (ged(s,t)—

i)' column. Fill in a ged(s,t)-core part at the top of each column.

2) If gcd(s,t) = 2k + 1, place k simultaneous s'/t'-cores in columns
0,...,k —1. Next, place a self-conjugate s'/t'-core partition in the k™ col-
umn. Place the conjugate partitions of each i column in the (ged(s,t) —1i)™
column. Finally, add a ged(s,t)-core structure at the top of each column.

Proof. Due to the isomorphism from a partition to the partitions in the
columns of its k-abacus, determined by James and Kerber, and the isomor-
phism between a (k + 1)-tuple representing this partition, and its conjugate,
we get the following isomorphism between a (k + 1)-tuple for a partition and
its conjugate:

(Pk> PO D1, - - -5 Pr=1) > (P PRty - - -5 DG)

Let a self-conjugate, simultaneous s/t-core partition A corresponding
to (p(gcd(s,t))apﬂapla - '7pgcd(s,t)71)7 with P(ged(s,t)) ng(S,t)—COI'e be given'
We know from the general structure of simultaneous s/t-cores that each
piy i < gcd(s,t), must be a simultaneous s'/t'-core. Since the conjugate
of A corresponds to (p§,p5_y,...,p§), and A is self-conjugate, we must have
pi = pS | ; Vi < ged(s,t). In the case where ged(s,t) is odd, then the k'
column is paired with itself, and thus it must be self-conjugate. This proves
the theorem. ]
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8 Generating Function for Self-Conjugate s/t-
cores With ged(s,t) > 1

Let the generating function v(q) of self-conjugate ged(s,t)-cores be given.
Let the generating function ¢y y(q) of simultaneous s'/t'-cores be given. Let
the generating function (y (q) of self-conjugate simultaneous s'/t'-cores be
given.

Theorem 8. If gcd(s,t) = 2k + 1 for some k € N, then the generating
function for self-conjugate s/t-cores is

cals k cd(s
(@) (s (a7"))" (o (770 0),
If ged(s,t) = 2k for some k € N, then the generating function for self-

conjugate s/t-cores is
v(q) (¢s,,t,(q2gcd(s,t)))k‘

Proof. Suppose gcd(s,t) = 2k for some k € N. Let simultaneous s'/t'-core
partitions py,...,pr_1 of sizes Ag,...,A\r_1 be given. Let a self-conjugate
ged(s, t)-core partition pg) of size A, be given. In a similar manner to the
proof of Lemma 2, place the beads corresponding to p;, i < k into the **
column of the gcd(s, t)-abacus. Place beads corresponding to pf, i < k, into
the (2k — i)™ column. Then fill in from the top until all columns have the
same number of beads. Next, add beads to each column until the partition
Pk can be obtained by gcd(s,t)-coring. This corresponds to the (2% + 1)-
tuple
(P(k)> PO> P15 - s Ph—15 P15+ - - D)

From [9], the size for this partition is

k—1

(Z ged(s,t) « 20;) + Ak

1=0

The number of choices for positions of the A;’s are the multinomial coef-
ficients. Therefore, we obtain the generating function

v(q) (s 0 (g1 D))E,

Suppose ged(s,t) = 2k + 1 for some k € N. The proof follows Theorem 5
by a similar argument. O
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The generating function for self-conjugate (e,r)/(€’,r)-cores is related
to the generating function for self-conjugate er/e'r-cores in a similar man-
ner to the relationship found earlier for these partitions without the added
self-conjugacy constraint. Let 1), . (¢) be the generating function for simul-
taneous e/e’-cores. Let (.. (¢) be the generating function for self-conjugate
simultaneous e/e’-cores.

Theorem 9. Ifr =2k +1 for some k € N, then the generating function for
self-congugate (e,r)/(€',r)-cores is

(Ve (62))" Cowr(47)

If r = 2k for some k € N, then the generating function for (e,r)/(e',r)-
cores 18

(e (62)"

Proof. This follows immediately from Lemma 4 and Theorem 8. O

9 Maximum simultaneous m/n-cores with ged(m,n) =
1

Since our generating functions depend on the (polynomial) generating func-
tions for m/n-cores with ged(m,n) = 1, we are interested in finding the
largest & € N for which an m/n-core partition exists. Additionally, these ob-
jects are of interest in Representation Theory, as indicated in section 3. We
investigate here the m/n-core with the most number of rows in the Ferrers-
Young Diagram. We shall call these mazimum m/n-cores. We know that no
m/n-core can have structure numbers which are positive linear combinations
of m and n with non-negative coefficients, so we consider the partition with
all of the structure numbers which are not positive linear combinations of
m and n. We will show that this is always an m/n-core, and has the most
number of rows. For example, if m = 5 and n = 7, we have the following
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partition, represented in its 5-abacus:

e 6 6 o o

= W N = O

0
|
|
|
|
|

— o o o o

2 4
° °
| °
| |
| |
| |

We show further that the size of a partition of this type is (Uil b IGAE RPN

that these partitions are also self conjugate. It will be useful to use the
notation LCy, , to denote the set of all nonnegative linear combinations of
m and n.

Theorem 10. The partition P consisting exactly of the structure numbers
which are not nonnegative linear combinations of m and n is an m/n-core.
In addition, its Ferrers- Young Diagram has the most possible number of rows.

Proof. We know that P is an m-core if and only if Vk > m, k € Stp —
k—m € Stp and 0 ¢ Stp. We already know 0 ¢ Stp. Let k > m, k € Stp be
given. Then k is not a linear combination of m and n. Thus, if k—m € LC,, .,
then, as m € LCppn,k = (k —m)+m € LCy,,. So k—m € Stp. The
same argument can be used to show that P is an n-core. Therefore P is an
m/n-core. We also know that P has exactly one row in its Ferrers-Young
diagram for every structure number. If we add any structure number, then
this number must be a linear combination of m and n, but then this would
require 0 € Stp, so we cannot add any new structure numbers. O

Lemma 5. Stp ={b—i: i€ LC,,,N[0,b]}, where b is the largest i € N :
id LCp,.

Proof. We will denote LCy,,, N[0,0] by LCY, .. We know that since m and n
are relatively prime that we can make find a positive linear combination of
every number greater than mn —m —n = (m — 1)(n — 1) — 1. If we reorder
the columns in the m-abacus of P, from the shortest column to the longest
column, then the i column would have |2 | beads in it, since the lines for
the m-core and n-core parts allow at most this many beads to be in that
row. Since m and n are relatively prime, % — L%J will take on every possible
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remainder from 1 to m — 1, in the following sum for the size of Stp:

m—1 . m—1 .
m m m m
P A
m—1 . .
4 m
= -+ —
i1 m m
(m—1)(n—1)

Therefore, since Stp N LCY, = 0 and Stp U LC}, , = [0,b] |Stp| = |LC}, .
It is obvious that [{b—i: i € LCY, }| = |LC}, | and we have already shown
in the proof of theorem 10 that Stp D {b—i: i € LC} }. Therefore, it
follows that Stp ={b—i: i€ LC}, ,}. O

Theorem 11. Mazimum m/n-cores are self-conjugate.

Proof. Let the maximum m/n-core partition P be given. From Corollary
6, we know that a partition is self-conjugate iff Vi € N, i < b, 1 € Stp &
b—i¢ Stp. Let i € LCy,,, be given. Then b —i ¢ LC,,,, since b —i,i €
LCy, = b—i+i=0b¢€ LC,,,. Let kK € Stp be given. Then, since, from
Lemma 5, Stp = {b—i: i € LCY, } thereis j € LC,,, such that k =b—j,
sob—k=j¢ Stp. O

We would now like to show the size of these partitions:

(m2-1)(n?-1)

Theorem 12. The size of maximum m/n-cores is o

Proof. Consider the partition with exactly the structure numbers from 1 to
b. This would represent a partition of mn — m — n. Consider removing all
of the elements of LC’ZWX. After removing all of these structure numbers,
we will get the maximum m/n-core. To calculate the size of this partition,
we consider the change in the number which is partitioned by incrementally
removing the positive linear combination structure numbers. If the struc-
ture number £ from partition p of y is removed from a partition, then the
corresponding row in the Ferrers-Young Diagram has k- (# rows with lower
structure numbers) nodes. However, if the rows above it keep the same
structure number, then we must add another node to each of these rows to
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compensate for the missing row beneath them. For notational ease, we will
define for a true/false function f Ty := {z € Stp : f(x)}. Therefore, the
overall effect is that the new partition p’ partitions y — (k — #T< + #T-y) =

Y —k 4+ #1 .
So removing all of the linear combinations from the partition will give

X
ILChn" |

b — Z x4+ Z b—1.
i=1

z€ LCY,

In order to calculate ZLi(f?"’"X' b — i we remember from Lemma 5 Stp =
{b—i:i€ LCY .} Therefore there is an isomorphism between LC}, . and
Stp, ¢+ LCY "+ Stp, (i) = b —i. Moreover, LC?, U Stp = [0,b] and
LC? N Stp =, so, as we have already removed 0, we have |LC?, *| =
”Tl —1= 7(7"71)2("71) — 1. Thus

e o m—1)(n 1)
— m—1)(n—1

b b—i=15b b—1 = —24+3m-—1
+ ; i + Z i < (=24+3(m—1)(n

=1

To calculate the first sum, a slightly more complicated procedure is neces-
sary. Consider the disjoint decomposition of LC?, , = /= {im + jn : 4,5 €
N, im + jn < b}. Then we have that

T s 3 S itm

z€ LCY, ,* U2 {intjmi,jEN, intjm<b} i=1 {jeNin+jm<b}

For each i, choose j € N such that for r; :== b— (in+jm), 0 < r; < n Since m
and n are relatively prime, we will attain exactly every value for r; from 1 to
n— 1. Consider the step function f; which is equal to in + jm on the interval
in+(j—1)m to in+ jm. Then, if you take the integral of this function from
in —m to b —r; and then divide by m, the width of each interval of the step
function, you will get the desired value. To integrate this step function, we
estimate the function by f(x) := x, and comute the error. It is clear to see
that the difference of the integrals is the areazof a right triangle of height m
m

and width m. The area of this triangle is “5-. Therefore, the error for the
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entire sum of the integrals is m72(# triangles) = mTQ(|LC,’3,mX| + 1), since we
have one triangle for each linear combination, and an addition triangle for
i = 0,7 = 0. We have already calculated |LC’7’;1,nX|, however. So we have

m=D(=1) ych triangles. Therefore, using the equalities S Q= K ;1) and
zf:o i2 = 7’“(’““)6(2’““) gives us

1 ([ m?(m — 1)(n — 1)
2o n((EL0) )

= i (mX_:Q(b . 7"z‘)2 — (in — m)2) + m(m —1)(n — 1)

2m — 4
= i (2@ — (i +1))? — (in — m)Z) L mm = i)(” — 1)
= (m 11)2(n—1) (4mn —5n —5m + 1)
So, this gives us the overall answer of
ILCh,
b+ Z (b—1)— Z T
Cm—1)(n—1) N (m—1)(n — 1)
= < (—24+3(m—-1)(n—1)) — B (4mn —5n —5m +1)
_(m- IQ)LE"_ D (64 9(m —1)(n— 1) — Smn + 100+ 10m — 2)
_(m—=1)(n—-1)
= 51 (mn+m+n+1)
_ (m—=1)(n—1)(m+1)(n+1)
24
(m? —1)(n* - 1)

24

which is the size of the partition which we set out to prove.
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