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Abstract

For —D a fundamental discriminant and p a prime, we investigate the surjectivity of
the reduction map from elliptic curves with CM by O_p to supersingular elliptic curves
over E whenever p does not split in O_p. Under GRH for Dirichlet L-functions and the
L-functions of weight 2 newforms, we are able to show an effectively computable bound
D, such that the reduction map is surjective for every D > D, with p nonsplit. Our
investigation takes a detour through a study of quaternion algebras and quadratic forms.
In particular, in showing our result, we obtain as a side effect the following result. For
each positive definite quadratic form () whose associated theta series is in Kohnen’s plus

space of weight 3/2 and level 4p, M.},

3/2 (4p), we show an effectively computable bound Dy,

dependent upon GRH) such that () represents every D for which D > Dy and p does
not split in O_p. Moreover, we give an explicit algorithm to compute D¢ (respectively
D,), and for small p we explicitly compute D¢ (resp. D,). For a further restricted set
of p, we moreover obtain a computationally feasible bound, allowing us to give a full list
of fundamental discriminants — D for which the map is not surjective. To determine the
full list we develop a specialized algorithm to compute which D < D, are represented
more efficiently whenever all of the elliptic curves are defined over F,. Additionally, we
obtain as an additional side effect a new proof and an explicit algorithm, conditional
upon GRH, for the Ramanujan-Petersson conjecture for weight 3/2 cusp forms of level

4N in Kohnen’s plus space with N odd and squarefree.
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Chapter 1

Introduction

1.1 CM lifts of Supersingular Elliptic Curves

Let p be a prime, —D < 0 be a fundamental discriminant, and K := Q(v/—D) be an
imaginary quadratic field with ring of integers O_p such that p does not split in O_p.
Furthermore, let £/ be an elliptic curve defined over I[*Tp. It is well known that the ring of
endomorphisms End(E) of E are isomorphic either to the ring of integers of an imaginary
quadratic field or to a maximal order Of of the quaternion algebra ramified precisely
at p and oco. Elliptic curves of the second type are called supersingular elliptic curves.
For an elliptic curve £’ defined over a number field, it is well known that End(E’) is
isomorphic either to Z or an order of an imaginary quadratic field. We say that E’
has Complex Multiplication (CM) by O_p if the endomorphisms of E’ are isomorphic to
O_p. It is well known that the reduction map mod 3, the distinct prime above p, from
an elliptic curve with CM by O_p yields a supersingular elliptic curve whenever p does
not split in O_p.

For convenience, we will say that Dg (resp. D,) is a good bound for E (p) it E
(every supersingular E/F,, is in the image of the reduction map from elliptic curves with
CM by O_p for every D > Dg (D > D,) for which p does not split. The majority

of this paper is devoted to proving an effectively computable good bound for E (resp.



p) conditional upon standard conjectures. Moreover, an explicit algorithm is given for
computing a good bound for E (resp. p). This algorithm is implemented for small p,
and our results are recorded. We will call a good bound Dg a feasibly good bound if
we have determined, with the help of a computer, the set of D < Dpg for which E is
in the image of the reduction map. By tweaking certain parameters which arise in our
good bounds, we are able to obtain better good bounds for p. Moreover, using a trick
to compute the set of D < Dpg for which the reduction map is surjective whenever FE is

defined over [F),, we are able to obtain feasibly good bounds for a larger set of E.

1.2 Reduction to Representations of Integers by

Ternary Quadratic Forms

Deuring [8] has shown a one-to-one correspondence between lifts of E to elliptic curves
with CM by O_p and embeddings of O_p in the maximal order Of of the quaternion
algebra A ramified precisely at p and co. For a maximal order M of the quaternion
algebra A, we will say that Dy, is a good bound for M if O_p embeds into M whenever
—D < —D); is a fundamental discriminant for which p does not split in O_p. Hence
Dy is a good bound for M = Og if and only if D, is a good bound for E. For —D < 0
a fundamental discriminant, the ring of integers O_p is embedded in M if and only if
there is an element of M which generates the ring of integers, namely one with minimal
polynomial 22 — Dx + ’D%D. Let Lg := {x € Z+20g|tr(x) = 0} be the so called Gross
lattice of trace zero elements of the order defined by Gross in [14] with the associated

positive definite ternary quadratic form Q(z) = Nz = —22. It is an easy calculation to



see that a generator of O_p is contained in M if and only if there is an element of Lg
with norm D.

We will say that the integer D is represented (over the ring R) by the quadratic form
Q if there exists z € R* such that Q(x) = D. For a quadratic form @, we say that an
integer D is an eligible integer for Q) if it is represented locally (R = Z,,) at every prime,
and we will call Dg a good bound for () if every eligible integer D > D, is represented
globally (R = Z) by Q. This paper will proceed to find a good bound for M (and hence

E or p) by determining a good bound Dg, for Q.

1.3 Representations of Integers by Ternary

Quadratic Forms

The question of determining which integers are represented by a given quadratic form is
an interesting question in its own right, which has been studied by a variety of authors
dating back at least as far as Gauss. One such well known result of Lagrange shows
that every positive integer can be represented as the sum of four squares. The amazing
“15 theorem”, proven first but unpublished by Conway and Shneeberger and recently
shown via a much simpler method by Bhargava, asserts that a positive definite integral
quadratic form represents every positive integer if and only if it represents the integers
1,2,3,5,6,7,10,14, and 15 [1]. Such forms are called wniversal quadratic forms. Bhargava
and Hanke have since shown that every integer valued quadratic form is universal if and

only if it represents every integer less than 290 [2].



Let

Oo(r) = ¢

TEL™
be the theta series associated to a quadratic form @ in m variables, where g = e(7) :=

e®™7. 1t is well known that 6 is a modular form of weight %.

Relying on the fact that 6 is a modular form, and comparing the growth of the
coefficients of the Eisenstein series with the growth of the coefficients of cusp forms,
Tartakowsky effectively shows that every sufficiently large eligible integer n is represented
by @ when m > 5 [37]. In the m = 4 case the trivial bound for the growth of the
coefficients of cusp forms is insufficient, but Kloosterman proved an improved bound
(the celebrated result of Deligne proved the optimal bound in the early seventies [7]).
The binary case (m = 2) was studied extensively by Gauss, and Gauss’s well known genus
theory was developed during this study. The question of which primes are represented
by binary quadratic forms has been studied by a variety of authors (cf. [35]), and there
are asymptotics known for the number of integers not represented by a binary quadratic
form [13]. In this case comparing the asymptotics for the number of eligible integers
with the number of integers represented by the form shows that there is no good bound
for binary quadratic forms.

In this paper, we study the trickiest case, namely ternary quadratic forms (m =
3). This case is complicated by the fact that the coefficients of the Eisenstein series
grows like the Class Number. Therefore, an effective bound requires information about
the possible Siegel Zero. Moreover, the convexity bound is insufficient to show that
the coefficients of the weight 3/2 cusp forms grow more slowly than the class number.
Recently, the amazing subconvexity results of Iwaniec [18] and Duke [9] have removed

this complication. There is also a technicality at anisotropic primes. The coefficients of



the Eisenstein series do not grow with high divisibility by an anisotropic prime [. Duke

and Schultze-Pillot combine the above results to show the following ineffective result.

Theorem 1.1 (Duke- Schultze-Pillot [11]). If Q is a positive definite quadratic form in
3 variables, then every sufficiently large eligible integer with bounded divisibility at the

anisotropic primes is represented by Q).

Assuming GRH for Dirichlet L-functions, the result becomes effective. However,
the bound attained is enormous and entirely impractical, as observed by Ono and
Soundararajan [29]. By using a deep connection of Waldspurger [38] between half inte-
ger weight cusp forms and special values of L-series of weight 2 modular forms, under
the additional assumption of GRH for weight 2 modular forms, Ono and Soundararajan
obtain a feasible bound of 2 x 101° for Ramanujan’s ternary quadratic form Q(z,y, z) =

2% +y? 4 10z2. With the help of a computer, they were able to prove the following.

Theorem (Ono-Soundararajan [29]). Conditional upon GRH, the eligible integers which

are not represented by () are exactly
3,7,21,31,33,43,67,79,87,133,217,219, 223,253, 307, 391, 679, 2719.

In Chapter 3, we generalize the results of Ono and Soundararajan to ternary

quadratic forms @ such that g € M,

3/5(4p), the space of modular forms of weight 3/2

and level 4p in Kohnen’s plus space (Ramanujan’s form does not satisfy this condition).
By the theory of modular forms, we know that 6 decomposes as follows.

0=E+ by, (1.1)

i=1

where F is an Eisenstein series, b; € C and g; are fixed Hecke eigenforms in S;/Q(le).

Let G; € Sa(p) be the Shimura lift of g;, normalized such that ag, (1) = 1. Throughout



the paper we use af(n) to denote the n-th coefficient of f. Clearly, @ represents n if and
only if ap(n) # 0. Hence we only need to bound the coefficients of the Eisenstein Series
(from below) and the eigenforms (from above). We will denote —d for a discriminant
and —D for a fundamental discriminant. Using techniques developed by Duke [10],
based upon Siegel’s averaging of the quadratic forms, along with a generalized version of
the aforementioned method of Ono and Soundararajan [29], we obtain effective bounds
for ag(D) and ag (D), where —D is a fundamental discriminant. In [29], Ono and
Soundararajan make specific choices to obtain a computable constant for Ramanujan’s
form. While the bound they obtain is more aesthetically pleasing, allowing these choices

to vary yields computationally feasible bounds for a wider range of quadratic forms.

Theorem 1.2. Fix 1 <o < % and X > X,, with X, effectively computable.
Assume GRH for Dirichlet L-series and weight 2 modular forms. There exists an

effectively computable constant Dy x » such that for every fundamental discriminant —D

with D > Dy x , we have ag(D) # 0.

This result gives us an effectively computable good bound for (), and hence an
effectively good bound for E given the connection. A slight alteration of this method
also leads to good bounds for () which are independent of @), and only vary with p.

Further results of this type may be found in Chapter 3.

1.4 Calculations for Good Bounds

Having established effectively computable good bounds for @, E, p, and M in Chapter
3, we proceed to give an algorithm for calculating these bounds in Chapter 4. This task

is separated into three main parts. In the first part, we calculate the maximal orders



of the quaternion algebra ramified exactly at p and oo and the associated theta series.
Secondly, we decompose the subspace of Kohnen’s plus space spanned by these theta

series. Having done so, we have decomposed 6 as

6=E+) g,

where g/ are some hecke eigenforms. We then show a method for choosing a certain
Shimura lift and hence g; and b;. Finally, we calculate other constants involved in the
bound Dy x , up to a chosen accuracy.

We now have established an algorithm for computing a good bound Dy, assuming
GRH. Given a bound, we would like to determine which good bounds are feasibly good
bounds. In order to do so, we must write another algorithm to determine whether a
given integer D is represented by the quadratic form (), and then check all D < Dy.
In order to obtain a feasibly good bound for a larger set of (), we develop a specialized
algorithm for checking whether D is represented by ) whenever ) comes from Lg for
E defined over F,, C E in Section 4.3. For certain p, every supersingular elliptic curve
E is defined over I, and thus we may obtain a feasibly good bounds for p for a larger
set of primes. Finally, in Section 4.4, we implement our algorithm and list good bounds
Dg for each @) with p < 107. We also give data for the D < Dg which we have checked
with a computer. For p =11, p = 17, and p = 19 we are able to obtain a feasibly good
bound for p, and an explicit list of all D for which the reduction map is not surjective

(or the size of the list when it is too large) is given.



Chapter 2

Elliptic Curves and Ternary

Quadratic Forms

2.1 CM Liftings of Supersingular Elliptic Curves
and Theta Series

We will explain in this chapter the well known connection between determining a good
bound D¢, for each theta series 6 in Kohnen’s plus space of level 4p and determining a
good bound for p. We will discuss the connection between theta series and CM lifts of
supersingular elliptic curves in order to determine how the good bound for these theta
series gives us a good bound for p.

A good bound D, for p is established piecewise by showing a good bound Dp for
each supersingular elliptic curve F /E, and then taking D, := max Dg, relying on the
fact that there are only finitely many supersingular elliptic curves over F, (see [34]) up
to isomorphism. This also aids in computing the set of D < D, for which the map is
not surjective, since we only need to check D < Dpg for each curve, and not up to the
larger bound D),,.

Therefore, we will now fix a supersingular elliptic curve E/F, and explain how to



establish a good bound Dg. To this end, we will now take a detour through quaternion
algebras, quadratic forms, theta series, and modular forms. Throughout, when we refer
to a f-series, we will be restricting to a f-series of the type
0 = ZQQ(m’y’Z)y
2
where Q(x,y, 2) is a positive definite ternary quadratic form and g = e*™=.

We will now review the well known connection between CM liftings and #-series.
Deuring [8] showed a one-to-one correspondence between embeddings of O_p in O =
End(E) and lifts of F to elliptic curves with CM by O_p. Therefore, our study of lifts
transforms into a study about the number of embeddings of O_p in Og. Recall that
End(F) is a maximal order of the quaternion algebra ramified exactly at p and co. Let
A be the quaternion algebra ramified exactly at p and oo and let M be a maximal order
of A. Then M is a 4—dimensional Z-module. Let Lg := {x € Z + 20g|tr(x) = 0} be
the so called Gross lattice with the associated positive definite ternary quadratic form
Qp(r) = Nz = —22. Gross proved a bijection between embeddings of O_p in Op and
representations of D by QQg. Moreover, Gross showed that the theta series

Op(z) ==Y 9@ = Y ap(d)qg’
zelp —d=0,1 (mod 4)
is a weight 3/2 modular form in Kohnen’s plus space of level 4p. We have seen above
that E lifts to an elliptic curve with CM by O_p if and only if ag(D) # 0. Therefore,

a good bound for 0z will give us a good bound for F.
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Trace Zero Elements of
Curve C End(C) 2End(C)+Z

E//KO_D—>(20_D+Z)0

T D

NORM |3y

E/Fq M 2M +7)°

Figure 1: The reduction map from elliptic curves with CM by O_p to supersingular
elliptic curves over I,,.

2.2 Details of the Connection between CM lifts and
Representations of Integers by Quadratic Forms

The following diagram will help to further explain the connection made by Deuring
and Gross. Taking a supersingular elliptic curve E defined over F_p, we know that the
endomorphisms of E are isomorphic to a maximal order M = Op of the quaternion
algebra ramified exactly at p and oco. Taking an elliptic curve E’ defined over a number
field with CM by O_p, the endomorphisms of E’ are isomorphic to O_p. If E is the
image of £’ under the reduction map, then, since the endomorphisms commute with the
reduction map, we know that there is an embedding of endomorphisms O_p of E’ into
the endomorphisms M of E. If we take the trace zero elements (20_p + Z)°, then the
generator of O_p will correspond to an element with norm D. Thus, the embedding of
O_p under the same operation on M, namely (2M + Z)°, will give an element of norm

D. Moreover, if there is an element of M which gives D under this norm map, then it is
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an easy calculation to see that this element must be a generator for O_p. Thus, there
is a one-to-one correspondence between embeddings of O_p in M and representations
of D by the norm form on Lg.

Hence, we have established that if £ is in the image of the reduction map, then
the norm map represents the integer D. On the other hand, Deuring shows that an
embedding of O_p into O determines an elliptic curve E’ with CM by O_p which gives
E under the reduction map. Therefore, there is a one-to-one correspondence between
embeddings of O_p in O and CM lifts of E. Using the one-to-one correspondence
between embeddings of O_p and representations of D by the norm form on Lg, this
gives a one-to-one correspondence between CM lifts of £ and representations of D by
the norm form on L.

It is a straightforward calculation to see that the norm form on Lg is a quadratic
form in 3 variables, since the elements of L are trace zero elements. If Ly is generated

over Z by o/, ', and 7/, then every element of Lz is of the form
xa +yf + 29 (2.1)

The definition of L allows one to see easily that o/, ', and 4/ are linear combinations
of the canonical generators «, 3, and o8 = v with o = —Ba, o? = p and 3? = q.

Thus, we can rewrite (2.1) as

a(z,y, z)a+ b(x,y,2)0 + c(z,y, 2)7, (2.2)

where a(z,y, 2), b(z,y, 2), and ¢(z,y, z) are homogeneous and linear in z, y, z. The norm

of such an element is

(a(z,y, 2)a + b(z,y, 2)B8 + c(z,y,2)7)° = a(z,y,2)*p + b(z, y, 2)*q + c(2,y, 2)*pg.
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Since a(x,y, 2), b(z,y, z), and ¢(z,y, z) are homogeneous and linear in x,y, z, the terms
of the squares are homogeneous and quadratic in z, y, z. Therefore, this defines a ternary
quadratic form in z,y, and z.

The connection to Kohnen’s plus space is established by local conditions, since the
only integers represented by the norm form are integers d with —d a discriminant.
Therefore, —d = 0 or 1 (mod 4). This is precisely the condition for the theta series
to be an element of Kohnen’s plus space. Thus, determining a good bound for Qg, the
norm form on Lg, which is a member of Kohnen’s plus space of weight 3/2 and level p,
will determine a good bound for E. We have now established the desired connection.

It is not a trivial task to write down all supersingular elliptic curves (up to isomor-
phism), and furthermore, it is an interesting and challenging problem to write down the
endomorphisms of a fixed supersingular elliptic curve. This problem is not addressed
in this thesis. However, we are rescued by the well known result of Deuring [8], that
every maximal order of A is conjugate to Op = End(E) for some supersingular elliptic
curve E over F,. Moreover, two maximal orders O and Op are conjugate if and only
only if B/ =2 E or E' = E® the Frobenius of E. Moreover, E = E®) if and only if the
Frobenius is an endomorphism on F, which implies that E is defined over [F,,. Moreover,
the Frobenius gives a trace zero element of O with norm p. Conversely, if there is a
trace zero element of norm p, then the curve is defined over [F,. Therefore, we simply
need to calculate all maximal orders of A (up to conjugation), which is done in chapter
4. Since the curves over 2 occur in pairs (£ ,E(p)), we get exactly the type number ¢
such maximal orders (up to conjugation). In this paper, we will determine good bounds
Dy, for each maximal order M, and using this connection we have shown good bounds

Dpg for each supersingular elliptic curve E. However, it is a very interesting question
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to determine which maximal orders correspond to to which elliptic curves. I hope to
investigate the question of efficiently computing O given E and vice versa in the fore-
seeable future. This question is addressed in David Kohel’'s Ph.D. Thesis [22], but no

sub-exponential algorithm is known.
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Chapter 3

Good Bounds for Representations of

Integers by Quadratic Forms

3.1 Introduction

Let @ be a positive definite integral quadratic form in m variables and let
bo(1) =Y 4
zeZm

be the associated theta series, where ¢ = e(7) := €*™". We will omit the subscript @
when it is clear. Throughout this paper, a theta series will always mean 6y for some
(mostly ternary) positive definite integral quadratic form @. It is well known that 6 is
a modular form of weight 7. For general information about quadratic forms, a good
source is [25].

The natural question of which positive integers n are represented by the form @,
that is whether there exists x € Z™ such that Q(x) = n, has been studied extensively
since Gauss. Recall the following theorem of Ono and Soundararajan [29], previously

mentioned in the introduction, for Ramanujan’s ternary quadratic form.

Theorem (Ono-Soundararajan [29]). Conditional upon GRH, the eligible integers which



15

are not represented by Q(x,y, z) = x? + y* + 1022 are ezactly
3,7,21,31,33,43,67,79,87,133, 217,219, 223, 253, 307, 391, 679, 2719.

In this chapter, we generalize the results of Ono and Soundararajan for ternary
quadratic forms @) such that 0 € M;/Q (4p) in order to prove Theorem 1.2. The proof of
Theorem 1.2 leads to an independent proof of the optimal bound, known to the experts,
for weight 3/2 cusp forms in Kohnen’s Plus Space of level 4N with N squarefree and

odd, assuming the Riemann Hypothesis for weight 2 cusp forms.

Corollary 3.1. Let N be squarefree and odd, ¢ > 0, and g € S

3/ (4N). Assuming GRH

for weight 2 modular forms, there is an effectively computable constant ¢y such that

lag(n)| < ¢qenite.

Theorem 1.2 is proven by combining explicit bounds from Sections 3.5 and 3.6. These
explicit bounds lead to a clear algorithm to calculate the constant Dy x ,. The bounds
attained are computationally feasible in some cases. For example, with the help of a

computer, Theorem 1.2 implies the following (for details, see [20]).

Theorem 3.2. Assume GRH for Dirichlet L-functions and weight 2 modular forms.

Consider d such that 11*{ d and (I—ld) # 1. Then
(1) Q(z,y,2) = 42 + 11y* + 122 + 4x2 represents d if and only if
d ¢ {3,67,235,427}, (3.1)

and Q represents d if and only if Q represents d(11)2.
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(2) Q(x,y,2) = 3z% + 15y + 1522 — 2xy + 22z + 14yz represents d if and only if

d ¢ {4,11,88,91,163, 187,232,499, 595, 627, 715,907, 1387, 1411,

3003, 3355,4411,5107,6787,10483, 11803}, (3.2)
and Q represents d if and only if Q represents d(11)2.
(3) Moreover, these are a full set of representatives for @ such that 0 € M$2(44).

(4) If —d = —D is a fundamental discriminant other than the 25 listed above, then
every supersingular elliptic curve over Fiy can be lifted to an elliptic curve over a

number field, with CM by O_p.

Theorem 3.3. Assume GRH for Dirichlet L-functions and weight 2 modular forms.

Consider d such that 19° { d and (52) # 1. Then
(1) Q(z,y,2) = Ta? + 11y* + 232% — 2xy + 6x2 + 10yz represents d if and only if
d ¢ {4,19,163,760,1051} . (3.3)
and Q represents d if and only if Q represents d(19)2.

(2) The form Q(x,y,z) = 42* + 19y* + 202% + 4xz represents d if and only if d
represents d(19)?, the set of d as above which Q does nmot represent has size 40,

and the largest such is d = 27955.
(3) Moreover, these are a full set of representatives for Q such that 6 € M3+/2(76).

(4) If —=d = —D is a fundamental discrimianant other than the 45 above (in par-
ticular if D > 27955), then every supersingular elliptic curve over Fig lifts to an

elliptic curve over a number field, with CM by O_p.
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In Section 3.3, we deal with —d not fundamental, using the Shimura Lift [32] and
the Hecke operators. Fixing a discriminant —d and exploring the representability of
d = dF?, the Hecke operators lead to an equivalence between the following linear

system of equations and the representability of d by Q.

Theorem 3.4. There are recursively defined polynomials Py, 11(x) and Q'(x), defined

below, such that ag(dF?) = 0 if and only if for every f = [[I" dividing F and s; < %vl(d),
I

Il 2oy 0=QW).

l prime
Remark 3.5. The power of Theorem 3.4 is that the left side is growing like [, while the

right side grows like 2v/1, so that the resulting linear system is seldom consistent.

Notice that although an effective lower bound for the Class Numbers relies on the
Siegel Zeros, the ratio of Class Numbers H(—dF?)/H(—d) does not. Fix a fundamental
discriminant —D. We refer to the spinor square class of D as all integers DF?. Due to
the explicit ratio, unconditional results may be obtained within the spinor square class
of D, since the growth of the ratio is linear in F', while Shimura’s lift and Deligne’s

bound [7] imply that the growth of the coefficients of the cusp forms is like F'/2,

Theorem 3.6. Fiz a disciminant —d. If ag(dF?) = 0 with (F,p) =1, then

m 2+€
F < (p—1)*e (Z!bﬁ) dite.
=1

If we further assume the Riemann Hypothesis for Dirichlet L-functions, then

m 2+4€
F <, (p — 1)2+6 <Z|bz|> d_%+€.
i=1
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Finally, if we additionally assume the Riemann Hypothesis for L-functions of weight 2

modular forms, then

m 2+e€
F <. (p—1)** (ZW) d-2te.

i=1

Here the assumed constants are effectively computable, and moreover ag(d) = 0 if and

only if ag(dp?) = 0.

Combining Corollary 3.1 and Theorem 3.6 along with an argument of Duke [10] to

remove the dependence on 6 yields the following result.

Theorem 3.7. Let p be a prime, 0 € M3+/2(4p), and € > 0. Assuming GRH for Dirichlet
L-functions and weight 2 modular forms, ag(d) # 0 for every discriminant —d with
<_Tfi> # 1 and p* { d such that

d >, p16+e'

Here the assumed constant depends only on € and is effective. Moreover, ag(d) = 0 if

and only if ag(dp?) = 0.

It is interesting to note that our arguments involving the cusp form part of # suffice
for level 4N with N squarefree and odd, so that a generalization can be obtained for any
quadratic form with squarefree discriminant, whose theta series is contained in Kohnen’s
plus space once we know the corresponding Eisenstein series.

Our work has an application to CM liftings of supersingular elliptic curves, and this
is the author’s original motivation for concentrating on Kohnen’s plus space of level 4p.
This connection is explored further, and an explicit algorithm plus a variety of examples
are given in a sequel [20]. We will give a brief explanation here of this connection.

The endomorphism ring of a supersingular elliptic curve F is a maximal order Op



19

of the quaternion algebra ramified exactly at p and co. Deuring [8] has shown a corre-
spondence between maximal embeddings of O_p and lifts of F to an elliptic curve over

a number field which is CM by O_p. Let
LOE = {;U €7+ 2OE|TI' T = 0}

be the so called “Gross lattice” with quadratic form Q(x) = —z? being the reduced
norm. Then Gross [14] shows that 6y € M;r/z(élp) and O_p is optimally embedded in
Og if and only if @) represents D. This explains the fourth part of Theorems 3.2 and

3.3. Interpreting Theorem 3.7 in this manner, we obtain the following.

Theorem 3.8. Let p be a prime and € > 0. Assume GRH for Dirichlet L-functions and
weight 2 modular forms. Let E/]I‘Tp be a supersingular elliptic curve. Then E lifts to a

elliptic curve over a number field which is CM by O_p for every
D > p16+6

with (%) # 1. Here the assumed constant depends only on € and is effective.

Notation and Brief Overview of the Proof of Theorem 1.2

We end the introduction with a brief overview of the proof of Theorem 1.2, and set up
useful notation. We will denote half integral weight cusp forms with lower case letters
and their Shimura Lift with capital letters.

Let p be an odd prime and 0 € M?T/Q(le) be a theta function fg. Assume first that
—D < —4 is a fundamental discriminant with ap(D) = 0. We will denote the Hurwitz

class number for a discriminant d by H(d) and the class number by h(d). Equation (1.1)
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gives
—ap(D) =Y biag, (D). (3.4)
i=1
Using an explicit formula for the coefficients of the Eisenstein series(cf. [14]) and Dirich-

let’s Class Number Formula [6],

12 L(1)-vD

-1 w2e® (3.5)

Here L(s) := L(x, s) and x(n) := x_p(n) := (=2) is a Dirichlet character. Plugging in

n

and using Schwartz’s inequality yields

oy IOl VD < SIS e (D) (36)

(p = 1)m20r(P)

A variant of the Kohnen-Zagier formula (3.15) gives |a,,(D)|* = ¢;27»(P) Dz - Li(1),

where
)2
¢; = |ag, (m;)| ’ (3.7)
L(Gi,mi, 1)m

7

with m; the first coefficient of g; such that a,, (m;) # 0 with (p,m;) = 1, and

N

—X(n)ag, (D)
Li(s) := L(G;,—D,s) .= )y =———"——=, 3.8
() = LG =D.) = 3 (38)
is the L series of G; twisted by the character x. Thus, we have obtained

12 1 = L L(1)
— D1 < |b; |2 Ci . (3.9)

e T 2T

To bound fgg% we define
VI Li(s)T(s)
F(s):=Fi(s) = — _— 3.10
(5) = Fils) (27r L(s)L(2 — s) (3.10)
Li(1)

where ¢ is the conductor of L;. Notice that F'(1) =
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By the functional equation of L;(s), we know that F(s) = F(2 —s) and GRH

for Dirichlet L-functions implies that F(s) is analytic for < Re(s) < 2. Therefore,

for % < Re(s) =0 < % fixed, we know by the Phragmen-Lindelof principle that the
maximum is attained on the boundary of Re(s) = ¢ and Re(s) = 2 — ¢. Thus, for
l<o< %,

F(1) < mtaX\F(a + it)|.

To bound F(s), we bound L(s) from below in Section 3.5 and L;(s) from above in Section
3.6. Instead of fixing 0 = % as in [29], we allow o to vary, and get better constants in
our bounds for L(s) and L;(s). Combining these allows us to get the bound obtained in
Theorem 1.2.

To deal with discriminants which are not fundamental, we will use the Hecke oper-

ators for half integer weight modular forms. For g € Sii1/2(4p, x) and a prime [, we

define the Hecke operator Tjz via g|T;z = h with

an(d) = a,(1*d) + x(1) (#) Ftay(d) + x(1%) ((_l—?k) **a, <%> . (3.11)

For d € N, with d = []I®, we will denote for notional ease
1

Ad) == e, wld) = e, v(d) =#{l: e, > 0}, and o (d) = > n". (3.12)

I nld
We recall the Euler constant

v = _F(l) A~ 5772 (3.13)

and denote the Riemann Zeta function by ((s). Finally, we denote

Y(x) =Y A(n). (3.14)

n<x
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3.2 A Kohnen-Zagier Type Formula

Let N be odd and square-free and let g € S;'{7 »,(4N) be a newform in Kohnen’s plus
space. Let G € SI¢™(N) be the Shimura lift of g normalized so that ag(1) = 1. Let
w; be the sign of the Atkin-Lehner involution W; for each prime [ dividing N. For a
fundamental discriminant D and Re(s) > k + 1/2, let

GDSZZXD I

n>1

be the twisted Hecke L-function of G by xp.

Lemma 3.9. Let (—1)*D be a fundamental discriminant such that for each prime divisor

l of N, either (%) =w; or ( ) = 0. Then

2 k
9D _ (o) (B =D s LG, (VD k)
<g,9> ¥ <G,G>

(3.15)

Remark 3.10. If the conditions of Lemma 3.15 are not satisfied, then Kohnen proved

in [23] that a,(D) = 0.

Proof. For a binary quadratic form Q = [a,b,c] = ax® + bzy + cy? with discriminant

|Q| = b? — 4ac and an integer d, we define

Q) (%) if ged(a, b, c,d) =1 and r is represented by @
Wq =
0 if ged(a,b,c,d) > 1.

Next define for n, m with (—1)*n a discriminant and (—1)*m a fundamental discriminant,

the period integral

ren (G (—1)fm, (—=1)Fm) = 3 Oy (Q) / F(2)do,
Q (mod Ty(N)) “

Q| = nm. Q(1,0) = 0(mod N)
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where Cg is the image of T'o(N)\H of the semicircle a|z|? + bRe(z) + ¢ =0 and dg 2z =
(az? + bz + ¢)F1dz.
In [24], Kohnen proved that for any n,m with (=1)fn, (=1)*m = 0,1 (mod 4) and

(—1)*m a fundamental discriminant

ay(n) - agm]  (—1)l/2lok
(<)g ggi (G (1 (-1 ), (3.16)

Now assume that n = m = D and <%> is as above for each [ | N. A full
set of representatives of the quadratic forms @ (mod T'y(NN)) with discriminant D? and

Q(1,0) =0 (mod N) are given by

{QuoW,: u (mod D),t| N,t >0},

with Q, = [0, (=1)*D,u], W, = L ,and 28 — Na = t.

Claim 3.11.
(—1)*D
t

w(—l)’“D(Qu o Wt) = ( ) w(—l)kD(Qu)‘

Proof. An easy calculation shows that @), o W; is
N N 9
7Nu+ND,uDoz7 +t68D + 2uNpB,uDaf + ut*| =: [a,b, c|.

We first note that ged(t, D, N) | ged(a, b, ¢, D). Since t | N it follows that ged(t, D) |
ged(a, b, ¢, D). Therefore, if ged(t, D) # 1, then wp(Q, o W;) = 0.

Now assume that ged(t, D) = 1. Since t( + %a = 1, there exist x,y € Z such that
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yB+ x% = 1. Then, since the modulus of the character (2) is |D|, we know that

(-1)"D
(N(% + D)2? + (uDakf + 6D + 2uNB)zy + u(Daf + tﬁW)

_ ( (=1)"D ) _ (=1)"D
(FNu)z? + (2uNp)zy + (ut3?)y? ut ((N)2 22+ (22 8)ay + 52y2)

T

(G) - () - (1 ()

This is the desired result. O

An easy calculation shows that

W—1yrp(Qu o Wy) = ( —

Given the assumptions above we get:

Tk,N(G§<_1)kDa(_1)kD):Z Z w(l)kD<QuOWt)/(G‘Wt)(z)dQu,k(Wtz)

t|Nu (mod N) Co

S (HE) S (@) [ @, o1

Cqu

-2 (HE) % wonl@n [ @, 1)

u (mod N)

U m Cqu
—-1)kD —-1)*D
-2 (552) T wom@i [ (5F2) - cda,,0m
t|(1\;7\’7m u (mod N) Cou

— Z 1 Z ((_BkD> / G(z)((—l)sz+u)k_1dZ
v (mod V) ~u/((~1)*D)

100

Sy ((_1)@) / G()(~1)* Dz + w)F'dz

u
u (mod N) —u/(~1)*D

N
ks
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1D\
= 2@ (Diy i Y (( ) )/G (—Lkﬂ't) 5 1dt
u (mod N) u 0 (_1) D
k
e

°r —1)*D —2min—%—
_ 2U((N]YD))(D7/)]€_1Z/ Z <( ) ) aG(n) —27T’Vlt€ 2 (_Uthk_ldt

u
o v (mod N) n>1

N gy DY —amin—
— 2U((N,D)) Di k—1 / —27rnttk‘—1 ( (—)FD dt.
(Di)" i g ag(n)e E " e
0

n>1 u(mod N)

To continue, we need to use some theory about Gauss sums. For more information about

Gauss sums, a common reference is [17].

S (FEUDY o (EUDY g (CUDY o

We will see that if y = (ﬂ), then

w (mod D) v
= x(=D7(x)x(n) = (#) () (#) ’

where 7(x) is the associated Gauss sum. One then sees that the above equality is simply

a restatement of

> X6 = ralx) = X(a)7(x)

t (mod D)

with ¢ = >/ (=)D Using this identity and the fact that x is a real character, we get

the well known identity

Plugging this in above gives

3 (#) e2minu/ (=MD _ ()7 (x)x(n) = (<_i)1kD)g-Dl/2' ((—173’@) |

u (mod D)
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Replacing the inner sum above gives

0n=>1 mod N)

QU((%D))(DZ.)k_IZ-fZGG(n)e_zﬂnttk_l < Z (#) 6_27Tin(11;kD) dt
u

3/

— 2“((1\77]\’/3))(1)2)]6—1@ ((_i)lkD> 2 D1/2 ZGG(H) <(_172kD) Ofe—%rnttk—ldt

n>1 0

k+1/2
_ 2v(ﬁ)Dk—1/z(_1)k/2 (@) F(k?)(Z?T)_kL(G7 (—1)kD, k).

Here we use the analytic continuation of the Gamma function in the final equality.

Plugging this into Equation 3.16 yields

v L _ k k _ k
|ag(D)]2 - 9 (<N’D))(k _ 1)!<_1)Lk/2j+k/2 (( 1)1D) (( "D

-1

>1/2
= DF2L(G, (-1)*D, k).
<gq,q> k< G,G > (G, (=1)°D, k)

Notice further that

k41/2
k22 (DD _
(=1) : _

This yields the desired equality.

3.3 Bounding Non-Fundamental Discriminant Coef-
ficients

In this section we employ the power of the Hecke operators and the Shimura lift to
obtain information about —d non-fundamental. The argument also repeatedly uses the
simple fact that ag(DI?) = 0 implies ag(D) = 0.

Due to the nature of such proofs, many of the results in this section do not require
GRH. The results requiring GRH make this assumption to use the bound obtained in

Section 3.7 for squarefree coefficients to obtain an overall bound.
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Lemma 3.12. Fiz a fundamental discriminant —D and F with (F,p) = 1. Define
F':=TJl. Then

3
lag,(DF?)| < 01 (F')F200(F)|ag, (D), (3.17)

where o(n) is defined in equation (3.12).

Proof. First note that if a,, (D) = 0, then a,,(DF?) = 0 by the Hecke operators, so the
result follows trivially.

We will use here the D-th Shimura correspondence [32] instead of the Shimura lift,
similar to the argument in [11]. Recall that the Shimura correspondence Gp; € S3(2p)

of g; satisfies

aGD,i(”) L - agi(Dn2)
ZT = L(&X—D)Z:IT-

3

 (D(rG7) = 228 ag, () - (P )ae, (T)] - 019

Using equation (3.18), we get the result easily by multiplicativity and Deligne’s optimal

bound [7] for integer weight eigenforms, which shows that

060.6) = () e, ()| = (1457 ) @6 o, (0

We then use the fact that ag,, (1) = a4, (D). We now return to showing equation (3.18).

Using the multiplicativity of the coefficients of Gp; normalized and the D-th Shimura

Correspondence, we obtain

a/GD,i(F)aGD,i(G) = a’GD,i<FG)aGD,i(1> - ZaQi(D)agi(Drﬂ) (F_Gl/)n)

n|FG

— (#) acp,;(Fagp ,(G/1) + legagi(D)%i(DGQfZ) (1;_/1;) '
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Rearranging and using the D-th Shimura Correspondence again for ag,, ,(F'), we obtain

0= 3 (D6 Py (D) = 04D [acy ()~ (T ) a6 ) (577

fIF

Hence equation (3.18) follows by induction on the number of divisors of F'. O

Theorem 3.13. If ag(DF?) =0, then

vp(D) m % m
Jab (p—1)m27= 1 Li(1)
< D~a. bil* | - i
2200 _y (F)oo(F) 12 | 2 ;C L(1)2

i=1

1

)2 . (3.19)

Proof. Plugging equation (3.17) into formula (3.9) yields the desired result. O

Here ¢; and b; are given by Equations (3.7) and (1.1), respectively.

Proof of Theorem 3.6(Assuming Theorem 1.2). Without loss of generality, let —d = —D
be a fundamental discriminant. If ag(DF?) = 0 then using the index formula(see [4])

and Lemma 3.12 yields
m 1 m
F _ ag(DF?) 2 biag (DFF) oy (F)F200(F) [l - lag, (D)
< _i= < &
20(F) = qp(D) ap(D) - ag(D)

First we bound ag(D) trivially from below by z%' Now the result follows by using

Duke’s effective subconvexity bound for Hecke Eigenforms of weight 3/2 [9] to bound
lag,(D)| < D7+,
The remaining assertions follow by improved effective estimates under additional

assumptions. Under the Riemann Hypothesis for Dirichlet L-functions, Littlewood

1
3 D2

77 Toallog (D)) [26]. Finally, we will see by Corollary 3.1

bounds ag(D) from below by
that under the assumption of the Riemann Hypothesis for weight 2 modular forms,

jag,(D)| < Die. O

We next deal with the case F' = p.
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Lemma 3.14. Fixz 0 € M.}

572(4p). Then ag(dp*) = 0 if and only if ag(d) = 0.

Proof. Note first that E|U(p*) = E. Moreover, g;|U(p*) = +g; (cf. [28]). Therefore, we
easily see that

0|U(p") = 0.
This shows the desired result, after noting that, since 6 is a theta series,
ag(d) < ag(dp*) < ag(dp").
O

Theorem 3.4 involves showing a connection between ag(df?) = 0 and the following

two recursively defined polynomials.

Definition 3.15. Set m,n € Z, and ¢ € {—1,0,1}. Define the polynomial P, ,, ()

recursively as follows:

(

0 ifn<0orm<0,
1 if n=0,
Pn,m,e(x) = (SC — G)PH,LLE(LU) + GPnfl,O,e me = O, n > 0,

TPy 106(x) + (22) Pacroe ifm=1,n>0,

xpn—l,m—i-l,e(x) + Pn—l,m—l,s me Z 17 n > 0.

\

Definition 3.16. For d € N and [ a prime with [*> { d, define

ZbiaGi (l)nagi (dl?m)
_CLE<dl2m)

Qn,m(l> =

Theorem 3.17. Let —d be a discriminant and | # p prime. Then ag(dl*™™") = 0 if

and only if
Py (=) (1) = @rs(D),
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for every r < n and s < m and —D 1is the fundamental discriminant associated with d.

Proof. When n = 0, the result is obvious, since this equality simply gives
Zbiagi(dl%)

)

We proceed by induction on n. We note first that ag(dl*™?*"™2) = 0 if and only if

ag(dl*™2[?") = (. Therefore, by inductive hypothesis, ay(dI*™?*""2) = 0 if and only if
Pr,s,(#)(l) = QT,S(Z)v
for every r < n and s < m+ 1. These conditions match up with the assumptions above

other than when s = m + 1. Thus, it suffices to show assuming P__ (=2) (1) = Qys(1) for
S\ T

every r < n and s < m implies that

pr,m—i—l,(#)(l) = Qr‘,m+1 (l)a

for every r < n, is equivalent to

Pn+1,s,(#)(l) = Qr,s(l)a
for every s < m.
Let 7 < n be given. Using the definition of Q, ,11(1), we have
> biag; (1) ag, (DI +2)
l —ag(D?m+2)

Qr,m+1 (l) =

Since g; is a hecke Eigenform with G; the normalized Shimura lift, and ag, (1) = 1, we

have
Zbiagi(l)’"agi(Dlzm“) Zbia(;i(l)”lagi(DlZm)
Z —ag(DPmt?) - —ag(DI2m+2)
_ppm ZbiaGi (D) ag, (DI*™) ZbiaGi (I)ragy, (DI>™=2)
_( l ) Z —ap(DP2m+2) i —ap(DP2m+2)
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Now, we note by the index formula (see [4]) that

_aE(Dl2m+2) i Dl2m
—CLE(DZQm) n l ’

Therefore, it follows that

pizm > biag, (1) ag, (DI*™)

(l B ( l )> Qrmsa(l) = —ag(DI?m)
—_DJ2m Xi:biaGi (l)ragi (DlQm) I Xi:bz’aGi (l)ragi (Dl2m72)
- ( ! ) —ag(DI?m) a [ — (%) . —CLE(DZQT”*Q)

_Dl2m l
= Q)= () Qult) - Ty QD)

l

Now, assume that Q,.m+1(l) = Prm+1.. By assumption, we also have Q. = Prye

and Q-1 = P, m—1.. Therefore, rearranging the above formula gives

D™ — D™ [
Qriim(l) = (l - ( / )> Promi1e(l) + < / ) Pronc(l) + w Prm—1e(l).
]

If m > 2, then the right hand side is

lPr,m—i—l,e(l) + Pr,m—l,e(l) = Pr—i—l,m,e(l)a

as desired. If m = 1, the right hand side is

-D

lPT,m—i—l,e(l) + (T) Pr,m—l,e(l) = Pr—l—l,m,e(l)'

Notice that we used [? { D above so that (#) = (‘TD/) Finally, if m = 0, we use the

same observation above to see that the right hand side is

(l - (?)) Prirl) + (?) Pre(l) = Prayme(D).
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Theorem 3.18 (Theorem 3.4). Let —d be a discriminant and (F,p) = 1. Then

ag(dF?) =0 if and only if for every f dividing F, with f = T[] "™ and m; := Lvl(d)J,

2
I prime

we have
T d
;bil pl;[meaci(l) ‘ag, (W)
I 7ez2) = ,

L prime d
H ZQSZ
1 prime

for everyr; < ny ¢ and s; < my, where —D 1s the fundamental discriminant corresponding

to the discriminant —d.

Proof. For F a prime power, this is exactly Theorem 3.17. Thus, we will continue by
induction on the number of prime divisors of F'. Let F' = F¢" with (F,q) = 1 and
assume the theorem for F. We will continue by induction on n as in the proof of
Theorem 3.17. The n = 0 case is the inductive hypothesis above. Assume the result for
n. Then ag(DF%¢*"*?) = ay((Dg*)F?¢*"). Using Dg? for D, the inductive hypothesis

gives us the result if and only if

>0 11 ac,(l)"ag,(q)"aq, (ﬁ)

l#q prime

i l#q prime
11 P (=2 (DF, (=) (@) = - 7

l#q prime
II
l#q prime

for every m < mny s, 5y <my,r <n,and s <my +1.
We again assume this for every r, < n; s, 51 < my, r <n, and s < m; and show that
the equality holds for r; < mny ¢, s; < my, r < n, and s < m; + 1 if and only if it holds for

re<mnyf st <my, r <n-+1, and s < my. Defining

2b Il ac(D"ac (@) ag | —5"m=
i l#q prime I£q prime q

Qr,s = ;

D
_aE ( H lQSl q23 )
l#q prime
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and using the Hecke operators yields the result exactly as in Theorem 3.17. [

Remark 3.19. Notice that for any genus where the Eisenstein series satisfies

w00 o) (2).

where x is the Nebentypus, the above proof follows mutatis mutandis.

Remark 3.20. We will in practice use —D a fundamental discriminant, but the induc-
tion required us to use a more general D. For x > 1, the recursive definition of P, m, ()

implies that P, n.(x) > x™. Therefore, the product above is greater than or equal to f.

Corollary 3.21. If 0 = E + g with g an eigenform, and G the Shimura lift of g, then

ag(DF?) # 0 for every F {6 with F # p".

Proof. For contradiction, let D, be such that ag(DI?) = 0 with [ > 3, [ # p prime.

Then ay(D) = 0, so
ay(D)

l=—F
—%Hp(D)

and hence
ag(D)

l=ag(l)- TEg D) ac(l)

by Theorem 3.17. But ag(l) < 2v/1, and | < 2v/1 is impossible.
Now assume that ag(DI*) = 0, where [ = 2 or [ = 3. Then Theorem 3.17 and the

fact that Pyo.(l) = 1>+ 1 — (£) imply that

I = an‘(l)

P+l (?) = ag, (1)%.

But this would imply 1? + 1 — (%) = [?, which is a clear contradiction. O]

and
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Corollary 3.22. If0 = E+b1g1 + b2gs, then forl > 5 a prime and —D a discriminant,
ag(DI*) # 0.
Moreover, if q is another prime with (q,6pl) = 1, then
ag(DI%¢%) # 0

Proof. 1t suffices to show the result for —D a fundamental discriminant. Let a funda-
mental discriminant —D be given such that ag(D) = 0. Then ag(DI*) = 0 if and only
if

C21,0 = Pl,O,(

s

) (@)
and
Q270 = PQ’(]’(%)(Z)'
For simplicity, we will denote P, , (=2 )(l) = P,.. Using the recursive definition of Py, we
W\ T

have P, =l and P, = [> + | — (=2). Therefore, if we denote

@ — biagi(D)
" —ap(D)
and
Ti = a’Gi(l>7

then, using a; + ay = 1 from ae(D) = 0, the two equalities above become

r1a1 + Toag = la1 + lCLQ (320)

—-D —-D
x%al + 1330,2 = (l2 + [ — <T>) ay + <l2 + [ — <T>) Q9. (321)

We will show that these equations are inconsistent with |z;| < 2v/1.

and
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Taking the ratio Z—; in both equations, we have

so that

(1 — x9) (m%—l2—l+<#)) = (z; - 1) (z2+z— (#) —x§>.

Rearranging yields
9 D
—Ill’g(xl — 1’2) + Z(Il + .732)(1’1 — .132) — (l -+ [ — T )(1’1 — .TQ) =0.
Solving this yields the two solutions
Tr1 = T2

or

Pl (Pt 1= ()

T =

l— o [ — 9

In the second equality we have assumed x5 # [, but since |zq| < 2v/1 and [ > 5 this is
an empty assumption. Now note that the second equation implies that if zo < [ then
we have z; > [, which leads to a contradiction since [ > 2v/1.

Thus, only the case x; = x5 remains. In this case, our two equations become

x1(a1 + az) = (a1 + az)

zi(ar + ag) = (12 +1— (#)) (a1 + az).

But then it follows, by squaring the first equation, that

—-D
l2:l2+l—<T>,

and
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which yields another contradiction.
Now assume that ay(DI%¢?) = 0. Define z; := ag,(l), y; := ag,(q). Then Theorem

3.4 implies that the following 3 equations hold:

ria1 + Toag = lCLl + ZCLQ
Y101 + Y202 = qay + qaz
T1Y1a1 + Tayaae = lqay + lqas.

Taking the third equation minus [ times the second yields
y1(x1 — Day + ya(za — l)ag = 0.
Since the first equation implies that
(1 — Day + (x2 — l)ay =0,
and x; <[, it follows that y; = y, = ¢. But this contradicts the fact that y; <2,/q. [

Example 3.23. Ono and Soundararajan showed for Q; = [1,1,10,0,0,0] that ag(DI?) #
0 for all l. However, a simple calculation shows for Qy = [8,12,23,4,0,0] that ay(27) =
0, so this result cannot hold in general. This form comes from one of the Gross lattices
[14]. The dimension of the cuspidal subspace containing the form Qs in this example is

2, exactly as above.

3.4 Review of the Work of Ono and Soundararajan

In this section, we review some results of Ono and Soundararajan [29] in preparation
for bounding L(s) and L;(s) in the next two sections. Recall x := x_p, L(s) := L(x, $),

Li(s) :== L(G;,—D,s), and F(s) = F(s).
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3.4.1 Explicit Formulas

We will use the following 2 lemmas from [29] for explicit formulas of %(3) and %(s)
These formulas are derived by studying an integral and shifting the line of integration,

giving %(s) or 2—2(3) as one of the residues.

Lemma 3.24 (Ono-Soundararajan [29]).

L r

7 (s) = Gi(s, X) + Esy(s) — f(s —1)X ' = R(s),
where
——1/2+ic0 /
1 L
Eig(s) = ZXP*SF(p —s), and R(s) = e / - f(s + w)[N(w) X" dw
p —o—1/2—ic0
and
A
Gi(s, X) = Z—(nq);f(n) e VX, (3.22)
n=1

with A the Von-Mangoldt function. Here p denote the nontrivial zeros of L(s).

Proof. The proof follows by taking for ¢ > 0

c+1i00
1 L
e — f(s + w)N(w) X dw,

and moving the line of integration to the far left. This yields

c+ioco
1 L
3 - f(s + w)N(w) Xdw = G1(s, X).

Moving the line of integration to real part —o — % gives a pole at w = 0 with residue
—%(s). The poles at w = p — s contribute —Eg;,(s), and finally the pole at w = —1

. 1
contributes & - £ (s — 1). O
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Lemma 3.25 (Ono-Soundararajan [29]). If L;(s) # 0, then

L
_ﬁ(s) = Fl(saX) + Rsig(s) + Rtri(s) + Rins(s);
where
—Xi(n)x(n) _
Fi(s, X):=) 22 /en/X 3.23
(o X) = O (3.23)

LZ n=1 n°
Rsig(s) - ZX'DL_SF(/)Z - S), Rtm<8) = ZX_n_SF<—'n, — 5)7
pi n=0

and

Rinsls) = Zm L

Here p; are the nontrivial zeros of L;.

Proof. This follows similarly to above, taking the integral

c+100

1 L w

and getting residues at each of the poles.

We will fix i and investigate F'(s) := Fj(s). Then

F/

7 (s) =log (£> + %(s) + E/(s) — £/(s) + £,(2 —5)

2T
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3.4.2 Bounds for %

We will need bounds for &, and will use the bounds obtained in [29].

Lemma 3.26 (Ono-Soundararajan [29]). Set s = x + iy.
1) If £ > 1, then

2 2
< % N 10g(12—|— z?) N 10g(12—|— y ) (3.24)

F/
F(S>

2) If x > 0, then we have the bound

I’ I’ Y 5|
Re | = < — —— +1 — . 3.25
(7)) < T+ L op (B (3.25)
3) In general, one has
I’ 9 1 log(1 + y?)
— < - log(2 —_— 3.26
T < 3+ ooy e+ e+ EE) (3.26)
where < x >:= min|z + n|.
neN
Lemma 3.27. If0 < x < 1, then
I’ 11 log(2) 1 log(l+y?)
—(s)] <= STy 2
F(S)_3+ 5 +x+ 5 (3.27)
Proof. This follows from
I 1 !
) < = 4 (s +1
FO) < [per),
and Lemma 3.26, since I?ll < 1 and log(1 + 2?) < log(2). O

Lemma 3.28 (Ono-Soundararajan [29]). If L(s) # 0 then

(40 - (5 (-5)) o

where the sum is taken over all non-trivial zeros p of L(s).

)

1
S—p
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Additionally, if L;(s) # 0 then

(o) = pee() - (F o) + e ()

where the sum is taken over all non-trivial zeros p; of Li(s).

3.5 Bounding L(s) From Below

Fix1l<o< % For notational ease, define s := o +it, so := 2— o +it, and 0y := Re(sp).
Lo
Fix X > ¢ 2-7 recalling the euler constant v in (3.13). In preparation for bounding

F(s), in this section we will find a bound from below for log <‘ LL((SSO))

), depending on X,
t, and 0. The techniques used below were developed by Ono and Soundararajan in [29].
In their application, they set ¢ = %. In doing so, the bound that they obtain is more
astethically pleasing and easier to read, but when dealing with a larger number of forms
it is desirable to allow ¢ to move in order to obtain a better bound for each form.

Set

o—1/2

oo—1/2
We note that since I' decays exponentially in y and the other term only has polynomial

growth, 0(X) is well defined. Recall our definition (3.22) of G and denote

. A(n)x(n
Gls, X) = Z ng lgg((n))

n=1

e /X = /Gl(w, X)dw. (3.28)
The goal of this section is to prove the following.

Theorem 3.29. Assume GRH for Dirichlet L-functions. Let x be a primitive Dirichlet
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character of conductor m and let L(s) = L(s,x). For X > ¢ "5 we have

|L(So)| > X
IL(s) = X —1-0(X)X

log ( Re(G(s0, X)) — Re(G(s, X)) + cvox1

+ Co,0,X t,1 + CO,U,X,m,l) )

where the constants are given by

Co0,X,1 "= (U - ‘70)

P3/2—00) (891, wlog(226) = 2
o X o0t1/2 100 2r2 V1512

o — 09 (g 2 ) 1-0a9 (log(l + (3300)2) N log(2) n 3)

2X \ 3 o 2X 2 2 oo

o+1

() o) oo - (321)

2

with r = /(00 + 1/2) (09 — 1/2),

r|i['(3/2 — o 1 (X
Co.0,x 4,1 = (00— 00) ( | 4(X/"°+1/20)| “ox ( <2 ))> log(1 +1%),

and finally

X -1 §X) m
Co.0.Xm1 = |0 — 0p| <7 3 log <?) .
Remark 3.30. If we knew the position of the Siegel zero, then choosing o sufficiently

L(so0)
L(s)

close to 1 away from this zero will yield a bound for log and hence, by a slight

modification, for the class number. Although asymptotically the same, the constant in-
volved s slightly better than the one obtained by Ono and Soundararajan. We keep the
explicit but complicated form for the constants for computational purposes(see [20]). The

same is true for the constants in Theorem 3.51.

Proof. Since

/Gl(w, X)dw = G(s0, X) — G(s, X),



42

integrating from sy to s in Lemma 3.24 yields

log (LL((?;) = G(s0, X) — G(s, X) + 7Es,;g(w)dw - ZR(w)dw + % log <%) .

S0

We will take the real part of both sides, and bound each term, noting that Re(log(z)) =

log(|])-
(i) We will first bound [R(w)dw. We will show

S0

/R )dw >—/R Ydw >—\0—00|[10g(;)

X’

I0(3/2 = 00)] 891 1 2\, wlog(226) 2
—_ log(1 . (32
T xee "M Gog T2 los ) ) T (329)

Using the functional equation of L, we get the equation for the Logarithmic derivative

!/

L m 1 IV /2—s—w 1 I /1+s+w L
~pGrw=log (D) F (T )ty p (T ) F s,

Assume that w = u + it, where oy := Re(sg) < u < Re(s) =: 0. Plugging this in gives

—u—1/2+i00

= o ue(2) 1T (25)

—u—1/2—ico

1 IV /(1424w L
+§ F<T)+—(1—Z—w):|dz.

L

Consider z = —u — 1/2 + iy. Using Lemma 3.26, with Re (HS%) = H"_T“_W = %,

Im (Hste) = B9 = Ty (2=5=2) and Re (25-2) = 27“+2“+1/2 = 2> 1, we obtain
I' (1424w I (2—z—w 74
() = () < log(1+ %) + log(1 + o2
() e E () < B s ) ont1 4 2)

Additionally, since Re(1 — z — w) = 3,

v |A ¢ (3\ _ 151
(1 — » — = =) < —.
p== ‘ Z =7 (2) =100

l\J\CO
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Therefore, we have obtained

Dyt (Letw) 1222w
L 2T 2 2T 2

891

1 1
< — 4 “log(1+ 1) + =log(1 + 2. (3.
_100+20g( + )+20g( +y°). (3.30)

Since |I'(x + 1y)| < |T'(z)|, the functional equation for I' yields

T+ ourp  ITG3/2—u)
EED 2+ wu—1/2) 1 5

XT(z)] = X1

po1
It is easy to see that for X > e 2-2 this function on the right hand side decreases in
[1/2, 0], so we get that the maximum for u € [0y, 0] is attained at u = oy.

This gives the bound

C(3/2 = a9
(1/2 + 00) (00 — 1/2) +

Furthermore, shifting the line of integration in the remaining term to the far left, noting

|XZF(Z)| S X70071/2 .

(3.31)

that -2 < —0 —1/2 < —u—1/2 < —0¢g —1/2 < —1, then (for X sufficiently large)

—u—1/2+1ic0
1 m my s~ (=X) " _log (%)
— T(2)X*1 (—) —1 (—) . 3.32
211 / (Z) 08 T 08 T 22 n! — X2 ( )
—u—1/2—ic0 n=

Recall 7 = /(00 + 1/2)(00 — 1/2). Plugging in the bounds from equations (3.30), (3.31),

and (3.32) give

| R(w)]

log( ™ o
g)((;“) 1+ LB/2=00)] f y+r2 (%+%10g(1+t2)+%10g(1—|—y2)) dy

X0'0+1/2

log( 2 . o
_ lel2) 4 ooy (m(fgg + Hlog(1 1) + [ =2 4 )

7rxo'0+1/2

Splitting the remaining integral into the range 0 to 15 and 15 to oo gives a bound of

o0 15 o0
log(1 + 72 log(1 + 72 log(1 + 72
/—Ogg g)d@/=/—0gg ‘Z)dw/—ogg Ly
y=+r Yy +r Yy +r
0 0

log —1—152/ dy /1 7710g(226)+ 2
1+y2 y3/2 Y= 22 \/1—57“2‘

0 15
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This gives the overall bound for |R(w)| of

log (%) | IT(3/2 — 00)| 891 o\ mlog(226) 2
< 3 S a1 44 _
Rl < =32+ 5 ooz " \q00 T2 1080 H ) ) 0 g

Since this is independent of w, integrating from w = sy to w = s gives equation (3.29).

(ii) We will next find a bound for & log |22=!|. We will show

1 L(so — 1) [L(s)] m
—log |20 > og — 0|1
X8| Ty | 2 8 g o ol (7)
1—09 (22 log(1+ (32)°) o log(2) 2
- == log(143) + =2 4+ =
5 <3+ ; +log(1+ %) + — +
o—1 (22 2 2
— log(1 + %) + log(2 . (.
5 (3+0g( + )+0g()—|—3_00—|—00> (3.33)

Again using the functional equation for , we obtain

og% = logLL(é—__S;)) + |o — 0p| log (%) + %7 (I% (?)-Tw) + 1% (%)) dw.

S0

1

Since 0y = 2—o0, and Im(c) = Im(0y), it follows that |L(2—sq)| = |L(s)| and |L(2—s)| =

|L(so)|. Therefore

IL(sy — 1) IL(s)] my 1
Jog S0~ D1 —oollog (1) = =
UL 1) = "% L(s0)] + o — ool °g<7r> 2

r(570) ()] el

(3.34)

S0

We will again use Lemma 3.26 and also Lemma 3.27. Note that Re (25%) = 2 — 1Re(w).
Therefore, if Re(w) < 1, then Re (25%) > 1. In the range o > Re(w) > 1, we will use
equation (3.27).

Thus, for any w € [0y, 1], we may bound the term with ?’_Tw by equation (3.24) and

the term with § with (3.27) to get

I [/3— I’ 22 log(1+ (3522)° log(2) 92
—(—w)+—(g>‘§—+ s+ (5 )>+log(1+t2)+—0g()+—.

r 2 r 3 2
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For w € [1, o], both will be bounded by equation (3.27), obtaining

2 2
+ = (3.35)
— 0y 0o

I (3—w I rw 22
—(Y— )+ = (=) <= +1log(1+t*) + log(2
F( 5 )+F<2)‘_3+0g( —|—t)+og()—|—3

Combining equations (3.35) and (3.34) yields equation (3.33).

(iii) Finally, we bound f Egig(w)dw. We will show here

S0

S

/Re(Esig(w))dw > —§(X) - [log

S0

oc+1 12 c+1 o09+1 12
21 . — 1 1+——711. .
+ 2log <00+1) P+ (0o + 1) +( 5 5 ) og( + (00t 1)2 (3.36)

An individual zero p := 1/2 + iy contributes

[L(s)| | 0 =09

+ 10g< >+210gr—
L(so)] 8 r

S

/Re(Xp_“T(p —w))dw.

S0

The real part of the above integral is greater than or equal to the negative of the absolute

value and
S

d _ _
Re /_w :Re(logs p>:log |5 '0|,
w—p So—p |0 — Pl

S0

because w has real part larger than 1/2, and hence wL_p is analytic over this integral.

This yields
/Re(X"_wF(p —w))dw > — /XW—“F(1/2 —u+i(y—t))du

S0 a0

(log |s0 — p!) /Re (w p> w (337)

The term (3.37) is 1, so that the right hand side of the inequality is the negative of the
absolute value of the integral. We have added the additional term (3.37) so that we may

use Re ( ) later in Hadamard’s factorization formula (see [19]).
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Since the integral and the log term merely make up one such term for y fixed, we
know that they are bounded above by §(X). Therefore, we have
s » s dw
/Re(Xp [(p—w))dw > —5(X)/Re ( ) :

w—=p

S0 S0

Summing the contributions of all zeros gives us

S S 1
/ Re(Eyg(w))dw > —6(X) / Zp:Rew - pdw. (3.38)

S0

By Hadamard’s factorization formula

Re(i,( )):—élog(g)—%fie(l% (wH)) ZRe( >

Integration yields

S

(o v 5 (2 (5 (1)

K (3.39)

Noting that “T“ = Re (wTH) > "OTH > i,

I fw+1 " fu+1 t2/4 12
Re(—(—))ﬁ—( )+ 5 +log | J———+1].
b2 P2 () + 2/ 4(5)

Integration and 4 (“TH)Q + 12 > 2+ (00 + 1)? yield

| I (w+1 INE= o+1 t?
Re| — —=) ) dw<2log——22 1+ 9] .
[re(F (7)) aws () T et 1) P (e 1

S0

we now use equation (3.25) to obtain

Thus, combining equations (3.38), (3.39) and (3.40) yield equation (3.36).
Finally, rearranging equations (3.29), (3.33), and (3.36 and combining the terms

involving log L(SO) yields Theorem 3.29. O
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3.6 Bounding L;(s) from above

We use the same notation as in Section 3.5. We also define 0y := 3 — 0 and s; := o7 +it.
In addition, we will fix o5 and consider s, := o9 + it.
We will find a bound from above for log(|L;(s)|), depending on X, ¢, and o. Recall

our definition (3.23) of F'; and denote

Ai(n)x(n)
Fw,X) =) — =t ”/X:/F X)dw.
(w, X) 2 Tog(n) e 1(w, X )dw
Theorem 3.31. Assume GRH for weight 2 modular forms, and L;(s) := L(G;, x, s) with

X a primitive character such that the modulus of L; is q. Then, recalling the definition

of the euler constant (3.13),

X X((2 +9(X))a(X) — B(X)
log | L; < F(s, X)— F X
IO 0 e ) e
X
+ X1 (Coox2+ Cooxt2+ Coo.X02)
where

d

d
C0x2 = (1 — €7n/X) Z% +2log(¢(oy — 1/2)) — 22A(n)n"1*1/2 log(n)

leo'
(X —1)log(z)

+ [log(¢(4 — 01 = 1/2)) — log(¢(4 — o — 1/2))| (2)1(2 + 6(X + S(X _ 1))

n=1

+ max{|T(0)], [T (o)} -

1 o1 — 0 49 X
—1 —0o—1/2 — log(12
+ g lostcs— o —1/2) + T (B P os12)

g§5 —logyg 2 ) Do)
2X? X +1

(2 +~(X))a(X) = 8(X) (T 1
e (Fe + )
IT(—0y)| X177 1 (55 1

— 2
X-1  X-1\6 @-oon—1 "

+

%/(3 —1/2 —0y)

)
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_ 5 o1 —0 2000 —0)  (2+9(X))a(X) - B(X)
€0, x 12 1= log(1 +17) (2X(X T x 201+ 7(X)
1
t o1

CH7U7X7q72 :: log (

q > ((2+7(X)) a(X) — B(X)

4r? 2(1+ (X))
((X) = B(X)) [P(=o)l X' 1  oi-0
1+yX) — xX-1 X-1 X )

Y(X) = man|F(1 — o9 +1y)| ((02 —1)+ 029_ 1) ’

(

(0’2 I)XUQ 1 fRe (Xl Ur(l )) du ZfX S F(Z - 0—2)

X271 _I'(2—02

B(X) == 4 M}Re(xl “T(1—u))du ifT(2—0y) <X <M,,

X727 14 7(2—03)

0 otherwise

(3.41)

and finally
o1

a(X) = max / (X' T(1 —u+iy)) du — (B(X) XD (1 — 02 + iy)) |(3.42)

. ((02 1)+ @yj 1) .

Remark 3.32. Choosing oo appropriately, it is suspected that the mazimum in (3.42)

is attained at y = 0. In such a case, we would have a(X) = 5(X).

Proof. Integrating both sides of Lemma 3.25 from s to s; yields

log Li(s) = log Li(s1) + F(s,X) — F(s1, X) + /(Rsig(w) + Rins(w) + Rei(w))dw.

S

We take real parts of both sides to bound log|L;(s)|. Since |A;(n)| < 24/n, we bound

d 9]
log |Li(s1)| — Re(Fi(s1, X)) < (1 — e™X) ZMJr > _2Am) (3.43)

—n7t log(n) n:d+1n”1—1/2 log(n)
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Notic that taking the logarithmic derivative of ( and integrating yields

> i = 2lon(Clon — 1/2) = 23 A og(o),

which can easily be computed numerically with a computer.

(i) We first bound the contribution from the trivial zeros:

Since 1 <o <w < 017 <2 and [I'(—n — w)| < |I'(—w)| by the functional equation,
we know that the maximum is attained either at s or s;, so that the maximum is less

than or equal to max{|T'(¢)|, |['(c1)|}. Thus

51

/ Rui(w)dw < max{|T(o)|, [T(c1)[}) / Xy

Xl—cr
(X — 1)log(x)

< max{[I'(o)], [T'(e1)]} - (3.44)

(ii) We now bound the contribution from the poles of I': We will show

51

[ Bty < ogtcta = o = 1/2) = tox(ct = =12 (53 * 50— )

s

B 10%(‘[@‘(3)“ + i 10g(((3 o — 1/2>) 4 01— 9 <46?9 4+ log(l + t2) + log(12)>

X X 2X?
+ Lo %I;;iog 221_0; + % log II“((C:;)) + Q(JIX_ ) log(1 + #2) + —(01); ) log 4i7r2
(3.45)
We use the functional equation to obtain
51 - s
/Rins(w)dw = ;%/%(w —n)dw

s

= (=X)™ Li(2+n—s) q
1 — 0¢) log —
n! o8 Li(24+n—s) (o —o1)log 472

n=1
S1

—/(%(2—w+n)+¥(w—”))dw

s
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First we note that

im(a —oy)log —L < (1 = 0)log gz (3.46)

n=1

Additionally, we have

L;(2 — 2\ 1 1
o L2 = 51) _ S5 [(m) .
Li(2+n—s) = 2= logm \m?>t-or  m2tn-e
Clearly for n > 2, mgﬁHH — m%ln,o < m4l,c,1 — m41,(,, so that we get the bound

lo LZ(Z +n— 81)
STL.2+n—s)

< [log(¢(4 — 01 = 1/2)) —log(C(4 — 0 — 1/2))].

This yields

“(-X)™" Li(24+n-—
Z( ) log (2+n—s1)
n! Li(2+n—s)

n=2

1 1
+
2X?  6X*X —1)

< llo(C(4 — o — 1/2)) — log(C(4 — o — 1/2))] ( ) C(347)

For n = 1, taking the real part and noting that |L;(3 — s1)| = |L;(s)|, we have

_ Li(3 — s1)| log |Li(3 = 51)]  ~— |Ai(m)]
_X)og | -
(=X log T =] X * 27713—" Tog m

< _loa(L) 1

log(¢(3—0 —1/2)). (3.48)

It remains to bound

7(1%(2—w+n)+%(w—n)> dw.

S

Since 1 < 0 <w < g1 < 2, we know that 2 —w +n > 1 for all n > 1, so that we can
use equation (3.24) to bound that term. We will use equation (3.26) to bound the term

with w — n for n > 2. For n = 1, we have u —n € (0, 1), so that we can use equation
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(3.27). We also see, independent of n, <u—n> (1— <u—n>) = (2 —u)(u—1), as
either <u—n>=wu (mod 1) or <u—n >= —u (mod 1), and < u—n >€ (0,1).

This yields, for n > 2,

/

F/
F(Q—M‘H”L) F( n)

49 10g((3+n—u)(2+n—u))

i 5 + log(1 + ) + log(3 + n — u).

<

Now note that forn > 2, 2+ |n—u| =24+n—wu, and 1+ (24+n —u)? < (3+n—u)?, so
that w—klog(Q—Hn—uD <log((34+n—wu)(2+n—u)). For n =1, we have

u—1>0and 3—wu > 0, so that we can use equation (3.25) and the functional equation

to obtain
I I 1 I
— < — — — < _
Re(r( 1)) Re(r(w)) Re (w—l) _Re(r(w)>
I t? 1 I’
< — - - - 2y <« 2 2
< F(u)+u(t2+u2) + 210g(1—|—t ) < F(u)—f—log(l—l—t )
and

I I’ t2 1 5
Re (F(B—w)) < F(S—u)—l— B w0+ (3w +§log(1—|—t )

r
< F(B —u) + log(1 + 2).

Now we have, since u > 1 and log(n + 2) - n < n! for n > 3 and X > 2,

OO F/
/Re< 2—w—|—n)—|—r(w—n))
01— 0 49 1 1 t2 1 19 lOg ch1_—11 - log 22__?
< D7 (T o1+ +log12)) + B
2 r 2(01 —
b 2 g llo) 201 =0) ey (3.49)

X °T(o) X
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Rearranging and combining equations (3.46), (3.47), (3.48), and (3.49) yields equation
(3.45).

(iii) Finally we bound the contribution from the significant zeros of L;:

We will show

7Re(Rsig(w)) dw < (a(X) + Oé(ix—i ;g{(iﬂ) <% log <#) N %log (1+7)

+ 1%(02) + 1 F1(82,X)) + o(X) — B(X) , T(—02)| X7 10g< a >

o 1+ v(X) X -1 42
IT(—0y)| X2 1 55 1 )
= log(1 +t
T x X1 6 " @ Teel )

¢ q
Fix an individiual zero p := 1 + 7y.
/Re (X I'(p—w)) dw =Re (B(X) X" *T(p — s2))

S1

+ /Re (X7 (p — w)) dw — Re (B(X) X" T (p — 52))

s

1
< Re (B(X)X"*T(p — s2)) + o(X)Re ( > .
So — p
Now, summing over all non-trivial zeros of L; gives the bound

51

/Re (Rig(w)) dw < B(X)Re (Rgig(s2)) + a(X)ZRe ( ! ) (3.51)

Sg—p
S

Now we obtain by lemma 3.28

S Re (8 e p) ~ Re (%(52)) + %log (%) + Re (FF (52>) (3.52)

We again use the exact formula for i—; from Lemma 3.25 to obtain

/

7, (52) = =F1(52, X) = Rug(s2) — Rui(s2) = Rins(52). (3.53)
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We again need to bound each of these.

Clearly, taking the absolute value and noting that |I'(—n — s)| < |I'(—02)]|, we have

P (—02)| X'
X -1

Rui(s2) < [D(=0)|>_X "7 =

n=0

(3.54)

We next bound Rjns(s2). We use the functional equation of to obtain

= n! L I I’ q
RinS(SQ) = Z (L (n+2— 82) + F(SQ _n) -+ F(n—i—Z— 32) ++10g (m)) .

n=1 "
(3.55)
Since ﬁ—;(w) => % and A(m) < 2y/mA(m), we know that for n > 1
¢ n=0
; o 2A(m) ¢
‘f(n+2—52 ‘— —82) SZOW_ €(3—1/2—O'2) (356)

We again use Equations (3.26) and (3.24) of Lemma 3.26 to obtain

I’ I’
—(82 — n) + =

T F(n+2—52)

<49+ 1
=6 T2 ow)(os 1)

+log((n +1)(n +2)) + log(1 + ). (3.57)

Therefore, combining equations (3.55), (3.56), and (3.57) yields

1 (55 1
Rins < = log(1 + 2
| (82)|_X—1(6+(2—02)(02—1)+Og( +)
C/

C(3—1/2—0'2)

+log (ﬁ)) . (3.58)

We use Equation (3.25) of Lemma 3.26 to obtain

I’ I 12 1 12
Re [ — < S 1
o(T6) <t g s (14 )

_I;( )+i2+ log (1+¢%). (3.59)



54
Combining the terms involving Re(Rsg(s2)), it remains to bound
16(X) — a(X)| Re(Rsig(s2)). (3.60)

We bound Re(Rgg(s2)) similarly to the way that we bound Ry, bound above. A

non-trivial zero p of L; contributes

Re (X*7T(p — 52)) < [Re (X7""T(p — s2))|

— X0 D1 — gy +i(y — 1) ((02—1)+@) -Re< ! )

02 — Sg —p

We then bound (X)) so that we have shown, using the functional equation for 2—;

and the exact formula from Lemma 3.25,

Re(Rqy(s2)) = Re) (X T'(p— 53)) < v(X)Re (Z ! )

S9 —
" p

—1(3) (108 (%) + e (Toa)) + o (%())) —(X)

e

We have already shown how to bound

I’ I’ 1 1
Re (f<32)> < Flo2) + 5, Tals (1+¢%),

so combining the Re(Rg4(s2)) terms yields

[Re(Rig(s2))] < #(AX) ((% + ’F(_;;)_pf _02> log <4;;2>

I’ 11
+—(02) + — + = log (1 +¢*) — Fi(s2, X)) . (3.61)
I 02 2

The inequalities (3.54), (3.58), and (3.61) bound the terms in equation (3.53). Noting
that a(X) > B(X) because plugging y = 0 into the term we are maximizing in a(X)

gives exactly 5(X), we get equation (3.50) as a consequence.
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a(X)-B(X) _

Combining equations (3.45), (3.44), and (3.50), and noting that a(z) + =575

a(X)(2+y(X))-B8(X)
1+v(X)

completes the proof. O

3.7 Fundamental Discriminants and Bounds for

Weight 3/2 Cusp Forms

In this section we show how to find a bound Dy, ,, such that for every fundamental
discriminant —D with D > Dy, ,, we have ag(D) > 0. Thus, combining this result with

Section 3.3 gives the result for all discriminants.

3.7.1 Bounds for Fundamental Discriminants and Half Integer
Weight Cusp Forms

We now proceed to show how bounds for a(X), v(X), and (X)) are obtained.

Lemma 3.33. Fiz a finite number of intervals [Yon, Y1) with 0 < Yo, < y1.n < 00 such
that U;nzl[y(),na yl,n] U [?/1,m, OO) = (O, OO) Then

oc—1/2 1

» | 1 gt (0= 1/2)
5(X) < maz mas,<,, /"a: W<~u+zwwﬂd“'(ﬁk%yin+«ao—1/m2 |

oo—1/2
o—1/2
[ e -t _—
(=" ) s (o)
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For v(X), we obtain the bound

2
‘ Yin

¥(X) < max{maxn<m (1 — o9 + iyon)| ((02 —-1)+ ~ 1 1) )
) —

‘ 1
IT(3 — 02 + iy1.m)]| 1} . (3.63)

09 —

Finally, for a(X) we obtain

o1 ,
o(X) < mag ma$n<m/X1_”|F(1 — U+ Yo )] ((02 — 1) 4 Ao >

02—1

2
oo . Yo,n
_ﬂ(X):Bl F(l—@—{—zyl,n) ((02—1)+—0_ 0 1) 5
9 —

2
(02 — 1) + 22 -
(0= 1) +yi - (364)
1,m

g1
/Xl—“yr(g — U+ Y1m)|

Proof. We will show the result for §(X), and the analogous calculation for «(X) and
(X)) is left to the reader.

First define 4y, ,,1(X) to be the max taken in the interval y, < y < y;. Further,

define
o—1/2
fl) = [ o nCus i
oo—1/2
and

2 82+ (00— 1/2)2

(11 y2+(0—1/2)2>_1.

Notice first that f is strictly decreasing in y > 0, while g is strictly increasing. Therefore,
noting that both functions are even in y, we fix 0 < yp < y < y1 < 00, then pull the

absolute value inside the integral to give

6[y07y1]<X) < f(fl/o)g(y1)-
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Now we deal with the case where y; = oo. The functional equation of I'(z) gives us

o—1/2

_ _u T'(2 —u+iy)|
fly) = / z (u2+y2)1/2((1_u)2+y2)1/2du'

oo—1/2
Now, noting that 1 —u > 1 — (a—%) :%—0:00—%andu200—%, along with the

fact that |I'(2 — u + dy)| is decreasing in y, we get

o—1/2
u . 1
f) < [ e Ine - u i)l —
oo—1/2 (U B 5) + Y
Now, defining z := (00 — %)2 +y? and a := (0 — %)2 — (00 — %)2 requires us to bound

2
zlog (1 + %) '
Since a > 0 we easily see that this function is decreasing for z > 0. Hence we obtain

o—1/2

Y | 2
R R 2 Y
o0—1/2 ((00_%) +y(2)) log (2—>2+y02)

We have now set up the framework to show our main theorems.

Proof of Corollary 3.1. Let N be squarefree and odd, g € 552(4]\7), and € > (. Choose
I<o<1l+5%.

Observing the bounds for a(X), #(X), and (X)) in Lemma 3.33, we see that the
coefficient in front of log (#) in Theorem 3.31 goes to zero as X goes to oo. Using the
functional equation for L(G;, —D,s), we get an additional term "2;1 log(q). Therefore,

taking 0 < 1+ 5§ and X sufficiently large yields

| Li(1)] < D5,
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where the coefficient is explicitly computable from Theorem 3.31.

Now, using Lemma 3.9, if —D is a fundamental discriminant, then we have shown
|ag, (D) <. D+,
Finally, we use Lemma 3.12 to obtain the result for all discriminants. O]

Remark 3.34. This result shows the Ramanugjan-Petersson Conjecture for k = 3/2 and
N squarefree and odd, conditional upon GRH for weight 2 modular forms.
For weight 2k cusp forms we have L(G, —D, s) centered at k with functional equation
s — 2k — s when multiplied by a T" factor and the appropriate power of q. Therefore,
1

this argument should be easily generalized for all weights k + 5, with k > 1.

We use the following lemma of Duke [10] to prove Theorem 3.7.

Lemma 3.35 (Duke [10]). Fiz f € S3/2 (I'0(N),v). Then
IFI* < T(@)d(N)N?*Y la*n~e,
n=1

where o > % is any number so that the series exists, d(-) is the divisor function, and the

constant is absolute.

Proof of Theorem 3.7. Set g := 6§ — E. We will bound E and ¢ independent of . We
will use the bound obtained in Corollary 3.1. However, some of bounds were dependent
on 6. We now describe how to bound these terms independent of #. The terms with F
and F; may be bound independent of L; by bounding \; < 2y/nA(n) in Theorem 3.31

and taking the absolute value inside the sums F' and F';. Thus, Corollary 3.1 yields

ag(d) <. [|glld"/**. (3.65)
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We know that for a discriminant —d with (%) # 1 and p? 1 d,

12

ap(d) = @ (p=1)

H(—d). (3.66)

Assuming the Riemann hypothesis for Dirichlet L-functions, Littlewood has effectively

shown that H(—d) > o4 [26]. Thus

1
ap(d) >. ]—)dlﬂ—é (3.67)
It remains to use Lemma 3.35 to bound ||¢|| independent of 6. Define wg to be the

number of automorphs of the quadratic form ). Denote the genus of () by G. Define

further

M(G) = Zwé},

Q'eG
where the sum is taken over all ternary quadratic forms )’ in the genus.

Siegel proved (cf. [14]) that
ap(d) = M) Z W@laeQ/ (d).
Therefore, since ag Q,(d) > 0 for every (', we have
ay(d) < (M(G)wg + 1)ag(d).
Moreover, it is well known [27] that wg < 48, so
ay(d) < M(G)ag(d).

Clearly, since wg > 1, M(G) < #G.
Now notice that for any Q # Q' € G, we have ag, — ag,, € 5;/2(419). Due to the

isomorphism between S,

3/2(417) and Ss(p), we know that
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It is well known (cf. [28] p. 10) that dimeSa(p) < [BEL] + 1. Thus, #G < p. Therefore,
ay(d) < pag(d).
Plugging in equation (3.66), we have
a,(d) < p*H(—d).
Siegel’s work [33] shows effectively that H(—d) <. d'/?*. Therefore,
ag(d) < pZd%Jre-

It is important to note here that our constant does not depend on g.
Therefore, the power of d attained allows us to choose o = 2 4 2¢ in Lemma 3.35 for

the convergence of the sum. Since we know that N = p is the level, this yields
lgll* < p**iep?.

Therefore,

ag(d) < ||glld"* e < p*redt it (3.68)
Combining equations (3.67) and (3.68), ag(d) > a,(d) if

1d1/276 >, p3+6d1/4+6,
p

i.e.

d >, p16+e'
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Theorem 3.36 (Theorem 1.2). Fiz 0 € M;;Q( 4p). Assume GRH for Dirichlet L-series

and weight 2 modular forms. For every X >~ + 3/2 such that
2+y(X)X) 29(X)  [D(=op)| X'~
1+~9(X) 14+~(X) X -1
2(o01 — 0) 2 (X)) X -1 1
_ —1) < =
+ X + X _1 + 3 X2 + (o ) < 5

there ezists an effectively computable constant D, x such that for all fundamental dis-
criminants —D < —D, x with ( ) # 1, one has ag(D) # 0.

Moreover, such an X exists, so, assuming GRH for Dirichlet L-functions and weight
2 modular forms, there is an effectively computable constant D, such that for all funda-

mental discriminants —D < —D, with < ) # 1, ag(D) # 0.

Proof. By equation (3.9), it suffices to bound F(s). By definition,

O’ PR
log |F'(s)| = log(|L;(s)]) +log(|I'(s)[) — log(|L(s0)|) — log(|L(s)]) +
Using Theorem 3.31, we obtain constants ¢y, x 2, Co.s,.x+2, and cg o x 42 such that

X X((2 +7(X))a(X) —
1Og(|Li(S>|) < X+1F(3aX)_ (X+1)(1+’}/( )

)ﬁ( ) F1(827 X)
+ Coox2+ Cooxt2+ Co0xq2 (3.69)

Moreover, Theorem 3.29 gives us constants ¢y, x,1, Co,0,x,t,1, and €g o, x m,1 such that

| L(s0)| X
L) — X —1-0(X)X

log (Re(G(s0, X)) — Re(G(s,X))) + c1.x.00

+ Coox1F Cooxt1+ Cooxm1- (3.70)
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Therefore we have obtained

X((2+~(X))a(X) — 5(X)
(X + (1 +~(X))

( Re(G(s0, X)) —Re(G(s,X))) + coo.x2 + Co0.x,02 T Co.0,X,9.2

F(s,X)— Fi(s2, X)

- (Ce,a,X,l + Co,0,X t,1 + CG,J,X,m,l) + IOg ‘F(Sﬂ —2 IOg ‘L(S)|

Using the fact that ¢ = pD? and m = D, it remains to deal with log |[['(s)|, 2log |L(s)],
and the remaining terms involving F', F';, and G. We will combine the terms ¢y, x 1
and cg , x +2 with log|I'(o + it)| to remove the dependence on t. The exponential decay
of I'(0 + it) in the ¢ term will swamp the contribution from the other terms, as a
quick calculation indicates these only have polynomial growth. The term dealing with

log | L(s)| may be bound easily by

log |L(s)| = —log|¢(0)]- (3.71)

If we denote the sum of the terms involving F', F';, and G, using the notation used

in [29], as
R X
nEQRenitlog(n) (n; X), (3.72)

then, fixing a constant Ny, we may bound the first Ny terms by a constant, and the
remaining terms we will bound separately. Notice that the dependence on X on the
first Ny terms will be inconsequential for X large, as we can bound e~"/* by 1, whereas
for X small we will explicitly use the value of X to obtain a better bound.

Now note that the contribution to v(n; X) from the terms involving F' and F'; is

)z X 1 log(n)
MO C i )
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log(n)

where a, is above. Since a, > 0, we would like a,=>%;> < n~? so that we can bound this

contribution by

X 1
A : =)
(mx(n) 377 (w)
Choosing o9 > o, the asymptotic growth shows us that there exists an Ny such that

n > Ny will suffice. Therefore, we will choose Ny sufficiently large to obtain this result.

Now, using the fact that [A(n)| < 2A(n)\/(n), we have

o(n; X)| < e (M b, (M - M)) <o A e

no—1/2 noo ne pmin(eo,0—1/2)

Therefore, since ¢, is independent of n, it remains to bound sums of the form

> An)
H(a,X):= Y ————e""
(0, X) nalog(n)e
n=No+1

We will need the following lemma which is a small generalization of a lemma from [29]

to proceed with bounding the terms n — oo. Recall our definition (3.14) of ¢ (x).

Lemma 3.37. Conditional upon the Riemann Hypothesis, one has for 0 < a <1,

H(o, X e Mo Ny — () + DX X
< _ - _ ENoX _
(Oé, )— Ng‘log(No) (CNO 0 ¢( 0))+ IOg(NQ> ( «, 0/ )
where
['(z;y) = /twletdt,
y

and Y () < eny,x for every x > Ny.

Proof. Since ¢ (x) jumps only at prime powers, it follows that
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Using the results in Rosser and Schoenfeld [31], we have ¢ (z) < cy,z for x > Ny — 1/2,
and some cy, > 1. Since Chebyshev showed that () ~ x (cf. [15]) this constant goes

to 1 as Ny goes to infinity, but Rosser and Schoenfeld give an explicit constant of

log(N0)2

1+
87T\/N0

assuming the Riemann Hypothesis.

Integration by parts now yields

o~ No/X X X
H(a, X) < ——— (en Ny — (N, BV
(o X) < N(?log(No)<cN° 0= ¥ °)+CN°/ tolog(t)
No
o No/X e ot/ X
< (eniNy— (N 0 dt
= Ny log(g) M0~V °”+1og<No>[ T
0
o—No/X enneNo/X x1-a
= (e No — (N D T'(1 - a, No/X).
Ny log(Ng) Ao~V + gy T T e /X0

]

We now return to the proof of Theorem 1.2. Notice that we have now shown that
the only terms involving D are the terms 5% 1og (%), Co.0,x,¢2 and —Cg g X m.1-

Investigating equation (3.9) shows that if the constant in front of log(D) is less than
%, then we will have a result of the form D < ¢. Therefore, it only remains to show that
there is an X such that the coefficient in front of D is less than or equal to % Plugging
in m = D and ¢ = pD?, and using our bounds for a(X), v(X) and 6(X) obtained in
Lemma 3.33, we see that the limit of the power of D as X — oo is ¢ — 1. Since 0 < %,

such an X exists. OJ

Remark 3.38. In practice, we will fix a constant Ny and use cancellation between the
first Ny terms of the sum in equation (3.71) and the first Ny terms of (3.72) to get a

better explicit bound. The details are described further in Section 4.2.3.
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Chapter 4

Explicit Algorithms for Computing

Good Bounds for F

4.1 Introduction

In Chapter 3([21]), we have shown an effective bound for certain positive definite ternary
quadratic forms representing every integer up to local conditions, conditional upon GRH
for Dirichlet L-functions and L-functions of weight 2 newforms. In this chapter, we give
an algorithm to compute this bound and use it to obtain a good bound for E. The
algorithm is mainly comprised of an efficient decompostion of a certain space of modular
forms and the computation of bounds for certain constants defined in Chapter 3 ([21]).
Using this algorithm, a good bound for E' is calculated for every F/ Fp with p < 107.
The chapter concludes with computational data obtained using the algorithms de-
scribed herein to obtain good bounds D, for p < 107 and computations of the set
of fundamental discriminants —D > —D, for which the map is not surjective. For
p € {3,5,7,13}, a simple dimension argument about modular forms shows that every D
is a good bound for p. Collecting the data for the primes p < 107, the following theorem

is obtained.

Theorem 4.1. Assume GRH for Dirichlet L-functions and L-functions of weight 2
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P Good Bound D, forp. | p Good Bound D, for p.
3,5,7,13 1 59 1.166 x 10Y
11 5.359 x 10° 61 1.413 x 107
17 1.221 x 10 67 2.323 x 10"
19 7.544 x 102 71 1.793 x 10%
23 2.418 x 10 73 7.035 x 107
29 4.305 x 10% 79 2.370 x 10%
31 4.866 x 106 83 1.033 x 10%°
37 4.552 x 104 89 3.257 x 10%°
41 1.786 x 10'® 97 4.750 x 10'®
43 2.069 x 10" 101 5.296 x 102
47 1.804 x 10 103 8.748 x 10
53 3.817 x 107 107 1.761 x 10%!

Table 1: Good bounds D, for every prime p < 107.

newforms. Then 3.257 x 10%° is a good bound for p < 107. More precisely, we obtain

Table 1 of good bounds D,, for each p.

For a fixed fundamental discriminant —D, we also show an algorithm to determine
whether the reduction map from elliptic curves with CM by O_p is surjective. In cases
where the good bound obtained is small enough, we furthermore compute whether the
map is surjective for each fundamental discriminant —D > —D,, hence giving a full list
of D for which the map is surjective, conditional upon GRH. To accomplish this for a
wider range of p, a specialized algorithm is given here for computing surjectivity more
efficiently for D < D, when the supersingular elliptic curves are defined over IF,. For
those defined over F 2, to reduce calculations we simply have a loop with variables z,,
and z, and bound x and y by a fixed constant.

The bound D, is feasible for p = 11, p = 17, and p = 19, using our specialized

algorithm and the fact that every supersingular elliptic curve is defined over IF,. This
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yields the following theorems.

Theorem 4.2. Assume GRH for Dirichlet L-functions and L-functions of weight 2
newforms. Then the reduction map mod 11 from elliptic curves with CM by O_p is

surjective for every fundamental discriminant —D for which 11 does not split if and

only if

D ¢ {3,4,11,67,88,91, 163, 187, 232, 235, 427499, 595, 627, 715, 907, 1387,

1411, 3003, 3355,4411, 5107, 6787, 10483, 11803}  (4.1)

Theorem 4.3. Assume GRH for Dirichlet L-functions and L-functions of weight 2
newforms. Then the set of fundamental discriminants —D for which 17 does not split
and the reduction map mod 17 from elliptic curves with CM by O_p is not surjective

has size 91, the largest of which is D = 89563.

Theorem 4.4. Assume GRH for Dirichlet L-functions and L-functions of weight 2
newforms. Then the set of fundamental discriminants —D for which 19 does not split

and the reduction map mod 19 from elliptic curves with CM by O_p is not surjective

has size 45, the largest of which is D = 27955.

Having established such surjectivity results, it is straightforward to ask whether
similar results can be shown about the multiplicity of the reduction map. This question
was addressed and an ineffective solution was given by Elkies, Ono, and Yang [12]. We
will need to define two functions before giving their result as it is stated in their paper.

For —D a fundamental discriminant, define Hp(z) € Q[z] to be the Hilbert class

polynomial, of degree h(—D), whose roots are precisely the j-invariants of the elliptic
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curves with complex multiplication by O_p. These roots are referred to as singular
moduli of discriminant —D.

Define further S,(z) € F,[z] to be the polynomial with roots precisely the j-invariants
of those elliptic curves defined over E which are supersingular. Since the j-invariant is
invariant modulo the prime p under the Deuring map, our result may be rewritten as

follows.

Theorem 4.5. Conditional upon GRH for Dirichlet L-functions and L-functions of
weight 2 newforms, there is an effectively computable constant D, such that for all D >
D, up to local conditions,

Sy(x) | Hp(z)

over IF[x].

Elkies, Ono, and Yang have shown unconditionally in [12] the following unconditional

but ineffective answer to the question of multiplicity.

Theorem 4.6 (Elkies-Ono-Yang [12]). Fizt > 1. There exists an (ineffective) constant
D, such that, for every fundamental discriminant —D < —D,, for which p does not
split in O_p,

Sy(@)! | Hp ()

over IF[x].

In terms of our notation, they have shown for every ¢t > 1, every supersingular elliptic
curve over E lifts to at least t elliptic curves with CM by O_p whenever D is sufficiently
large. A slight alteration to our proof in [21] would lead to an effectively computable
bound of this type, conditional upon GRH for L-functions of weight 2 newforms and

Dirichlet L-functions, which should be feasible for small p and small t.
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Using the connection between bounds for coefficients of theta series and good bounds
for F described in Section 2.1, it will suffice to show a good bound for @) for each @
with associated theta in Kohnen’s plus space of level 4p. In Section 3.7, we obtained a
bound for coefficients of these theta series. Given the connection from Section 2.1, this
gives a good bound for E, dependent on numerically calculating certain constants, and
hence a good bound for p, since there are only finitely many supersingular elliptic curves
over E. In Section 4.2, we fix a basis and decompose a certain space of modular forms
in order to calculate some of the constants obtained from Section 3.7. Furthermore,
we give explicit algorithms for calculating the remaining constants carefully in order to
obtain better good bounds for E. In Section 4.3, we use a trick based on the Ibukiyama’s
classification [16] of the set of Op, when E is defined over F,, in order to calculate the
set of D < Dg which are generated by (). Finally, in Section 4.4, we give a summary
of the results obtained by explicitly implementing the algorithms from Sections 4.2 and

4.3 for p < 107.

4.2 Algorithm to compute Dg and D,

We will first calculate the maximal order, then the corresponding quadratic forms. Once
we have obtained the quadratic forms, we decompose the space into the Eisenstein series
and a direct sum of Hecke eigenforms. We will also give an algorithm to choose the
Hecke eigenforms ¢; and a choice of the Shimura lift S. This will allow us to calculate
the constants b;. In order to calculate the constants ¢;, we use S in order to obtain the
Shimura lifts G;, and then we may use a result of Cremona [5] in order to calculate the

special value of a twist of Gj.
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These algorithms are implemented using MAGMA [3] and the C programming lan-
guage. Many algorithms are made more efficient by built in functionality in MAGMA,
and the wonderful implementations made the actual calculations much simpler. I would
like to thank anyone who has contributed to this wonderful computer algebra system.

First we need to calculate the maximal orders of the quaternion algebra ramified
exactly at p and co. We use Pizer’s randomized algorithm [30]. This is based on choos-
ing (randomly) an integral element of the algebra, and then finding the corresponding
quadratic order. Then membership in the quaternion order is quickly checked, since this
simply corresponds to calculating whether adding it to the existing matrix leads to an

infinitely generated module over Z or not.

4.2.1 Calculating Maximal Orders and Theta Series

Using the algorithm of Pizer above, we calculate all of the maximal orders for the
quaternion algebra ramified exactly at p and oo using a built in function in MAGMA.
We next need to calculate the theta series of all of these. Since we have the 4 generators
of the maximal order, we will represent any sublattice by a 4 x4 matrix. The j-th column
will represent the coefficients of the j-th generator in terms of the standard basis of 1,
a, 3, and af with o? = —p, f? = —¢, and Ba = —af3.

We can find another set of generators by applying SL4(Z) operations. Doing so, we
can find a choice of generators so that the corresponding matrix is lower triangular. Since
it is lower triangular, finding the trace zero elements is simple, as the only generator

which is not trace zero is the element represented by the first column.
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Adding an Element to a Lattice

We will describe here the function which takes a Z-module M and an additional element
and returns the module generated by the element and M. Using our representation of
the lattice as a 4 x 4 matrix, we generate the new lattice by taking the 4 x 5 matrix
with the first 4 columns identical to the lattice and the 5-th column representing the
additional element. We then do column operations until the number of non-zero columns

matches the rank of the matrix and the matrix is in lower triangular form.

Getting a Basis for Lg

We take each maximal order, multiply by 2, and add the element 1 = (1,0,0,0) using
the above function. We have now generated the Gross order. Since our matrix is in
lower triangular form, the trace zero elements are simply the elements which are linear
combinations of columns 2 through 4. We thus obtain a basis of L by taking the

generators represented by columns 2 through 4.

Finding the 6-Series

Now that we have computed generators for L, we need to calculate the corresponding
f-series up to a fixed chosen C' coefficients. To do so, we first need to calculate the
quadratic form

Q(z,y,2) = ax® + by* + ¢z + dovy + exz + fyz.

This is a simple calculation, since, if the basis of the trace zero elements are s, v3, V4,
4

with v; = > L;;0; for 0y = o, §3 = 3, 04 = af8, and L;,; € Q, then, since the matrix is
=2

1=
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lower triangular,

Q(x,y,2) = N(xyatyys+zva) = (L3 9p+ L3 g+ L3 0pq)a”+ (L3 3+ L3 3pq)y° + L3 4pg°

+ (2(Ls3Ls2q + LasLyopq)) vy + (2L44L42pq)x2 + (2L4 4 L4 3pq)Y 2.

We then simply run over all (z,y, z) such that Q(z,y, z) < C, noting that @ is positive
definite. To determine the range of x, y, and z satisfying these conditions, we first assume
x and y are fixed and solve the equation Q(z,y,z) = C for z, running our innermost
loop between these solutions. Then we find z,, which minimizes Q(x,y,2) — C with z
and y fixed and find the solutions for y to the equation Q(z,y, z,,) = C. Our second
most inner loop runs between these solutions. Finally, we solve for g, which minimizes

Q(z,y, zz,) —C and run our outermost loop between the solutions to Q(z, Yy, 244, ) = C.

4.2.2 Decomposition and Choice of the Hecke Eigenforms and

Shimura Lift
Calculating the Cuspidal Contribution

We subtract the Eisenstein series from each 6-series to get the cuspidal part. This
is calculated by using the formula in [14] for the Eisenstein series and the built in
functionality of MAGMA to calculate the class numbers. For each 6, we have now

calculated the cusp form

g=0—FEc¢€ 552(4]9).
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Finding Significant Coefficients

To distinguish between different cusp forms, we need to find which coefficients of the
cusp forms we want to compare, so we must find ¢t — 1 independent coefficients of the ¢t —1
cusp forms, where t is the type number. To do so, we simply add the next coefficient as
a new column one at a time to a matrix, and then check the new rank of the matrix.
If the rank increases, we keep this coefficient, and otherwise we refill this column with
the next possible coefficient. Thus, in the end we return the matrix containing as the
1-th row the first ¢ — 1 independent coefficients of the i-th g, as well as an array listing
which coefficients these are. Since Gross [14] showed that the subspace of 552(4]9)
containing these theta series is spanned by the theta series, these coefficients will suffice

to distinguish any cusp forms.

Checking if a form ¢ is in the span of other forms

We will often need to check whether a particular cusp form is in the span of another
set of cusp forms, or if it is independent of those forms. To do so, we first calculate as
above the significant coefficients.

After we know which coefficients to check, we simply make the matrix as above and
then check if adding another row corresponding to the coefficients of our new form is
consistent with the matrix. If it is consistent, then this returns a solution so that we
can write g in terms of the existing forms. Otherwise, we know that it is not a linear

combination of these previous terms.
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Calculation of Hecke Eigenforms

We would now like to decompose our cusp form ¢ into a sum of Hecke eigenforms.
To do so, we first determine the action of the Hecke algebra on g. First note that
Sa(p) = S5%(p), so that we have multiplicity one.

Kohnen has shown that there is an isomorphism between 5';72(417) and S5V (p) which
commutes with the Hecke operators T, for (n,p) = 1 [24]. Therefore, if we fix a newform
gi € S;/2(4p), then we know that the eigenspace of cusp forms which have the same
eigenvalues as ¢; is dimension one. Furthermore, Sturm has shown that a finite set of
Hecke operators generates the Hecke algebra and has given an effectively computable
bound N so that {T,2|n < N} generates the Hecke algebra [36]. Hence we will only need
to diagonalize a finite number of Hecke operators in order to determine the eigenspace.

Calculating the coefficients under the Hecke operators is a simple calculation (cf.
[28]). We will diagonalize incrementally each Hecke operator T' = T,2. After each
diagonalization, we will divide the space into subspaces Vi ,,, Vo, ... Vy,n such that for
every f,g € V;,, the eigenvalues of f equal the eigenvalues of g for every n’ < n. By
our discussion above, the dimension of V;,, will be one for every ¢ and some n < N. For

each Hecke operator, we simply iterate the Hecke operator T’
g?.g‘T?g’TZ?g’T:g? ttt

using our function above to check at each stage whether g|7™ is in the span of the set
{9,9|T, g|T?,...,g|T" '} . As soon as this occurs, we get an operator matrix with all
zeros, except ones directly below the diagonal and the last column is the coefficients of

the linear combination of g|T* that yield g|T™.
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The special form of this matrix makes the characteristic polynomial simple to deter-
mine and hence it is straightforward to diagonalize.

From computational evidence, the following conjecture seems very likely.

Conjecture 4.7. There exists a cusp form g =0 — E such that the closure of g under
the Hecke algebra generates the entire subspace of cusp forms spanned by the all of the

cusp forms 6 — E.

Assuming Conjecture 4.7, we can find a particular g such that the closure of g under
the Hecke algebra generates the entire space. Take such a ¢g. Note that if this conjecture
is not true, we simply need to repeat this process for each subspace, but we have verified
the conjecture for all p < 1000. We now diagonalize the Hecke operator matrices for
this g to determine the eigenvectors. If one of the eigenspaces is dimension greater than
one, then we choose another Hecke operator 7' and diagonalize again, until we have

dimension one.

Choosing a Shimura Lift and Choosing g;

We will now choose an embedding into Se(p), shown to exist by the Shimura lift between
Sy2(4p) and S5 (p) = Sa(p) [24].

We start by calculating a basis for Sy(p), a built in function in MAGMA. Then we
compute enough coefficients of the ¢-th Shimura correspondence (cf. [28])

Zag\st( ) X 0 S Zag

n=1 n=1

for all t < ty on the form g which generates the subspace. Since g generates the entire

subspace, ¢|S is in Sy(p) if and only if every such (0 — E)|S € Sa(p).
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We first check that g|S; # 0, and iterate this process with ¢, larger until there exist

constants ¢; such that

S = thst

t<to

satisfies ¢g|S € Sy(p). Here we again use our function to check whether one form can be
written as the sum of other forms to determine whether g|.S can be written in terms of
the basis for Sy(p), using Sturm’s bound to determine which coeffients to compare.
Now that we have the choice S of a Shimura lift, we are ready to choose g;. We
have already decomposed our space above in Section 4.2.2, so we have chosen g; up to a
constant. Under the fixed embedding S, we will normalize g; so that its Shimura lift G;

has constant coeflicient 1.

Calculating b;

We are now able to calculate b;. Since we have fixed our choice of g; in Section 4.2.2, we

only need to use our function to determine g as a linear combination of these eigenforms,

t

for each g. The coefficients obtained from this function are b;, so that g = > _b;g;.
i=1

Calculating c;

Recall first that
_ Jagm)P

L(GZ, my;, l)ml/Q

7

for m; a fixed integer such that a,,(m;) # 0 and m; # 0 (mod p). We may simply choose
m; to be the smallest such integer.
Since we have already calculated g;, we already have a,(m;). It remains to find

L(G;,m;, 1). After using the Shimura lift to find G;, we use the following formula of
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Cremona [5],

—7r _n_
Gzamu E 2aL VP

which is shown to converge very qulckly, so that we may calculate L(G;,m;,1) to a

sufficient accuracy by calculating the partial sum

K
> 2ar(n)x(n)e "
n=1

and choosing K large enough. A very small number of coefficients is actually needed,

since the partial sum with K = 100 is accurate to beyond 25 decimal places.

4.2.3 Calculating the other constants from Section 3.7

These constants are actually fairly easy to calculate once we show clearly where they
come from, given the theoretical results stated in [21]. The methods involved and nota-
tion used are similar to those used in [29].

Most of the constants obtained are explicit in terms of I' and ( factors along the

real line, but we need some work to calculate the terms involving F', F}, and G. Define

v(n, X) by
N\ (n)e /X log(n)\;(n)e X
v(n, X) == cpx1.F ( iz" + Co,X,1,F, 8(n) n;)
(A(n)e_"/x A(n)e‘”/x)
— C9,x2,G - )
nao ne

where o = Re(s), 0g = Re(2 — ), and 05 = Re(s2), so that

Z (nzt log v(n, X)> = CQ’XJ’FRG(F(S,X)) +097X,17F1R6(F1(52,X))
=2

—cp.x2cRe(G(s0, X) — G(s, X)).
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We will bound the following to get a constant independent of the variables involved.

From above, we need to bound

—2log |L(s)| + QiRe (M> . (4.2)

n®log(n)
We also need a bound for the constants depending on ¢, the imaginary part of s. We

will use the I' factor to remove these terms. Thus, we will bound

log [T'(s)| + co,x,1.6 — o, x,2.- (4.3)

A computer is then used to bound

%Re (% (v(m X) - %@)) : (4.4)

n=2

Notice that the term we are subtracting is exactly the term being added in Equation
(4.2). The only nonzero terms are p powers, so the maximum is taken by calculating
@ (v(n,X) - %S,")) for each n = p* and then noting that either x(p*) = x(p)¥,
which is either one or alternates. Finding the ¢ which maximizes this sum for each p,
independent of whether the sum alternates or not, gives the bound, since we then add
up the absolute value of each of these terms together.

It remains to bound

> Re (%(v(n,xn) . (4.5)

n=Np+1

We first bound the part dependent on t in equation (4.3) by noting that the depen-
dence on t in the logarithm is polynomial in ¢, while I' decays exponentially. We will
find that in every case that we check for each o, the decay swamps this growth so that

the maximum is attained at ¢ = 0. Therefore,

log |I'(s)| + co,x,10 — co,x,24 < log|T'(0)],



79

so this contribution will be added to our constant ¢y x ;.
We next show how to bound Equation (4.2), the term involving log(L(s)). Noting
that

log(|L(s) ZRe ( ) log(n ))

we have

—2log(|L(s 2 -2 )
og(|L(s)l) + ZR (nslog ) Z (nslog )

Therefore, taking the absolute value inside the sum gives

] N oSk A
anj;ons log(n H%O:Hn" log(n) 2log([¢ (o)D) nz:;n" log(n)’

and this final finite sum and (o) are easily computed.

Finally, we need to find a bound for the remaining terms in Equation (4.5). Notice
first, since o9 > o, that for n sufficiently (namely we choose Ny such that this occurs for
n > Np) the term from the Fy part of v(n, X) satisfies the bound

log(n) < CQ7X717F
n°2 —  n°

€9, X,1,F,

Therefore, we see that

lv(n, X)| < e "X (200,)(,1,1«“’ 75“ ) + o, x,2,6A(n) (— - —>) .

n°  n°
Since \;(n) < 24/nlog(n), we can further bound this by
A(n)

—n/x
nmin(c—1/2,00) ’

Co, X v

In [21], we have shown for &« = min(c — 1/2, o) an explicit constant ¢y, such that

H(a, X) = Z na/;(ggzme—n/x

€_N0/X CN Xl—a
< (exnNg— (N N A
= Nyog(Wy) M TP 0 )

n=No+1

I(1—a,No/X). (4.6)
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We then calculate the incomplete Gamma factor I'(1 — «, Ny/ X)) using another built in

function in MAGMA.

4.3 Determining CM Lifts for D < Dgp when FE is

Defined over F,

In this section, we give an algorithm to determine whether E/F, is in the image of the

reduction map from elliptic curves with CM by O_p for a fixed D to deal with D < Dg.

4.3.1 Calculating which D are Represented by the Gross Lat-
tice

Lemma 4.8. Let E be a supersingular elliptic curve defined over F,, and let Ly be its
associated Gross lattice and O% be the lattice of trace zero coefficients. Then there exists

a lattice L satisfying Ly € L C OY% such that L is Z-equivalent to (Z,Q) of the form

Q(z,y,2) = pr® + (by” + fyz + cz°).

Proof. Tbukiyama [16] shows that all maximal orders of this type are either of the form

O(q,7) ;:Z+leﬁ +ZO‘(12+5) G T‘w (4.7)

or
Ogr) =Z+2 7% 4 78+ ZW, (4.8)
where ¢ is a prime satisfying ¢ = 3 (mod 8) and (%) = —1,a®> = —p, B = —q,

aff = —fBa, r* +p = 0 (mod ¢) and > + p = 0 (mod 4¢g) in the case when p = 3

(mod 4).
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The lattice generated by the trace zero coefficients of y even and setting ' := x —ry,

Yy = z+ qy and 2’ := y gives the quadratic form

r2+p

q(z')* + (V) + p(z")? + 2ra'y/,

as desired, since every element of the Gross lattice is an element of this lattice with z
even. Changing z to 2z above implies that ¢y’ = 2’ (mod 2), while otherwise 2, ¢/, and
z' can be any arbitrary integer.

For elements of O'(q,r’), we have a simpler task. In this case, the corresponding

quadratic form for O’(q, ") is simply

N2
px2 —|—qy2 1 (r )4 +pzz + 'y,
q

To get the elements of the Gross lattice, we simply multiply y and z by 2 to get

(") +p s

+ (4r")yz.
p (4r')

Q' (z,y,2) == px® + (4q)y* +

Given Lemma 4.8, the quadratic forms from Lg are either of the form

7’2+p

Q' y,2) = q(a’)’ + (y)* +p()* + 2ra’y,

with ¢ = 2’ (mod 2), or

(r')? + pZQ

+ (4ryz=.
. (4r')

Q'(x,y.2) = pa® + (4)y* +

To check if an integer n is represented, we first set two integers M and N and do a

precomputation for efficiency. For @), we do a precomputation of the two sets

r+p

SEy :={n<M:n=q()+ (v/)? + 2rz’y’,y even},
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and analogously

r2—|-p

SOy ={n<M:n=q(@)+ (v)? + 2ra’y’, 9 odd}.

Since we know that, with 2’ fixed, the minimum value is obtained at xdiv := (¢— pi‘f& V'?,
2ra’+ 4r2z’—4—p+r2 (g(z")2—M)
we run 2’ from 0 to (24-)"? and then 1/ from 0 to \/ 5 , and simpl
xdiv Yy gptr? Yy

q

calculate n = Q(2',y/,0). If v/ is odd, we add n to SOy, and if 3/ is even then we add
n to SEy;.

Similarly, for @)’, we calculate
Sy={n<M:n=0Q0,y,2)}
Given SFE,; and SOj;, we now calculate
Tyy:={n<N:n=m+p(Z)*me SEy and 2’ even, or m € SOy, and 2’ odd}.
Notice that, if we define
Ty ={n < N:n=Q(,y,2),y =7 (mod 2)},

then Thy € T € Tn. Therefore, for every n € Ty ar, we know n € Tly, and for every
n ¢ Ty with n < M, we know n ¢ T. Since we expect that after a low bound M
we will not have any such eligible elements which are not in Ty, we can set M lower for
optimization purposes.

We now describe the algorithm to calculate T ;. For each eligible D < n, we
check from 2’ = (%)1/2 to 2/ = (%) 1/2. For each 7/, if 2’ is even, then we check if
D —p(2')? € SEy, and if 2’ is odd, we check if D — p(2')? € SOy;. If so, then we add D

to T . The algorithm for @) is entirely analogous, only needing to check membership
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in Sy, instead of breaking it up into the even and odd cases. We know that np? € TN
if and only if n € Ty ar, so we can skip checking these cases.

We shall show that the running time for this function is O(p+ N M?'/2). We need time
O(M) to calculate SE)y; and SO),. Calculating the modulus of p which are eligible takes
time O(p). For each D, we have to check at most M'/2 possible 2’. Therefore, since there
are O(N) such D, this calculation takes O(NM?'/?). Thus, the overall running time is
O(M +p+ NMY?) = O(p+ NM'?) (since we will choose N > p, we have O(NM1/2)).

Notice that for an individual n ¢ Ty s, we can check membership in Ty in O(N'/?)
time by calculating checking membership in SEx and SOy (or Sy for O'). By doing
this as a precomputation again, we get a running time of O(N + N'Y/2E) where E is the
number of exceptional D ¢ Ty . Therefore, if we choose M so that E < (NM)'Y?

then we can calculate Ty in O(NM?'/2).

4.4 Data

Using the algorithm described in Section 4.2, we will find a good bound for each F with

p < 107. For p fixed, the maximum good bound for F will give a good bound for p.

Example 4.9. We will now compute good bounds for p < 107, using X = 455, 0 =
1.15, Ny = 1000, and oo = 1.3256 (These were chosen by a binary search for o and
a heuristically based search for oo given o.). The table below will give our results in
the following manner. For each maximal order M, we will list the prime p, then the
size of the field F, (q = p or q = p*) which the corresponding elliptic curve is defined
over. We will then list the corresponding ternary quadratic form as [a,b,c,d, e, f] =

ax® + by? + cz® + day + exz + fyz. We then list a good bound Dy for E which suffices
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when (D, p) =1, and a good bound Dy which also suffices when p | D. We separate these
cases since a better bound is obtained for D relatively prime to p and skipping (D,p) = 1
is a computational gain. We omit here the primes 3, 5, 7, and 13, since we have D, =1

trivially. Theorem 4.1 follows from the data obtained below in Tables 2, 3, 4, and 5.

Example 4.10. Now we use the method of Bhargava [1] described in Section 4.3 to
check which discriminants are not represented up to a feasible N. When our feasible
bound N 1is greater than the bounds Dy and Dy above, then we have (conditional upon
GRH) a full list of all discriminants which are not represented and do not have p* | d
(We know that d is represented if and only if dp* is represented [21]). We will list the
quadratic form corresponding to our mazimal order, along with the bounds Noy/N; which
we have checked up to, and a full list of all d < Ny and all d = pdy < Ny which are not
represented by the form. We shall omit dp* from our list to save space. This data is

presented in Tables 6, 7, and 8 below.

Looking at Table 6 from Example 4.10 and comparing with the bound from Table 2
in Example 4.9, we see that Ny > Dy and N; > D; when p = 11, p = 17 and p = 19.

This shows Theorems 4.2, 4.3, and 4.4.

p | #F, | Quadratic Form | D Dy

11| p [4,11,12,0,4,0] 1.311 x 10" | 2.095 x 10°
11| p |[3,15,15,—2,2,14] | 3.354 x 10® | 5.359 x 10°
171 p 7,11,20, —6,4,8] | 1.850 x 10° | 1.869 x 10*°
170 p | [3,23,23,-2,2,22] | 7.640 x 10 | 1.221 x 10
19 p |[7,11,23,-2,6,10] | 1.850 x 10° | 2.956 x 10"
19| p [4,19,20,0,4,0] | 4.722 x 10" | 7.544 x 102

Table 2: Good bounds D¢ for every O € M3+/2(4p) with p < 19.



p | #LF, Quadratic Form Dy D,

23 p 8,12,23,4,0,0] 1.143 x 10'? | 5.539 x 10'2
23| p [4,23,24,0,4,0] 4.638 x 10™ | 4.495 x 10'°
23| p [3,31,31,—2,2,30] | 3.870 x 10> | 2.418 x 10
29| p [11,12,32,8,4,12] | 2.741 x 10™ | 4.052 x 10"
29| p [8,15,31,4,8,2] 1.377 x 10" | 1.054 x 10™
29 | p 3,39,39,—2,2,38] | 5.628 x 10™* | 4.305 x 10
31| p [8,16,31,4,0,0] 3.730 x 10%3 | 4.397 x 10™
31| p 7,19, 36, —6,4,16] | 6.606 x 101® | 4.918 x 10*
31| p [4,31,32,0,4,0] 5.219 x 10" | 4.866 x 106
37 p* | [15,20,23,—4,14,8] | 1.116 x 10 | 1.783 x 102
37| p [8,19,39,4,8,2] 2.849 x 10'3 | 4.552 x 10"
41 »p [12,15,44,8,12,4] | 9.351 x 10 | 4.228 x 10™
41| p | [11,15,47,-2,10,14] | 4.647 x 1013 | 7.424 x 10*
41 p [7,24,47,4,2,24] | 2.456 x 10'° | 1.757 x 1016
41 p [3,55,55,—2,2,54] | 2.036 x 1017 | 1.786 x 108
43| p? [15,23,24,2,8,12] | 3.543 x 10™ | 5.073 x 10"
431 p [11,16,47,4,2,16] | 8.333 x 10'2 | 1.289 x 103
43 | p [4,43,44,0, 4, 0] 1.445 x 10 | 2.069 x 10%°
a7 p [12,16,47,4,0,0] | 4.927 x 10'3 | 6.552 x 101
471 p [8,24,47,4,0,0] 1.202 x 10'® | 1.920 x 10'¢
471 p [7,27,55,—2,6,26] | 2.699 x 10'° | 2.308 x 106
471 p [4,47,48,0,4,0] 5.330 x 10'6 | 6.552 x 10'7
47| p [3,63,63,—2,2,62] | 1.797 x 1017 | 1.804 x 108
53 | p* ][20,23,32,—12,4,20] | 1.257 x 10* | 1.458 x 10%°
53| p [12,19,56,8,12,4] | 5.001 x 10 | 7.990 x 10'¢
53| p [8,27,55,4,8,2] 2.238 x 10% | 2.124 x 10'7
53| p [3,71,71,-2,2,70] | 4.046 x 10'® | 3.817 x 10"
5 p [15,16,63,4,2,16] | 6.695 x 10" | 7.662 x 10
59 | p | [15,19,64,—14,8,12] | 6.695 x 103 | 7.662 x 10
591 p [7,35,68, —6,4,32] | 4.612 x 10 | 2.426 x 10°
5| p [12,20,59,4,0,0] | 2.811 x 10% | 4.492 x 10'¢
5| p [4,59,60,0,4,0] 1.106 x 10'7 | 1.174 x 10'®
5| p 3,79,79,—2,2,78] | 7.295 x 10'7 | 1.166 x 10%

Table 3: Good bounds Dq for every 0g € M,

/2

(4p) with 23 < p < 59.
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p | #IF, Quadratic Form D, Dy

61| p? 23,24,32,16,4,12] | 3.596 x 10* | 3.209 x 10
61| p [7,35,71,—2,6, 34] 7.292 x 10 | 3.927 x 10%°
61| p [8,31,63,4,8,2] 6.102 x 10'° | 4.342 x 1016
61| p [11,23,68, —6,8,20] | 1.696 x 106 | 1.413 x 10'7
67 | p? [15,36,39,—4,14,16] | 1.115 x 10 | 1.781 x 10
67 | p? 23,24, 35, 8,2, 12] 1.152 x 10 | 1.841 x 106
67| p [16,19,71,12,16,6] | 1.359 x 10' | 2.171 x 10'7
67| p [4,67,68,0,4,0] 2.446 x 10'7 | 2.323 x 107
1] p (15,20, 76, 8, 4, 20] 2.458 x 106 | 1.815 x 10'®
1] p [15,19,79, —2,14,18] | 2.458 x 10 | 1.815 x 10'®
1 p [16,20,71,12,0,0] 6.707 x 106 | 9.247 x 10'8
1 p [12,24,71,4,0,0] 1.824 x 10'7 | 1.764 x 10"
1] p [8,36,71,4,0,0] 5.578 x 1017 | 7.929 x 10?
1) p [4,71,72,0,4,0] 1.602 x 10* | 9.300 x 10%°
1] p 3,95,95, —2, 2, 94] 1.123 x 10 | 1.793 x 10%*
73| p? (15,39, 40, 2, 8, 20] 5.001 x 10 | 3.678 x 10'°
73| p? [20, 31,44, —12,4,28] | 2.856 x 10% | 1.710 x 10'¢
3| p [7,43,84, —6, 4, 40] 7.799 x 10%° | 2.953 x 10'¢
3| p (11,28, 80, 8,4, 28] 8.360 x 10% | 7.035 x 1017
79 p? [23,31,44,18,16,20] | 4.859 x 10 | 3.753 x 10
9 p [16,20,79,4,0,0] 7.326 x 106 | 8.289 x 1017
9 p (19,20, 84,16,8,20] | 5.334 x 107 | 8.523 x 10'8
9 p [11,31,87,—-10,6,26] | 1.017 x 10" | 1.119 x 10'?
9 p [8,40,79,4,0,0] 1.099 x 108 | 1.1402 x 10*
9 p [4,79,80,0,4,0] 1.483 x 10 | 2.370 x 10%°
83| p? [23,31,44, —14,8,12] | 4.054 x 10% | 6.477 x 101°
83| p [12,28,83,4,0,0] 1.721 x 106 | 2.591 x 10'7
83| p [7,48,95,4, 2, 48] 3.913 x 10% | 6.251 x 10'7
83| p [16,23,87,12,16,6] | 8.775 x 100 | 1.328 x 10'8
83| p [11,31,92,—6,8,28] | 1.574 x 10'¢ | 2.514 x 10*®
83| p |[3,111,111,-2,2,110] | 4.776 x 108 | 7.089 x 10'?
83| p [4,83,84,0,4,0] 6.461 x 108 | 1.033 x 102

Table 4: Good bounds Dg for every 0g € M,

3/2

(4p) with 61 < p < 83.
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D #F, Quadratic Form Dy D,

89 | p? [23,31,48,2,12,16] | 1.480 x 10™® | 2.869 x 107
89 | p [15,24,95,4,2,24] | 3.555 x 108 | 1.012 x 10%°
89 P [15,27,96,—14,8,20] | 3.555 x 10'® | 1.012 x 10"
89 P [19,23,95, —18,10,14] | 4.045 x 108 | 2.048 x 10°
89 P [7,51,103, -2, 6, 50] 1.663 x 10%° | 3.582 x 10%°
89 | p | [3,119,119,—2,2,118] | 5.144 x 102 | 2.900 x 102
89 | p [12,31,92,8,12,4] | 5.724 x 10% | 3.257 x 10%
07 | p® | [15,52,55,—4,14,24] | 1.184 x 10™ | 4.217 x 100
97 p? 20, 39,59, —4, 8, 38] 5.265 x 1016 | 1.257 x 10'7
97 p? 23,39, 51, —22,6,14] | 2.616 x 10'¢ | 1.599 x 10'7
97 p [7,56,111, 4,2, 56] 1.549 x 107 | 2.616 x 10'7
o7 | p |[19,23,104,—14,12,16] | 9.506 x 10'7 | 4.750 x 10%
101 | p? (32,39, 44, —12,28,20] | 8.477 x 10% | 3.603 x 10'°
101 p [12,35,104,8,12,4] | 1.709 x 1017 | 1.223 x 10'8
101 p (15,28, 108, 8,4, 28] 1.572 x 10*® | 3.193 x 108
101 | p | [15,27,111,—2,14,26] | 5.261 x 10'7 | 3.388 x 10'8
101 p [8,51,103, 4,8, 2] 2.948 x 108 | 7.940 x 10'8
101 | p 7,59,116,—6,4,56] | 2.341 x 10'8 | 1.015 x 10°
101 | p | [11,39,111,—10,6,34] | 4.559 x 10'8 | 2.415 x 10'°
101 | p | [3,135,135,—2,2,134] | 9.667 x 101 | 5.296 x 102
103 | p* | [23,36,59, —4,22,16] | 1.076 x 10™ | 1.620 x 100
103 | p [16,28,103, 12,0, 0] 9.459 x 10% | 4.236 x 10'6
103 | p? [15, 55,56, 2,8, 28] 4.016 x 10% | 5.313 x 10'6
103 | p |[19,23,111,—10,14, 18] | 1.645 x 10'7 | 5.558 x 107
103 p [7,59,119, —2,6, 58] 1.765 x 1017 | 1.861 x 10'®
103 p [8,52,103,4,0,0] 1.032 x 108 | 2.160 x 108
103 | p [4,103,104,0,4,0] 2.647 x 109 | 8.748 x 101?
107 | p* | [35,39,44, —18,32,4] | 1.769 x 10™ | 9.442 x 100
107 | p? [23, 40,56, —16,40,20] | 1.352 x 1016 | 2.102 x 10"
107 | p | [16,27,111,—4,16,2] | 7.861 x 106 | 1.256 x 10'8
107 | p [12,36,107,4,0,0] 1.061 x 107 | 1.694 x 108
107 p [19,23,116,—6,16,20] | 9.625 x 10'7 | 5.827 x 10'®
107 | p | [11,39,119,—2,10,38] | 1.105 x 10'8 | 1.732 x 10'¢
107 p [4,107,108,0,4,0] 4.853 x 10 | 4.368 x 10%°
107 p (3,143,143, —2,2,142] | 1.102 x 10%° | 1.761 x 10%!

Table 5: Good bounds D¢ for every O¢g € M;;Q(élp) with 89 < p < 107.
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38

p | Quadratic Form No/Ny T = {d < N not represented.}
or #T and largest d € T

11| [4,11,12,0,4,0] 3% 10° | 3,67,235,427

11 (3,15, 15, -2, 2, 14] 100 | 4,11,88,91, 163, 187, 232, 499,
595, 627,715,907,1387, 1411,
3003, 3355, 4411, 5107, 6787,
10483, 11803

17 | [7,11,20, —6, 4,8 2% 100 | 3,187,643

17 | [3,23,23,—2,2,22] 8 x 1012/ | #T = 88, largest = 89563

1.55 x 101
19| [7,11,23, 2,6, 10] 3x 100 | 4,19,163,760, 1051
19 | [4,19, 20,0, 4, 0] 5x 1010/ | 7,11,24,43, 115, 123, 139, 228,
6 x 1012 | 232,267,403, 424,435,499, 520,

568,627, 643, 691, 833, 1099,
1411, 1659, 1672, 1867, 2139,
2951, 2356, 2851, 3427, 4123,
5131, 5419, 5707, 6619, 7723,
8968, 12331, 22843, 27955

23 | [8,12,23,4,0,0] 3 x 10° 3,4,27,115,123,163, 403, 427,
443,667, 1467,2787, 3523

23 | [4,23,24,0,4,0] 3x 10° | #T = 78, largest — 72427

23 | 3,31, 31, -2, 2,30] 3% 109 | #T = 196, largest — 286603

20 | [11,12,32,8,4,12] | 3x 10'L / | #T = 24, largest = 22243

5 x 101!

29 | [8,15,31,4,8,2] 2x10° | #T = 23, largest = 7987

29 | [3,39,39, —2,2, 38| 10° #T = 382, largest = 1107307

31| [8,16,31,4,0,0] 10° #T = 36, largest = 17515

31| [7,19,36,—6,4,16] 1010 #T =29, largest = 15283

31| [4,31,32,0,4,0] 10M #T' = 166, largest = 174003

37 | [15,20,23, -4, 14, §] 10° 8,19,43,163,427,723,2923,
3907

37 1[8,19,39,4,8,2] 2.0 x 101 | #T = 55, largest = 24952

41 | [12,15,44,8,12,4] 1010 #T = 60, largest = 82123

41 | [11,15,47,—2,10, 14] 1010 #T = 65, largest = 48547

41 | [7,24,47,4,2,24] 3 x 10° #T = 82, largest = 83107

41 | [3,55,55, —2, 2, 54] 1010 #T = 896, largest = 5017867

Table 6: The set d < Ny not represented by Q) for every Og € M.

3/2(4p) with p < 41.



p | Quadratic Form No/N1 | T ={d < N not represented.}
or #71T and largest d € T
13| [15,23,24,2,8,12] | 3.6 x 10" | 4,11, 16, 52, 67, 187, 379, 403,
568, 883, 1012, 2347, 2451
43 | [11,16,47,4,2,16] 1.3 x 108 | #T = 81, largest = 73315
43 | [4,43,44,0,4 O] 107 #T = 439, largest = 1079467
47 | [12,16,47,4,0,0] 10° #T = 106, largest = 272083
47 | [8,24,47,4,0,0] 10? #T = 108, largest = 85963
47 | [7,27,55,—2,6, 26] 10° #T = 112, largest = 78772
47 | [4,47,48,0,4,0] 2% 10° | #T = 556, largest — 5345827
47 | [3,63,63, —2,2,62] 10° #T1T' = 1165, largest = 4812283
53 | [20, 23,32, —12,4, 20] 10° #T = 30, largest = 33147
53 | [12,19,56, 8,12, 4] 10° #T = 138, largest = 178027
53 | [8,27,55,4,8,2] 107 #T = 152, largest = 137323
53 | [3,71,71,—2,2,70] 107 #T = 1604, largest = 6474427
59 | [15, 16,63, 4,2, 16] 2 x 109 | #T = 158, largest — 304027
59 | [15, 19,64, —14,8,12] | 2 x 10° | #T = 174, largest = 318091
59 | [7,35,68,—6,4,32] 2 x10° | #T = 228, largest = 132883
59 | [12,20,59,4,0, 0] 2 x10° | #T =193, largest = 316747
59 | [4,59,60,0,4,0] 2 x 10° | #T = 920, largest = 3136219
59 | [3,79,79,—2,2,78] 2 x 107 | #T = 2072, largest = 8447443
61 | [23,24,32,16,4,12] 1.5 x 10° | #T = 43, largest = 11923
61 | [7,35,71,—2,6,34] 2 x 10° | #T = 271, largest = 1096867
61 | [8,31,63,4,8,2] 2 x 107 | #T = 233, largest = 363987
61 | [11,23,68,—6,8,20] 2x 10° | #£T = 201, largest = 190747
67 | [15,36,39, —4, 14, 16] 10° #T =57, largest = 20707
67 | [23,24,35,8,2,12] 107 #T =59, largest = 126043
67 | [16,19,71,12,16, 6] 2 x 10° | #7T = 264, largest = 421579
67 [ [4,67,68,0,4,0] 109 | #T = 1271, largest — 3846403
71 | [15,20,76,8,4,20] 2 x 10° | #T = 275, largest = 321883
71| [15,19,79,—2,14,18] | 2 x 10° | #T = 273, largest = 267883
71 | [16,20,71,12,0,0] 2x 10% | #T = 310, largest = 1540771
71| [12,24,71,4,0,0] 2x10° | #£T = 307, largest = 635947
71| [8,36,71,4,0,0] 2x 10% | #T = 346, largest = 1053427
71| [4,71,72,0,4,0] 2 x 10° | #T = 1450, largest = 6463627
71 | [3,95,95, —2,2,94] 2 x 10° | #T = 3170, largest = 15135283

Table 7: The set d < Ny not represented by Q) for every 0y €

89

3/2(4]9) with 43 < p < 71.



Table 8:

p | Quadratic Form No/Ny | T ={d < N not represented.}
or #T and largest d € T

73 | [15, 39,40, 2,8, 20] 107 #T = 81, largest = 53188

73 [20,31,44, —12,4,28] | 10° | #T = 72, largest = 111763

73 | [7.43,84, —6,4,40] | 2 x 10° | #T = 420, largest = 364708

73 | [11,28,80, 8, 4, 28] 2 x 10° | #T = 336, largest = 723795

79 | 23,31, 44, 18, 16, 20] 109 | #T = 88, largest — 50955

79 | [16,20,79,4,0,0] 2 x 10 | #T = 383, largest = 1419867

79 | [19,20,84, 16, 8, 20] 2 x 10 | #T = 391, largest = 1210675

79 | [11,31,87,—10,6,26] | 2 x 10° | #T = 409, largest = 12778803

79 | [8,40,79,4,0,0] 2 x 10° | #T = 495, largest = 1116507

79 | [4,79,80,0,4,0] 2 x 10° | #T = 1886, largest = 25575460

83 | [23,31,44, —14,8,12] 109 #T =97, largest = 36763

83 | [12,28,83,4,0,0] 2 x 10° | #T = 432, largest = 635347

83 | [7,48,95,4,2,48] 2 x 10° | #T = 529, largest = 1358107

83 | [16,23,87,12, 16, 6] 2 x 109 | #T = 416, largest = 1202587

83 [ [11,31,92,—6.8,28] | 2 x 10° | 4T = 169, largest — 1331867

83 | [3, 111,111, —2,2,110] | 2 x 10° | #T = 4639, largest = 62337067

83 | [4,83,84,0,4,0] 2 x 10° | #T = 2134, largest = 9405643

89 | [23,31,48,2,12,16] 109 #T = 118, largest = 137707

89 [[15,24,95,4,2, 241 5 x 10° | #£T = 502, largest = 682147

89 | [15,27,96, —14,8,20] | 5 x 10% | #£T = 464, largest = 1534723

80 | [19, 23,95, —18,10,14] | 5 x 10° | #T = 540, largest — 981403

80 | [7,51,103,-2,6,50] | 5 x 10° | #T = 646, largest = 1427827

80 | [3,119, 119, —2,2,118] | 2 x 10° | #T = 5357, largest = 28654707

89 | [12,31,92,8,12, 4] 5 x 10% | #T = 478, largest = 653227

The set d < Ny not represented by Q) for every 0g €

90

3/2(4p) with 73 < p < 89.
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