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Abstract

For −D a fundamental discriminant and p a prime, we investigate the surjectivity of

the reduction map from elliptic curves with CM by O−D to supersingular elliptic curves

over Fp whenever p does not split in O−D. Under GRH for Dirichlet L-functions and the

L-functions of weight 2 newforms, we are able to show an effectively computable bound

Dp such that the reduction map is surjective for every D > Dp with p nonsplit. Our

investigation takes a detour through a study of quaternion algebras and quadratic forms.

In particular, in showing our result, we obtain as a side effect the following result. For

each positive definite quadratic form Q whose associated theta series is in Kohnen’s plus

space of weight 3/2 and level 4p, M+
3/2(4p), we show an effectively computable boundDQ,

dependent upon GRH) such that Q represents every D for which D > DQ and p does

not split in O−D. Moreover, we give an explicit algorithm to compute DQ (respectively

Dp), and for small p we explicitly compute DQ (resp. Dp). For a further restricted set

of p, we moreover obtain a computationally feasible bound, allowing us to give a full list

of fundamental discriminants −D for which the map is not surjective. To determine the

full list we develop a specialized algorithm to compute which D < Dp are represented

more efficiently whenever all of the elliptic curves are defined over Fp. Additionally, we

obtain as an additional side effect a new proof and an explicit algorithm, conditional

upon GRH, for the Ramanujan-Petersson conjecture for weight 3/2 cusp forms of level

4N in Kohnen’s plus space with N odd and squarefree.
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Chapter 1

Introduction

1.1 CM lifts of Supersingular Elliptic Curves

Let p be a prime, −D < 0 be a fundamental discriminant, and K := Q(
√
−D) be an

imaginary quadratic field with ring of integers O−D such that p does not split in O−D.

Furthermore, let E be an elliptic curve defined over Fp. It is well known that the ring of

endomorphisms End(E) of E are isomorphic either to the ring of integers of an imaginary

quadratic field or to a maximal order OE of the quaternion algebra ramified precisely

at p and ∞. Elliptic curves of the second type are called supersingular elliptic curves.

For an elliptic curve E ′ defined over a number field, it is well known that End(E ′) is

isomorphic either to Z or an order of an imaginary quadratic field. We say that E ′

has Complex Multiplication (CM) by O−D if the endomorphisms of E ′ are isomorphic to

O−D. It is well known that the reduction map mod P, the distinct prime above p, from

an elliptic curve with CM by O−D yields a supersingular elliptic curve whenever p does

not split in O−D.

For convenience, we will say that DE (resp. Dp) is a good bound for E (p) if E

(every supersingular E/Fp is in the image of the reduction map from elliptic curves with

CM by O−D for every D > DE (D > Dp) for which p does not split. The majority

of this paper is devoted to proving an effectively computable good bound for E (resp.
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p) conditional upon standard conjectures. Moreover, an explicit algorithm is given for

computing a good bound for E (resp. p). This algorithm is implemented for small p,

and our results are recorded. We will call a good bound DE a feasibly good bound if

we have determined, with the help of a computer, the set of D < DE for which E is

in the image of the reduction map. By tweaking certain parameters which arise in our

good bounds, we are able to obtain better good bounds for p. Moreover, using a trick

to compute the set of D < DE for which the reduction map is surjective whenever E is

defined over Fp, we are able to obtain feasibly good bounds for a larger set of E.

1.2 Reduction to Representations of Integers by

Ternary Quadratic Forms

Deuring [8] has shown a one-to-one correspondence between lifts of E to elliptic curves

with CM by O−D and embeddings of O−D in the maximal order OE of the quaternion

algebra A ramified precisely at p and ∞. For a maximal order M of the quaternion

algebra A, we will say that DM is a good bound for M if O−D embeds into M whenever

−D < −DM is a fundamental discriminant for which p does not split in O−D. Hence

DM is a good bound for M = OE if and only if DM is a good bound for E. For −D < 0

a fundamental discriminant, the ring of integers O−D is embedded in M if and only if

there is an element of M which generates the ring of integers, namely one with minimal

polynomial x2−Dx+ D2+D
4

. Let LE := {x ∈ Z +2OE|tr(x) = 0} be the so called Gross

lattice of trace zero elements of the order defined by Gross in [14] with the associated

positive definite ternary quadratic form Q(x) = Nx = −x2. It is an easy calculation to
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see that a generator of O−D is contained in M if and only if there is an element of LE

with norm D.

We will say that the integer D is represented (over the ring R) by the quadratic form

Q if there exists x ∈ R3 such that Q(x) = D. For a quadratic form Q, we say that an

integer D is an eligible integer for Q if it is represented locally (R = Zp) at every prime,

and we will call DQ a good bound for Q if every eligible integer D > DQ is represented

globally (R = Z) by Q. This paper will proceed to find a good bound for M (and hence

E or p) by determining a good bound DQ for Q.

1.3 Representations of Integers by Ternary

Quadratic Forms

The question of determining which integers are represented by a given quadratic form is

an interesting question in its own right, which has been studied by a variety of authors

dating back at least as far as Gauss. One such well known result of Lagrange shows

that every positive integer can be represented as the sum of four squares. The amazing

“15 theorem”, proven first but unpublished by Conway and Shneeberger and recently

shown via a much simpler method by Bhargava, asserts that a positive definite integral

quadratic form represents every positive integer if and only if it represents the integers

1,2,3,5,6,7,10,14, and 15 [1]. Such forms are called universal quadratic forms. Bhargava

and Hanke have since shown that every integer valued quadratic form is universal if and

only if it represents every integer less than 290 [2].
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Let

θQ(τ) :=
∑

x∈Zm

qQ(x)

be the theta series associated to a quadratic form Q in m variables, where q = e(τ) :=

e2πiτ . It is well known that θ is a modular form of weight m
2
.

Relying on the fact that θ is a modular form, and comparing the growth of the

coefficients of the Eisenstein series with the growth of the coefficients of cusp forms,

Tartakowsky effectively shows that every sufficiently large eligible integer n is represented

by Q when m ≥ 5 [37]. In the m = 4 case the trivial bound for the growth of the

coefficients of cusp forms is insufficient, but Kloosterman proved an improved bound

(the celebrated result of Deligne proved the optimal bound in the early seventies [7]).

The binary case (m = 2) was studied extensively by Gauss, and Gauss’s well known genus

theory was developed during this study. The question of which primes are represented

by binary quadratic forms has been studied by a variety of authors (cf. [35]), and there

are asymptotics known for the number of integers not represented by a binary quadratic

form [13]. In this case comparing the asymptotics for the number of eligible integers

with the number of integers represented by the form shows that there is no good bound

for binary quadratic forms.

In this paper, we study the trickiest case, namely ternary quadratic forms (m =

3). This case is complicated by the fact that the coefficients of the Eisenstein series

grows like the Class Number. Therefore, an effective bound requires information about

the possible Siegel Zero. Moreover, the convexity bound is insufficient to show that

the coefficients of the weight 3/2 cusp forms grow more slowly than the class number.

Recently, the amazing subconvexity results of Iwaniec [18] and Duke [9] have removed

this complication. There is also a technicality at anisotropic primes. The coefficients of
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the Eisenstein series do not grow with high divisibility by an anisotropic prime l. Duke

and Schultze-Pillot combine the above results to show the following ineffective result.

Theorem 1.1 (Duke- Schultze-Pillot [11]). If Q is a positive definite quadratic form in

3 variables, then every sufficiently large eligible integer with bounded divisibility at the

anisotropic primes is represented by Q.

Assuming GRH for Dirichlet L-functions, the result becomes effective. However,

the bound attained is enormous and entirely impractical, as observed by Ono and

Soundararajan [29]. By using a deep connection of Waldspurger [38] between half inte-

ger weight cusp forms and special values of L-series of weight 2 modular forms, under

the additional assumption of GRH for weight 2 modular forms, Ono and Soundararajan

obtain a feasible bound of 2× 1010 for Ramanujan’s ternary quadratic form Q(x, y, z) =

x2 + y2 + 10z2. With the help of a computer, they were able to prove the following.

Theorem (Ono-Soundararajan [29]). Conditional upon GRH, the eligible integers which

are not represented by Q are exactly

3, 7, 21, 31, 33, 43, 67, 79, 87, 133, 217, 219, 223, 253, 307, 391, 679, 2719.

In Chapter 3, we generalize the results of Ono and Soundararajan to ternary

quadratic forms Q such that θQ ∈ M+
3/2(4p), the space of modular forms of weight 3/2

and level 4p in Kohnen’s plus space (Ramanujan’s form does not satisfy this condition).

By the theory of modular forms, we know that θ decomposes as follows.

θ = E +
m∑

i=1

bigi, (1.1)

where E is an Eisenstein series, bi ∈ C and gi are fixed Hecke eigenforms in S+
3/2(4p).

Let Gi ∈ S2(p) be the Shimura lift of gi, normalized such that aGi
(1) = 1. Throughout
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the paper we use af (n) to denote the n-th coefficient of f . Clearly, Q represents n if and

only if aθ(n) 6= 0. Hence we only need to bound the coefficients of the Eisenstein Series

(from below) and the eigenforms (from above). We will denote −d for a discriminant

and −D for a fundamental discriminant. Using techniques developed by Duke [10],

based upon Siegel’s averaging of the quadratic forms, along with a generalized version of

the aforementioned method of Ono and Soundararajan [29], we obtain effective bounds

for aE(D) and agi
(D), where −D is a fundamental discriminant. In [29], Ono and

Soundararajan make specific choices to obtain a computable constant for Ramanujan’s

form. While the bound they obtain is more aesthetically pleasing, allowing these choices

to vary yields computationally feasible bounds for a wider range of quadratic forms.

Theorem 1.2. Fix 1 < σ < 3
2

and X > Xσ, with Xσ effectively computable.

Assume GRH for Dirichlet L-series and weight 2 modular forms. There exists an

effectively computable constant Dθ,X,σ such that for every fundamental discriminant −D

with D > Dθ,X,σ we have aθ(D) 6= 0.

This result gives us an effectively computable good bound for Q, and hence an

effectively good bound for E given the connection. A slight alteration of this method

also leads to good bounds for Q which are independent of Q, and only vary with p.

Further results of this type may be found in Chapter 3.

1.4 Calculations for Good Bounds

Having established effectively computable good bounds for Q, E, p, and M in Chapter

3, we proceed to give an algorithm for calculating these bounds in Chapter 4. This task

is separated into three main parts. In the first part, we calculate the maximal orders
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of the quaternion algebra ramified exactly at p and ∞ and the associated theta series.

Secondly, we decompose the subspace of Kohnen’s plus space spanned by these theta

series. Having done so, we have decomposed θ as

θ = E +
∑

i

g′i,

where g′i are some hecke eigenforms. We then show a method for choosing a certain

Shimura lift and hence gi and bi. Finally, we calculate other constants involved in the

bound Dθ,X,σ up to a chosen accuracy.

We now have established an algorithm for computing a good bound DQ, assuming

GRH. Given a bound, we would like to determine which good bounds are feasibly good

bounds. In order to do so, we must write another algorithm to determine whether a

given integer D is represented by the quadratic form Q, and then check all D < DQ.

In order to obtain a feasibly good bound for a larger set of Q, we develop a specialized

algorithm for checking whether D is represented by Q whenever Q comes from LE for

E defined over Fp ⊂ Fp in Section 4.3. For certain p, every supersingular elliptic curve

E is defined over Fp, and thus we may obtain a feasibly good bounds for p for a larger

set of primes. Finally, in Section 4.4, we implement our algorithm and list good bounds

DQ for each Q with p ≤ 107. We also give data for the D < DQ which we have checked

with a computer. For p = 11, p = 17, and p = 19 we are able to obtain a feasibly good

bound for p, and an explicit list of all D for which the reduction map is not surjective

(or the size of the list when it is too large) is given.
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Chapter 2

Elliptic Curves and Ternary

Quadratic Forms

2.1 CM Liftings of Supersingular Elliptic Curves

and Theta Series

We will explain in this chapter the well known connection between determining a good

bound DQ for each theta series θQ in Kohnen’s plus space of level 4p and determining a

good bound for p. We will discuss the connection between theta series and CM lifts of

supersingular elliptic curves in order to determine how the good bound for these theta

series gives us a good bound for p.

A good bound Dp for p is established piecewise by showing a good bound DE for

each supersingular elliptic curve E/Fp, and then taking Dp := max
E

DE, relying on the

fact that there are only finitely many supersingular elliptic curves over Fp (see [34]) up

to isomorphism. This also aids in computing the set of D < Dp for which the map is

not surjective, since we only need to check D < DE for each curve, and not up to the

larger bound Dp.

Therefore, we will now fix a supersingular elliptic curve E/Fp and explain how to
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establish a good bound DE. To this end, we will now take a detour through quaternion

algebras, quadratic forms, theta series, and modular forms. Throughout, when we refer

to a θ-series, we will be restricting to a θ-series of the type

θ =
∑
x,y,z

qQ(x,y,z),

where Q(x, y, z) is a positive definite ternary quadratic form and q = e2πiz.

We will now review the well known connection between CM liftings and θ-series.

Deuring [8] showed a one-to-one correspondence between embeddings of O−D in OE =

End(E) and lifts of E to elliptic curves with CM by O−D. Therefore, our study of lifts

transforms into a study about the number of embeddings of O−D in OE. Recall that

End(E) is a maximal order of the quaternion algebra ramified exactly at p and ∞. Let

A be the quaternion algebra ramified exactly at p and ∞ and let M be a maximal order

of A. Then M is a 4−dimensional Z-module. Let LE := {x ∈ Z + 2OE|tr(x) = 0} be

the so called Gross lattice with the associated positive definite ternary quadratic form

QE(x) = Nx = −x2. Gross proved a bijection between embeddings of O−D in OE and

representations of D by QE. Moreover, Gross showed that the theta series

θE(z) :=
∑
x∈LE

qQE(x) =
∑

−d≡0,1 (mod 4)

aE(d)qd

is a weight 3/2 modular form in Kohnen’s plus space of level 4p. We have seen above

that E lifts to an elliptic curve with CM by O−D if and only if aE(D) 6= 0. Therefore,

a good bound for θE will give us a good bound for E.
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Curve C End(C) Trace Zero Elements of
2End(C)+Z

E′/K

π

��

O−D� _

��

// (2O−D + Z)0

NORM ∃γ

��
D

E/Fq M// // (2M + Z)0

NORM ∃γ

OO

Figure 1: The reduction map from elliptic curves with CM by O−D to supersingular
elliptic curves over Fp.

2.2 Details of the Connection between CM lifts and

Representations of Integers by Quadratic Forms

The following diagram will help to further explain the connection made by Deuring

and Gross. Taking a supersingular elliptic curve E defined over Fp, we know that the

endomorphisms of E are isomorphic to a maximal order M = OE of the quaternion

algebra ramified exactly at p and ∞. Taking an elliptic curve E ′ defined over a number

field with CM by O−D, the endomorphisms of E ′ are isomorphic to O−D. If E is the

image of E ′ under the reduction map, then, since the endomorphisms commute with the

reduction map, we know that there is an embedding of endomorphisms O−D of E ′ into

the endomorphisms M of E. If we take the trace zero elements (2O−D + Z)0, then the

generator of O−D will correspond to an element with norm D. Thus, the embedding of

O−D under the same operation on M , namely (2M + Z)0, will give an element of norm

D. Moreover, if there is an element of M which gives D under this norm map, then it is
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an easy calculation to see that this element must be a generator for O−D. Thus, there

is a one-to-one correspondence between embeddings of O−D in M and representations

of D by the norm form on LE.

Hence, we have established that if E is in the image of the reduction map, then

the norm map represents the integer D. On the other hand, Deuring shows that an

embedding of O−D into OE determines an elliptic curve E ′ with CM by O−D which gives

E under the reduction map. Therefore, there is a one-to-one correspondence between

embeddings of O−D in OE and CM lifts of E. Using the one-to-one correspondence

between embeddings of O−D and representations of D by the norm form on LE, this

gives a one-to-one correspondence between CM lifts of E and representations of D by

the norm form on LE.

It is a straightforward calculation to see that the norm form on LE is a quadratic

form in 3 variables, since the elements of LE are trace zero elements. If LE is generated

over Z by α′, β′, and γ′, then every element of LE is of the form

xα′ + yβ′ + zγ′. (2.1)

The definition of LE allows one to see easily that α′, β′, and γ′ are linear combinations

of the canonical generators α, β, and αβ = γ with αβ = −βα, α2 = p and β2 = q.

Thus, we can rewrite (2.1) as

a(x, y, z)α+ b(x, y, z)β + c(x, y, z)γ, (2.2)

where a(x, y, z), b(x, y, z), and c(x, y, z) are homogeneous and linear in x, y, z. The norm

of such an element is

(a(x, y, z)α+ b(x, y, z)β + c(x, y, z)γ)2 = a(x, y, z)2p+ b(x, y, z)2q + c(x, y, z)2pq.
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Since a(x, y, z), b(x, y, z), and c(x, y, z) are homogeneous and linear in x, y, z, the terms

of the squares are homogeneous and quadratic in x, y, z. Therefore, this defines a ternary

quadratic form in x, y, and z.

The connection to Kohnen’s plus space is established by local conditions, since the

only integers represented by the norm form are integers d with −d a discriminant.

Therefore, −d ≡ 0 or 1 (mod 4). This is precisely the condition for the theta series

to be an element of Kohnen’s plus space. Thus, determining a good bound for QE, the

norm form on LE, which is a member of Kohnen’s plus space of weight 3/2 and level p,

will determine a good bound for E. We have now established the desired connection.

It is not a trivial task to write down all supersingular elliptic curves (up to isomor-

phism), and furthermore, it is an interesting and challenging problem to write down the

endomorphisms of a fixed supersingular elliptic curve. This problem is not addressed

in this thesis. However, we are rescued by the well known result of Deuring [8], that

every maximal order of A is conjugate to OE = End(E) for some supersingular elliptic

curve E over Fp. Moreover, two maximal orders OE and OE′ are conjugate if and only

only if E ′ ∼= E or E ′ ∼= E(p), the Frobenius of E. Moreover, E ∼= E(p) if and only if the

Frobenius is an endomorphism on E, which implies that E is defined over Fp. Moreover,

the Frobenius gives a trace zero element of OE with norm p. Conversely, if there is a

trace zero element of norm p, then the curve is defined over Fp. Therefore, we simply

need to calculate all maximal orders of A (up to conjugation), which is done in chapter

4. Since the curves over Fp2 occur in pairs (E,E(p)), we get exactly the type number t

such maximal orders (up to conjugation). In this paper, we will determine good bounds

DM for each maximal order M , and using this connection we have shown good bounds

DE for each supersingular elliptic curve E. However, it is a very interesting question
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to determine which maximal orders correspond to to which elliptic curves. I hope to

investigate the question of efficiently computing OE given E and vice versa in the fore-

seeable future. This question is addressed in David Kohel’s Ph.D. Thesis [22], but no

sub-exponential algorithm is known.
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Chapter 3

Good Bounds for Representations of

Integers by Quadratic Forms

3.1 Introduction

Let Q be a positive definite integral quadratic form in m variables and let

θQ(τ) :=
∑

x∈Zm

qQ(x)

be the associated theta series, where q = e(τ) := e2πiτ . We will omit the subscript Q

when it is clear. Throughout this paper, a theta series will always mean θQ for some

(mostly ternary) positive definite integral quadratic form Q. It is well known that θ is

a modular form of weight m
2
. For general information about quadratic forms, a good

source is [25].

The natural question of which positive integers n are represented by the form Q,

that is whether there exists x ∈ Zm such that Q(x) = n, has been studied extensively

since Gauss. Recall the following theorem of Ono and Soundararajan [29], previously

mentioned in the introduction, for Ramanujan’s ternary quadratic form.

Theorem (Ono-Soundararajan [29]). Conditional upon GRH, the eligible integers which
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are not represented by Q(x, y, z) = x2 + y2 + 10z2 are exactly

3, 7, 21, 31, 33, 43, 67, 79, 87, 133, 217, 219, 223, 253, 307, 391, 679, 2719.

In this chapter, we generalize the results of Ono and Soundararajan for ternary

quadratic forms Q such that θQ ∈M+
3/2(4p) in order to prove Theorem 1.2. The proof of

Theorem 1.2 leads to an independent proof of the optimal bound, known to the experts,

for weight 3/2 cusp forms in Kohnen’s Plus Space of level 4N with N squarefree and

odd, assuming the Riemann Hypothesis for weight 2 cusp forms.

Corollary 3.1. Let N be squarefree and odd, ε > 0, and g ∈ S+
3/2(4N). Assuming GRH

for weight 2 modular forms, there is an effectively computable constant cg,ε such that

|ag(n)| ≤ cg,εn
1
4
+ε.

Theorem 1.2 is proven by combining explicit bounds from Sections 3.5 and 3.6. These

explicit bounds lead to a clear algorithm to calculate the constant Dθ,X,σ. The bounds

attained are computationally feasible in some cases. For example, with the help of a

computer, Theorem 1.2 implies the following (for details, see [20]).

Theorem 3.2. Assume GRH for Dirichlet L-functions and weight 2 modular forms.

Consider d such that 112 - d and
(−d

11

)
6= 1. Then

(1) Q(x, y, z) = 4x2 + 11y2 + 12z2 + 4xz represents d if and only if

d /∈ {3, 67, 235, 427} , (3.1)

and Q represents d if and only if Q represents d(11)2.
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(2) Q(x, y, z) = 3x2 + 15y2 + 15z2 − 2xy + 2xz + 14yz represents d if and only if

d /∈ {4, 11, 88, 91, 163, 187, 232, 499, 595, 627, 715, 907, 1387, 1411,

3003, 3355, 4411, 5107, 6787, 10483, 11803} , (3.2)

and Q represents d if and only if Q represents d(11)2.

(3) Moreover, these are a full set of representatives for Q such that θ ∈M+
3/2(44).

(4) If −d = −D is a fundamental discriminant other than the 25 listed above, then

every supersingular elliptic curve over F11 can be lifted to an elliptic curve over a

number field, with CM by O−D.

Theorem 3.3. Assume GRH for Dirichlet L-functions and weight 2 modular forms.

Consider d such that 192 - d and
(−d

19

)
6= 1. Then

(1) Q(x, y, z) = 7x2 + 11y2 + 23z2 − 2xy + 6xz + 10yz represents d if and only if

d /∈ {4, 19, 163, 760, 1051} , (3.3)

and Q represents d if and only if Q represents d(19)2.

(2) The form Q(x, y, z) = 4x2 + 19y2 + 20z2 + 4xz represents d if and only if d

represents d(19)2, the set of d as above which Q does not represent has size 40,

and the largest such is d = 27955.

(3) Moreover, these are a full set of representatives for Q such that θ ∈M+
3/2(76).

(4) If −d = −D is a fundamental discrimianant other than the 45 above (in par-

ticular if D > 27955), then every supersingular elliptic curve over F19 lifts to an

elliptic curve over a number field, with CM by O−D.
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In Section 3.3, we deal with −d not fundamental, using the Shimura Lift [32] and

the Hecke operators. Fixing a discriminant −d and exploring the representability of

d′ = dF 2, the Hecke operators lead to an equivalence between the following linear

system of equations and the representability of d by Q.

Theorem 3.4. There are recursively defined polynomials Pk,m,±1(x) and Q′(x), defined

below, such that aθ(dF
2) = 0 if and only if for every f =

∏
l

lrl dividing F and sl ≤ 1
2
vl(d),

∏
l prime

Prl,sl,(−D
l )(l) = Q′(f).

Remark 3.5. The power of Theorem 3.4 is that the left side is growing like l, while the

right side grows like 2
√
l, so that the resulting linear system is seldom consistent.

Notice that although an effective lower bound for the Class Numbers relies on the

Siegel Zeros, the ratio of Class Numbers H(−dF 2)/H(−d) does not. Fix a fundamental

discriminant −D. We refer to the spinor square class of D as all integers DF 2. Due to

the explicit ratio, unconditional results may be obtained within the spinor square class

of D, since the growth of the ratio is linear in F , while Shimura’s lift and Deligne’s

bound [7] imply that the growth of the coefficients of the cusp forms is like F 1/2.

Theorem 3.6. Fix a disciminant −d. If aθ(dF
2) = 0 with (F, p) = 1, then

F �ε (p− 1)2+ε

(
m∑

i=1

|bi|

)2+ε

d
6
7
+ε.

If we further assume the Riemann Hypothesis for Dirichlet L-functions, then

F �ε (p− 1)2+ε

(
m∑

i=1

|bi|

)2+ε

d−
1
7
+ε.
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Finally, if we additionally assume the Riemann Hypothesis for L-functions of weight 2

modular forms, then

F �ε (p− 1)2+ε

(
m∑

i=1

|bi|

)2+ε

d−
1
2
+ε.

Here the assumed constants are effectively computable, and moreover aθ(d) = 0 if and

only if aθ(dp
2) = 0.

Combining Corollary 3.1 and Theorem 3.6 along with an argument of Duke [10] to

remove the dependence on θ yields the following result.

Theorem 3.7. Let p be a prime, θ ∈M+
3/2(4p), and ε > 0. Assuming GRH for Dirichlet

L-functions and weight 2 modular forms, aθ(d) 6= 0 for every discriminant −d with(
−d
p

)
6= 1 and p2 - d such that

d�ε p
16+ε.

Here the assumed constant depends only on ε and is effective. Moreover, aθ(d) = 0 if

and only if aθ(dp
2) = 0.

It is interesting to note that our arguments involving the cusp form part of θ suffice

for level 4N with N squarefree and odd, so that a generalization can be obtained for any

quadratic form with squarefree discriminant, whose theta series is contained in Kohnen’s

plus space once we know the corresponding Eisenstein series.

Our work has an application to CM liftings of supersingular elliptic curves, and this

is the author’s original motivation for concentrating on Kohnen’s plus space of level 4p.

This connection is explored further, and an explicit algorithm plus a variety of examples

are given in a sequel [20]. We will give a brief explanation here of this connection.

The endomorphism ring of a supersingular elliptic curve E is a maximal order OE
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of the quaternion algebra ramified exactly at p and ∞. Deuring [8] has shown a corre-

spondence between maximal embeddings of O−D and lifts of E to an elliptic curve over

a number field which is CM by O−D. Let

LOE
:= {x ∈ Z + 2OE|Tr x = 0}

be the so called “Gross lattice” with quadratic form Q(x) = −x2 being the reduced

norm. Then Gross [14] shows that θQ ∈ M+
3/2(4p) and O−D is optimally embedded in

OE if and only if Q represents D. This explains the fourth part of Theorems 3.2 and

3.3. Interpreting Theorem 3.7 in this manner, we obtain the following.

Theorem 3.8. Let p be a prime and ε > 0. Assume GRH for Dirichlet L-functions and

weight 2 modular forms. Let E/Fp be a supersingular elliptic curve. Then E lifts to a

elliptic curve over a number field which is CM by O−D for every

D �ε p
16+ε

with
(
−D
p

)
6= 1. Here the assumed constant depends only on ε and is effective.

Notation and Brief Overview of the Proof of Theorem 1.2

We end the introduction with a brief overview of the proof of Theorem 1.2, and set up

useful notation. We will denote half integral weight cusp forms with lower case letters

and their Shimura Lift with capital letters.

Let p be an odd prime and θ ∈ M+
3/2(4p) be a theta function θQ. Assume first that

−D < −4 is a fundamental discriminant with aθ(D) = 0. We will denote the Hurwitz

class number for a discriminant d by H(d) and the class number by h(d). Equation (1.1)
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gives

−aE(D) =
m∑

i=1

biagi
(D). (3.4)

Using an explicit formula for the coefficients of the Eisenstein series(cf. [14]) and Dirich-

let’s Class Number Formula [6],

aE(D) =
12

(p− 1)
· L(1) ·

√
D

π2vp(D)
. (3.5)

Here L(s) := L(χ, s) and χ(n) := χ−D(n) :=
(−D

n

)
is a Dirichlet character. Plugging in

and using Schwartz’s inequality yields

12

(p− 1)π2vp(D)
· |L(1)| ·

√
D ≤

√√√√ m∑
i=1

|bi|2

√√√√ m∑
i=1

|agi
(D)|2. (3.6)

A variant of the Kohnen-Zagier formula (3.15) gives |agi
(D)|2 = ci2

−vp(D)D
1
2 · Li(1),

where

ci :=
|agi

(mi)|2

L(Gi,mi, 1)m
1
2
i

, (3.7)

with mi the first coefficient of gi such that agi
(mi) 6= 0 with (p,mi) = 1, and

Li(s) := L(Gi,−D, s) :=
∞∑

n=1

χ(n)aGi
(D)

ns
. (3.8)

is the L series of Gi twisted by the character χ. Thus, we have obtained

12

(p− 1)π2
vp(D)

2

·D
1
4 ≤

√√√√ m∑
i=1

|bi|2

√√√√ m∑
i=1

ci
Li(1)

L(1)2
. (3.9)

To bound Li(1)
L(1)2

we define

F (s) := Fi(s) :=

(√
q

2π

)s−1
Li(s)Γ(s)

L(s)L(2− s)
, (3.10)

where q is the conductor of Li. Notice that F (1) = Li(1)
L(1)2

.
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By the functional equation of Li(s), we know that F (s) = F (2 − s) and GRH

for Dirichlet L-functions implies that F (s) is analytic for 1
2
< Re(s) < 3

2
. Therefore,

for 1
2
< Re(s) = σ < 3

2
fixed, we know by the Phragmen-Lindelöf principle that the

maximum is attained on the boundary of Re(s) = σ and Re(s) = 2 − σ. Thus, for

1 < σ < 3
2
,

F (1) ≤ max
t
|F (σ + it)|.

To bound F (s), we bound L(s) from below in Section 3.5 and Li(s) from above in Section

3.6. Instead of fixing σ = 7
6

as in [29], we allow σ to vary, and get better constants in

our bounds for L(s) and Li(s). Combining these allows us to get the bound obtained in

Theorem 1.2.

To deal with discriminants which are not fundamental, we will use the Hecke oper-

ators for half integer weight modular forms. For g ∈ Sk+1/2(4p, χ) and a prime l, we

define the Hecke operator Tl2 via g|Tl2 = h with

ah(d) = ag(l
2d) + χ(l)

(
(−1)k

l

)
lk−1ag(d) + χ(l2)

(
(−1)k

l2

)
l2k−1ag

(
d

l2

)
. (3.11)

For d ∈ N, with d =
∏
l

lel , we will denote for notional ease

Ω(d) :=
∑

l′

el, vl(d) = el, v(d) = #{l : el > 0}, and σk(d) =
∑
n|d

nk. (3.12)

We recall the Euler constant

γ := −Γ′

Γ
(1) ≈ .5772 (3.13)

and denote the Riemann Zeta function by ζ(s). Finally, we denote

ψ(x) :=
∑
n≤x

Λ(n). (3.14)



22

3.2 A Kohnen-Zagier Type Formula

Let N be odd and square-free and let g ∈ Snew
k+1/2(4N) be a newform in Kohnen’s plus

space. Let G ∈ Snew
2k (N) be the Shimura lift of g normalized so that aG(1) = 1. Let

wl be the sign of the Atkin-Lehner involution Wl for each prime l dividing N . For a

fundamental discriminant D and Re(s) > k + 1/2, let

L(G,D, s) :=
∑
n≥1

χD(n)aG(n)n−s

be the twisted Hecke L-function of G by χD.

Lemma 3.9. Let (−1)kD be a fundamental discriminant such that for each prime divisor

l of N , either
(

D
l

)
= wl or

(
D
l

)
= 0. Then

|ag(D)|2

< g, g >
= 2v( N

(N,D)) · (k − 1)!

πk
·Dk−1/2 · L(G, (−1)kD, k)

< G,G >
, (3.15)

Remark 3.10. If the conditions of Lemma 3.15 are not satisfied, then Kohnen proved

in [23] that ag(D) = 0.

Proof. For a binary quadratic form Q = [a, b, c] = ax2 + bxy + cy2 with discriminant

|Q| = b2 − 4ac and an integer d, we define

ωd(Q) :=


(

d
r

)
if gcd(a, b, c, d) = 1 and r is represented by Q

0 if gcd(a, b, c, d) > 1.

Next define for n,m with (−1)kn a discriminant and (−1)km a fundamental discriminant,

the period integral

rk,N(G; (−1)kn, (−1)km) :=
∑

Q (mod Γ0(N))

|Q| = nm, Q(1, 0) ≡ 0(mod N)

ω(−1)km(Q) ·
∫
CQ

f(z)dQ,kz,
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where CQ is the image of Γ0(N)\H of the semicircle a|z|2 + bRe(z) + c = 0 and dQ,kz =

(az2 + bz + c)k−1dz.

In [24], Kohnen proved that for any n,m with (−1)kn, (−1)km ≡ 0, 1 (mod 4) and

(−1)km a fundamental discriminant

ag(n) · ag(m)

< g, g >
=

(−1)bk/2c2k

< G,G >
· rk,N(G; (−1)k · n, (−1)k ·m). (3.16)

Now assume that n = m = D and
(

(−1)kD
l

)
is as above for each l | N . A full

set of representatives of the quadratic forms Q (mod Γ0(N)) with discriminant D2 and

Q(1, 0) ≡ 0 (mod N) are given by

{Qu ◦Wt : u (mod D), t | N, t > 0} ,

with Qu = [0, (−1)kD, u], Wt = 1√
t

 t α

N tβ

 , and t2β −Nα = t.

Claim 3.11.

ω(−1)kD(Qu ◦Wt) =

(
(−1)kD

t

)
ω(−1)kD(Qu).

Proof. An easy calculation shows that Qu ◦Wt is[
N

t
Nu+ND, uDα

N

t
+ tβD + 2uNβ, uDαβ + utβ2

]
=: [a, b, c].

We first note that gcd(t,D,N) | gcd(a, b, c,D). Since t | N it follows that gcd(t,D) |

gcd(a, b, c,D). Therefore, if gcd(t,D) 6= 1, then ωD(Qu ◦Wt) = 0.

Now assume that gcd(t,D) = 1. Since tβ + N
t
α = 1, there exist x, y ∈ Z such that
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yβ + xN
t

= 1. Then, since the modulus of the character
(

D
·

)
is |D|, we know that(

(−1)kD

N(N
t
u+D)x2 + (uDαN

t
+ tβD + 2uNβ)xy + u(Dαβ + tβ2)y2

)

=

(
(−1)kD

(N
t
Nu)x2 + (2uNβ)xy + (utβ2)y2

)
=

 (−1)kD

ut
((

N
t

)2
x2 + (2N

t
β)xy + β2y2

)


=

(
(−1)kD

ut
(
xN

t
+ yβ

)2
)

=

(
(−1)kD

ut

)
=

(
(−1)kD

u

)(
(−1)kD

t

)
.

This is the desired result.

An easy calculation shows that

ω(−1)kD(Qu ◦Wt) =

(
(−1)kD

t

)
ω(−1)kD(Qu).

Given the assumptions above we get:

rk,N(G; (−1)kD, (−1)kD) =
∑
t|N

∑
u (mod N)

ω(−1)kD(Qu ◦Wt)

∫
CQu

(G|Wt)(z)dQu,k
(Wtz)

=
∑
t|N

(
(−1)kD

t

) ∑
u (mod N)

ω(−1)kD(Qu)

∫
CQu

(G|Wt)(z)dQu,k
(Wtz)

=
∑

t| N
(N,D)

(
(−1)kD

t

) ∑
u (mod N)

ω(−1)kD(Qu)

∫
CQu

(G|Wt)(z)dQu,k
(Wtz)

=
∑

t| N
(N,D)

(
(−1)kD

t

) ∑
u (mod N)

ω(−1)kD(Qu)

∫
CQu

(
(−1)kD

t

)
·G(z)dQu,k

(Wtz)

=

 ∑
t| N

(N,D)

1

 ∑
u (mod N)

(
(−1)kD

u

) i∞∫
−u/((−1)kD)

G(z)((−1)kDz + u)k−1dz

= 2v( N
(N,D)

)
∑

u (mod N)

(
(−1)kD

u

) i∞∫
−u/(−1)kD

G(z)((−1)kDz + u)k−1dz
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= 2v( N
(N,D)

)(Di)k−1i
∑

u (mod N)

(
(−1)kD

u

) ∞∫
0

G

(
− u

(−1)kD
+ it

)
tk−1dt

= 2v( N
(N,D)

)(Di)k−1i

∞∫
0

∑
u (mod N)

(
(−1)kD

u

)∑
n≥1

aG(n) · e−2πnte
−2πin u

(−1)kD tk−1dt

= 2v( N
(N,D)

)(Di)k−1i

∞∫
0

∑
n≥1

aG(n)e−2πnttk−1

 ∑
u(mod N)

(
(−1)kD

u

)
e
−2πin u

(−1)kD

 dt.

To continue, we need to use some theory about Gauss sums. For more information about

Gauss sums, a common reference is [17].

We will see that if χ =
(

(−1)kD
·

)
, then

∑
u (mod D)

(
−(−1)kD

u

)
e−2πinu/(−1)kD =

(
(−1)kD

−1

) ∑
u (mod D)

(
(−1)kD

u

)
e2πinu/(−1)kD

= χ(−1)τ(χ)χ(n) =

(
(−1)kD

−1

)
τ(χ)

(
(−1)kD

n

)
,

where τ(χ) is the associated Gauss sum. One then sees that the above equality is simply

a restatement of ∑
t (mod D)

χ(t)ζat =: τa(χ) = χ(a)τ(χ)

with ζ = e2πi/(−1)kD. Using this identity and the fact that χ is a real character, we get

the well known identity

τ(χ) =
√
χ(−1) ·

√
D.

Plugging this in above gives

∑
u (mod D)

(
(−1)kD

u

)
e−2πinu/(−1)kD = χ(−1)τ(χ)χ(n) =

(
(−1)kD

−1

) 3
2

·D1/2 ·
(

(−1)kD

n

)
.
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Replacing the inner sum above gives

2v( N
(N,D)

)(Di)k−1i
∞∫
0

∑
n≥1

aG(n)e−2πnttk−1

( ∑
u (mod N)

(
(−1)kD

u

)
e
−2πin u

(−1)kD

)
dt

= 2v( N
(N,D)

)(Di)k−1i
(

(−1)kD
−1

)3/2

D1/2
∑
n≥1

aG(n)
(

(−1)kD
n

)∞∫
0

e−2πnttk−1dt

= 2v( N
(N,D)

)Dk−1/2(−1)k/2
(

(−1)kD
−1

)k+1/2

Γ(k)(2π)−kL(G, (−1)kD, k).

Here we use the analytic continuation of the Gamma function in the final equality.

Plugging this into Equation 3.16 yields

|ag(D)|2

< g, g >
=

2v( N
(N,D))(k − 1)!(−1)bk/2c+k/2

(
(−1)kD
−1

)k (
(−1)kD
−1

)1/2

πk < G,G >
Dk−1/2L(G, (−1)kD, k).

Notice further that

(−1)bk/2c+k/2

(
(−1)kD

−1

)k+1/2

= 1.

This yields the desired equality.

3.3 Bounding Non-Fundamental Discriminant Coef-

ficients

In this section we employ the power of the Hecke operators and the Shimura lift to

obtain information about −d non-fundamental. The argument also repeatedly uses the

simple fact that aθ(Dl
2) = 0 implies aθ(D) = 0.

Due to the nature of such proofs, many of the results in this section do not require

GRH. The results requiring GRH make this assumption to use the bound obtained in

Section 3.7 for squarefree coefficients to obtain an overall bound.
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Lemma 3.12. Fix a fundamental discriminant −D and F with (F, p) = 1. Define

F ′ :=
∏
l|F
l. Then

|agi
(DF 2)| ≤ σ− 1

2
(F ′)F

1
2σ0(F )|agi

(D)|, (3.17)

where σk(n) is defined in equation (3.12).

Proof. First note that if agi
(D) = 0, then agi

(DF 2) = 0 by the Hecke operators, so the

result follows trivially.

We will use here the D-th Shimura correspondence [32] instead of the Shimura lift,

similar to the argument in [11]. Recall that the Shimura correspondence GD,i ∈ S2(2p)

of gi satisfies ∑
n

aGD,i
(n)

ns
:= L(s, χ−D)

∞∑
n=1

agi
(Dn2)

ns
.

We will show that if G = lm such that m ≥ 1 and (G,F ) = 1, then

agi
(D(FG)2) =

agi
(DF 2)

agi
(D)

[
aGD,i

(G)−
(
−D
l

)
aGD,i

(
G

l

)]
. (3.18)

Using equation (3.18), we get the result easily by multiplicativity and Deligne’s optimal

bound [7] for integer weight eigenforms, which shows that∣∣∣∣aGD,i
(G)−

(
−D
l

)
aGD,i

(
G

l

)∣∣∣∣ ≤ (1 +
1

l
1
2

)
σ0(G)G

1
2 |aGD,i

(1)|.

We then use the fact that aGD,i
(1) = agi

(D). We now return to showing equation (3.18).

Using the multiplicativity of the coefficients of GD,i normalized and the D-th Shimura

Correspondence, we obtain

aGD,i
(F )aGD,i

(G) = aGD,i
(FG)aGD,i

(1) =
∑
n|FG

agi
(D)agi

(Dn2)

(
−D
FG/n

)

=

(
−D
l

)
aGD,i

(F )aGD,i
(G/l) +

∑
f |F

agi
(D)agi

(DG2f 2)

(
−D
F/f

)
.
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Rearranging and using the D-th Shimura Correspondence again for aGD,i
(F ), we obtain

0 =
∑
f |F

(
agi

(DG2f 2)agi
(D)− agi

(Df 2)

[
aGD,i

(G)−
(
−D
l

)
aGD,i

(G/l)

])(
−D
F/f

)
.

Hence equation (3.18) follows by induction on the number of divisors of F .

Theorem 3.13. If aθ(DF
2) = 0, then

F
1
2

2v(F )σ− 1
2
(F ′)σ0(F )

≤ (p− 1)π2
vp(D)

2

12
D− 1

4 ·

(
m∑

i=1

|bi|2
) 1

2

·

(
m∑

i=1

ci
Li(1)

L(1)2

) 1
2

. (3.19)

Here ci and bi are given by Equations (3.7) and (1.1), respectively.

Proof. Plugging equation (3.17) into formula (3.9) yields the desired result.

Proof of Theorem 3.6(Assuming Theorem 1.2). Without loss of generality, let−d = −D

be a fundamental discriminant. If aθ(DF
2) = 0 then using the index formula(see [4])

and Lemma 3.12 yields

F

2v(F )
≤ aE(DF 2)

aE(D)
=

m∑
i=1

biagi
(DF 2)

aE(D)
≤
σ− 1

2
(F ′)F

1
2σ0(F )

m∑
i=1

|bi| · |agi
(D)|

aE(D)
.

First we bound aE(D) trivially from below by 3
p−1

. Now the result follows by using

Duke’s effective subconvexity bound for Hecke Eigenforms of weight 3/2 [9] to bound

|aGi
(D)| �ε D

3
7
+ε.

The remaining assertions follow by improved effective estimates under additional

assumptions. Under the Riemann Hypothesis for Dirichlet L-functions, Littlewood

bounds aE(D) from below by 3
p−1

D
1
2

log(log(D))
[26]. Finally, we will see by Corollary 3.1

that under the assumption of the Riemann Hypothesis for weight 2 modular forms,

|agi
(D)| �ε D

1
4
+ε.

We next deal with the case F = p.



29

Lemma 3.14. Fix θ ∈M+
3/2(4p). Then aθ(dp

2) = 0 if and only if aθ(d) = 0.

Proof. Note first that E|U(p2) = E. Moreover, gi|U(p2) = ±gi (cf. [28]). Therefore, we

easily see that

θ|U(p4) = θ.

This shows the desired result, after noting that, since θ is a theta series,

aθ(d) ≤ aθ(dp
2) ≤ aθ(dp

4).

Theorem 3.4 involves showing a connection between aθ(df
2) = 0 and the following

two recursively defined polynomials.

Definition 3.15. Set m,n ∈ Z, and ε ∈ {−1, 0, 1}. Define the polynomial Pn,m,ε(x)

recursively as follows:

Pn,m,ε(x) :=



0 if n < 0 or m < 0,

1 if n=0,

(x− ε)Pn−1,1,ε(x) + εPn−1,0,ε if m = 0, n > 0,

xPn−1,2,ε(x) +
(

x
x−ε

)
Pn−1,0,ε if m = 1, n > 0,

xPn−1,m+1,ε(x) + Pn−1,m−1,ε if m ≥ 1, n > 0.

Definition 3.16. For d ∈ N and l a prime with l2 - d, define

Qn,m(l) :=

∑
i

biaGi
(l)nagi

(dl2m)

−aE(dl2m)
.

Theorem 3.17. Let −d be a discriminant and l 6= p prime. Then aθ(dl
2m+2n) = 0 if

and only if

Pr,s,(−D
l )(l) = Qr,s(l),
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for every r ≤ n and s ≤ m and −D is the fundamental discriminant associated with d.

Proof. When n = 0, the result is obvious, since this equality simply gives

1 =

∑
i

biagi
(dl2s)

−aE(dl2s)
.

We proceed by induction on n. We note first that aθ(dl
2ml2n+2) = 0 if and only if

aθ(dl
2m+2l2n) = 0. Therefore, by inductive hypothesis, aθ(dl

2ml2n+2) = 0 if and only if

Pr,s,(−D
l )(l) = Qr,s(l),

for every r ≤ n and s ≤ m+ 1. These conditions match up with the assumptions above

other than when s = m+ 1. Thus, it suffices to show assuming Pr,s,(−D
l )(l) = Qr,s(l) for

every r ≤ n and s ≤ m implies that

Pr,m+1,(−D
l )(l) = Qr,m+1(l),

for every r ≤ n, is equivalent to

Pn+1,s,(−D
l )(l) = Qr,s(l),

for every s ≤ m.

Let r ≤ n be given. Using the definition of Qr,m+1(l), we have

Qr,m+1(l) =

∑
i

biaGi
(l)ragi

(Dl2m+2)

−aE(Dl2m+2)
.

Since gi is a hecke Eigenform with Gi the normalized Shimura lift, and aGi
(1) = 1, we

have∑
i

biaGi
(l)ragi

(Dl2m+2)

−aE(Dl2m+2)
=

∑
i

biaGi
(l)r+1agi

(Dl2m)

−aE(Dl2m+2)

−
(
−Dl2m

l

)∑
i

biaGi
(l)ragi

(Dl2m)

−aE(Dl2m+2)
− l


∑
i

biaGi
(l)ragi

(Dl2m−2)

−aE(Dl2m+2)

 .
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Now, we note by the index formula (see [4]) that

−aE(Dl2m+2)

−aE(Dl2m)
= l −

(
Dl2m

l

)
.

Therefore, it follows that

(
l −
(
Dl2m

l

))
Qr,m+1(l) =

∑
i

biaGi
(l)r+1agi

(Dl2m)

−aE(Dl2m)

−
(
−Dl2m

l

)∑
i

biaGi
(l)ragi

(Dl2m)

−aE(Dl2m)
− l

l −
(

Dl2m−2

l

) ·
∑
i

biaGi
(l)ragi

(Dl2m−2)

−aE(Dl2m−2)

= Qr+1,m(l)−
(
−Dl2m

l

)
Qr,m(l)− l

l −
(

Dl2m−2

l

) ·Qr,m−1(l).

Now, assume that Qr,m+1(l) = Pr,m+1,ε. By assumption, we also have Qr,m = Pr,m,ε

and Qr,m−1 = Pr,m−1,ε. Therefore, rearranging the above formula gives

Qr+1,m(l) =

(
l −
(
Dl2m

l

))
Pr,m+1,ε(l)+

(
−Dl2m

l

)
Pr,m,ε(l)+

l

l −
(

Dl2m−2

l

) ·Pr,m−1,ε(l).

If m ≥ 2, then the right hand side is

lPr,m+1,ε(l) + Pr,m−1,ε(l) = Pr+1,m,ε(l),

as desired. If m = 1, the right hand side is

lPr,m+1,ε(l) +

(
−D
l

)
Pr,m−1,ε(l) = Pr+1,m,ε(l).

Notice that we used l2 - D above so that
(−D

l

)
=
(−D′

l

)
. Finally, if m = 0, we use the

same observation above to see that the right hand side is(
l −
(
D

l

))
Pr,m+1,ε(l) +

(
−D
l

)
Pr,m,ε(l) = Pr+1,m,ε(l).
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Theorem 3.18 (Theorem 3.4). Let −d be a discriminant and (F, p) = 1. Then

aθ(dF
2) = 0 if and only if for every f dividing F , with f =

∏
l prime

lnl,f and ml := bvl(d)
2
c,

we have

∏
l prime

Prl,sl,(−D
l )(l) =

∑
i

bi
∏

l prime

aGi
(l)rlagi

(
dQ

l prime
l2sl

)

−aE

(
dQ

l prime

l2sl

) ,

for every rl ≤ nl,f and sl ≤ ml, where −D is the fundamental discriminant corresponding

to the discriminant −d.

Proof. For F a prime power, this is exactly Theorem 3.17. Thus, we will continue by

induction on the number of prime divisors of F . Let F ′ = Fqn with (F, q) = 1 and

assume the theorem for F . We will continue by induction on n as in the proof of

Theorem 3.17. The n = 0 case is the inductive hypothesis above. Assume the result for

n. Then aθ(DF
2q2n+2) = aθ((Dq

2)F 2q2n). Using Dq2 for D, the inductive hypothesis

gives us the result if and only if

∏
l 6=q prime

P
rl,sl,(−D′

l )(l)Pr,s,(−D′
q )(q) =

∑
i

bi
∏

l 6=q prime

aGi
(l)rlaGi

(q)ragi

(
DQ

l6=q prime

l2slq2s

)

−aE

(
DQ

l6=q prime
l2slq2s

) ,

for every rl ≤ nl,f , sl ≤ ml, r ≤ n, and s ≤ ml + 1 .

We again assume this for every rl ≤ nl,f , sl ≤ ml, r ≤ n, and s ≤ ml and show that

the equality holds for rl ≤ nl,f , sl ≤ ml, r ≤ n, and s ≤ ml + 1 if and only if it holds for

rl ≤ nl,f , sl ≤ ml, r ≤ n+ 1, and s ≤ ml. Defining

Qr,s :=

∑
i

bi
∏

l 6=q prime

aGi
(l)rlaGi

(q)ragi

(
DQ

l6=q prime
l2slq2s

)

−aE

(
DQ

l6=q prime

l2slq2s

) ,
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and using the Hecke operators yields the result exactly as in Theorem 3.17.

Remark 3.19. Notice that for any genus where the Eisenstein series satisfies

aE(Dl2)

aE(D)
= l − χ(D)

(
−D
l

)
,

where χ is the Nebentypus, the above proof follows mutatis mutandis.

Remark 3.20. We will in practice use −D a fundamental discriminant, but the induc-

tion required us to use a more general D. For x ≥ 1, the recursive definition of Pn,m,ε(x)

implies that Pn,mε(x) ≥ xn. Therefore, the product above is greater than or equal to f .

Corollary 3.21. If θ = E + g with g an eigenform, and G the Shimura lift of g, then

aθ(DF
2) 6= 0 for every F - 6 with F 6= pn.

Proof. For contradiction, let D, l be such that aθ(Dl
2) = 0 with l > 3, l 6= p prime.

Then aθ(D) = 0, so

1 =
ag(D)

− 12
p−1

Hp(D)
,

and hence

l = aG(l) · ag(D)

− 12
p−1

Hp(D)
= aG(l)

by Theorem 3.17. But aG(l) ≤ 2
√
l, and l ≤ 2

√
l is impossible.

Now assume that aθ(Dl
4) = 0, where l = 2 or l = 3. Then Theorem 3.17 and the

fact that P2,0,ε(l) = l2 + l −
(

D
l

)
imply that

l = aGi
(l)

and

l2 + l −
(
D

l

)
= aGi

(l)2.

But this would imply l2 + l −
(

D
l

)
= l2, which is a clear contradiction.
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Corollary 3.22. If θ = E+ b1g1 + b2g2, then for l ≥ 5 a prime and −D a discriminant,

aθ(Dl
4) 6= 0.

Moreover, if q is another prime with (q, 6pl) = 1, then

aθ(Dl
2q2) 6= 0

Proof. It suffices to show the result for −D a fundamental discriminant. Let a funda-

mental discriminant −D be given such that aθ(D) = 0. Then aθ(Dl
4) = 0 if and only

if

Q1,0 = P1,0,(−D
l )(l)

and

Q2,0 = P2,0,(−D
l )(l).

For simplicity, we will denote Pk,0,(−D
l )(l) = Pk. Using the recursive definition of Pk, we

have P1 = l and P2 = l2 + l −
(−D

l

)
. Therefore, if we denote

ai :=
biagi

(D)

−aE(D)

and

xi = aGi
(l),

then, using a1 + a2 = 1 from aθ(D) = 0, the two equalities above become

x1a1 + x2a2 = la1 + la2 (3.20)

and

x2
1a1 + x2

2a2 =

(
l2 + l −

(
−D
l

))
a1 +

(
l2 + l −

(
−D
l

))
a2. (3.21)

We will show that these equations are inconsistent with |xi| ≤ 2
√
l.



35

Taking the ratio a1

a2
in both equations, we have

l − x2

x1 − l
=
l2 + l −

(−D
l

)
− x2

2

x2
1 − l2 − l +

(−D
l

) ,
so that

(l − x2)

(
x2

1 − l2 − l +

(
−D
l

))
= (x1 − l)

(
l2 + l −

(
−D
l

)
− x2

2

)
.

Rearranging yields

−x1x2(x1 − x2) + l(x1 + x2)(x1 − x2)− (l2 + l −
(
−D
l

)
)(x1 − x2) = 0.

Solving this yields the two solutions

x1 = x2

or

x1 =
l2 + l −

(−D
l

)
− lx2

l − x2

= l +
l −
(−D

l

)
l − x2

.

In the second equality we have assumed x2 6= l, but since |x2| ≤ 2
√
l and l ≥ 5 this is

an empty assumption. Now note that the second equation implies that if x2 < l then

we have x1 > l, which leads to a contradiction since l > 2
√
l.

Thus, only the case x1 = x2 remains. In this case, our two equations become

x1(a1 + a2) = l(a1 + a2)

and

x2
1(a1 + a2) =

(
l2 + l −

(
−D
l

))
(a1 + a2).

But then it follows, by squaring the first equation, that

l2 = l2 + l −
(
−D
l

)
,
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which yields another contradiction.

Now assume that aθ(Dl
2q2) = 0. Define xi := aGi

(l), yi := aGi
(q). Then Theorem

3.4 implies that the following 3 equations hold:

x1a1 + x2a2 = la1 + la2

y1a1 + y2a2 = qa1 + qa2

x1y1a1 + x2y2a2 = lqa1 + lqa2.

Taking the third equation minus l times the second yields

y1(x1 − l)a1 + y2(x2 − l)a2 = 0.

Since the first equation implies that

(x1 − l)a1 + (x2 − l)a2 = 0,

and xi < l, it follows that y1 = y2 = q. But this contradicts the fact that y1 ≤ 2
√
q.

Example 3.23. Ono and Soundararajan showed for Q1 = [1, 1, 10, 0, 0, 0] that aθ(Dl
2) 6=

0 for all l. However, a simple calculation shows for Q2 = [8, 12, 23, 4, 0, 0] that aθ(27) =

0, so this result cannot hold in general. This form comes from one of the Gross lattices

[14]. The dimension of the cuspidal subspace containing the form Q2 in this example is

2, exactly as above.

3.4 Review of the Work of Ono and Soundararajan

In this section, we review some results of Ono and Soundararajan [29] in preparation

for bounding L(s) and Li(s) in the next two sections. Recall χ := χ−D, L(s) := L(χ, s),

Li(s) := L(Gi,−D, s), and F (s) = Fi(s).



37

3.4.1 Explicit Formulas

We will use the following 2 lemmas from [29] for explicit formulas of L′

L
(s) and

L′
i

Li
(s).

These formulas are derived by studying an integral and shifting the line of integration,

giving L′

L
(s) or

L′
i

Li
(s) as one of the residues.

Lemma 3.24 (Ono-Soundararajan [29]).

−L
′

L
(s) = G1(s,X) + Esig(s)−

L′

L
(s− 1)X−1 −R(s),

where

Esig(s) =
∑

ρ

Xp−sΓ(p− s), and R(s) =
1

2πi

−σ−1/2+i∞∫
−σ−1/2−i∞

− L′

L
(s+ w)Γ(w)Xwdw

and

G1(s,X) :=
∞∑

n=1

Λ(n)χ(n)

ns
e−n/X , (3.22)

with Λ the Von-Mangoldt function. Here ρ denote the nontrivial zeros of L(s).

Proof. The proof follows by taking for c > 0

1

2πi

c+i∞∫
c−i∞

− L′

L
(s+ w)Γ(w)Xwdw,

and moving the line of integration to the far left. This yields

1

2πi

c+i∞∫
c−i∞

− L′

L
(s+ w)Γ(w)Xwdw = G1(s,X).

Moving the line of integration to real part −σ − 1
2

gives a pole at w = 0 with residue

−L′

L
(s). The poles at w = ρ − s contribute −Esig(s), and finally the pole at w = −1

contributes 1
X
· L′

L
(s− 1).
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Lemma 3.25 (Ono-Soundararajan [29]). If Li(s) 6= 0, then

−L
′
i

Li

(s) = F 1(s,X) +Rsig(s) +Rtri(s) +Rins(s),

where

F 1(s,X) :=
∞∑

n=1

λi(n)χ(n)

ns
e−n/X (3.23)

with λi defined such that for Re(s) > 3/2

L′i
Li

(s) =
∞∑

n=1

λi(n)χ(n)

ns
,

Rsig(s) =
∑
ρi

Xρi−sΓ(ρi − s), Rtri(s) =
∞∑

n=0

X−n−sΓ(−n− s),

and

Rins(s) =
∞∑

n=1

(−X)−n

n!
· L

′
i

Li

(s− n).

Here ρi are the nontrivial zeros of Li.

Proof. This follows similarly to above, taking the integral

1

2πi

c+i∞∫
c−i∞

− L′i
Li

(s+ w)Γ(w)Xwdw

and getting residues at each of the poles.

We will fix i and investigate F (s) := Fi(s). Then

F ′

F
(s) = log

(√
q

2π

)
+
L′i
Li

(s) +
Γ′

Γ
(s)− L′

L
(s) +

L′

L
(2− s)
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3.4.2 Bounds for Γ′

Γ

We will need bounds for Γ′

Γ
, and will use the bounds obtained in [29].

Lemma 3.26 (Ono-Soundararajan [29]). Set s = x+ iy.

1) If x ≥ 1, then ∣∣∣∣Γ′Γ (s)

∣∣∣∣ ≤ 11

3
+

log(1 + x2)

2
+

log(1 + y2)

2
. (3.24)

2) If x > 0, then we have the bound

Re

(
Γ′

Γ
(s)

)
≤ Γ′

Γ
(x) +

y2

x|s|2
+ log

(
|s|
x

)
. (3.25)

3) In general, one has∣∣∣∣Γ′Γ (s)

∣∣∣∣ ≤ 9

2
+

1

< x > (1− < x >)
+ log(2 + |x|) +

log(1 + y2)

2
, (3.26)

where < x >:= min
n∈N

|x+ n|.

Lemma 3.27. If 0 < x < 1, then∣∣∣∣Γ′Γ (s)

∣∣∣∣ ≤ 11

3
+

log(2)

2
+

1

x
+

log(1 + y2)

2
. (3.27)

Proof. This follows from ∣∣∣∣Γ′Γ (s)

∣∣∣∣ ≤ 1

|s|
+

∣∣∣∣Γ′Γ (s+ 1)

∣∣∣∣ ,
and Lemma 3.26, since 1

|s| ≤
1
x

and log(1 + x2) ≤ log(2).

Lemma 3.28 (Ono-Soundararajan [29]). If L(s) 6= 0 then

Re

(
L′

L
(s)

)
= −1

2
log(m)− 1

2
Re

(
Γ′

Γ

(
s+ 1

2

))
+
∑

ρ

Re

(
1

s− ρ

)
,

where the sum is taken over all non-trivial zeros ρ of L(s).



40

Additionally, if Li(s) 6= 0 then

Re

(
L′i
Li

(s)

)
= −1

2
log
( q

4π2

)
− Re

(
Γ′

Γ
(s)

)
+
∑
ρi

Re

(
1

s− ρi

)
,

where the sum is taken over all non-trivial zeros ρi of Li(s).

3.5 Bounding L(s) From Below

Fix 1 < σ < 3
2
. For notational ease, define s := σ+ it, s0 := 2−σ+ it, and σ0 := Re(s0).

Fix X > e
γ+ 1

3
2−σ , recalling the euler constant γ in (3.13). In preparation for bounding

F (s), in this section we will find a bound from below for log
(∣∣∣L(s0)

L(s)

∣∣∣), depending on X,

t, and σ. The techniques used below were developed by Ono and Soundararajan in [29].

In their application, they set σ = 7
6
. In doing so, the bound that they obtain is more

astethically pleasing and easier to read, but when dealing with a larger number of forms

it is desirable to allow σ to move in order to obtain a better bound for each form.

Set

δ(X) := max
y

∣∣∣∣∣∣∣
σ−1/2∫
σ0−1/2

X−uΓ(−u+ iy)du

∣∣∣∣∣∣∣ ·
(

1

2
log

y2 + (σ − 1/2)2

y2 + (σ0 − 1/2)2

)−1

.

We note that since Γ decays exponentially in y and the other term only has polynomial

growth, δ(X) is well defined. Recall our definition (3.22) of G1 and denote

G(s,X) :=
∞∑

n=1

Λ(n)χ(n)

ns log(n)
e−n/X =

∫
G1(w,X)dw. (3.28)

The goal of this section is to prove the following.

Theorem 3.29. Assume GRH for Dirichlet L-functions. Let χ be a primitive Dirichlet



41

character of conductor m and let L(s) = L(s, χ). For X > e
γ+ 1

3
2−σ we have

log
|L(s0)|
|L(s)|

≥ X

X − 1− δ(X)X
( Re(G(s0,X))− Re(G(s,X)) + cθ,σ,X,1

+ cθ,σ,X,t,1 + cθ,σ,X,m,1) ,

where the constants are given by

cθ,σ,X,1 := (σ − σ0)
|Γ(3/2− σ0)|
2πXσ0+1/2

(
−rπ891

100
+
π log(226)

2r2
+

2√
15r2

)
− σ − σ0

2X

(
22

3
+

2

σ0

)
− 1− σ0

2X

(
log(1 +

(
3−σ0

2

)2
)

2
+

log(2)

2
+

2

σ0

)

−
(
σ − 1

2X

)(
log(2) +

2

3− σ0

)
− 2δ(X) log

Γ
(

σ+1
2

)
Γ
(

σ0+1
2

) − 2δ(X) log

(
σ + 1

σ0 + 1

)
,

with r =
√

(σ0 + 1/2)(σ0 − 1/2),

cθ,σ,X,t,1 := (σ − σ0)

(
r|Γ(3/2− σ0)|

4Xσ0+1/2
− 1

2X
−
(
δ(X)

2

))
log(1 + t2),

and finally

cθ,σ,X,m,1 := |σ − σ0|
(

X − 1

X2 − δ(X)

8

)
log
(m
π

)
.

Remark 3.30. If we knew the position of the Siegel zero, then choosing σ sufficiently

close to 1 away from this zero will yield a bound for log
∣∣∣L(s0)

L(s)

∣∣∣ and hence, by a slight

modification, for the class number. Although asymptotically the same, the constant in-

volved is slightly better than the one obtained by Ono and Soundararajan. We keep the

explicit but complicated form for the constants for computational purposes(see [20]). The

same is true for the constants in Theorem 3.31.

Proof. Since
s∫
s0

G1(w,X)dw = G(s0,X)−G(s,X),
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integrating from s0 to s in Lemma 3.24 yields

log

(
L(s0)

L(s)

)
= G(s0,X)−G(s,X)+

s∫
s0

Esig(w)dw−
s∫
s0

R(w)dw+
1

X
log

(
L(s0 − 1)

L(s− 1)

)
.

We will take the real part of both sides, and bound each term, noting that Re(log(x)) =

log(|x|).

(i) We will first bound
s∫
s0

R(w)dw. We will show

Re

 s∫
s0

R(w)dw

 ≥ −

∣∣∣∣∣∣
s∫
s0

R(w)dw

∣∣∣∣∣∣ ≥ −|σ − σ0|

[
log
(

m
π

)
X2

+
|Γ(3/2− σ0)|
2πXσ0+1/2

(
rπ

(
891

100
+

1

2
log(1 + t2)

)
+
π log(226)

2r2
+

2√
15r2

)]
. (3.29)

Using the functional equation of L, we get the equation for the Logarithmic derivative

−L
′

L
(s+ w) = log

(m
π

)
+

1

2
· Γ′

Γ

(
2− s− w

2

)
+

1

2
· Γ′

Γ

(
1 + s+ w

2

)
+
L′

L
(1− s− w) .

Assume that w = u+ it, where σ0 := Re(s0) ≤ u ≤ Re(s) =: σ. Plugging this in gives

R(w) =
1

2πi

−u−1/2+i∞∫
−u−1/2−i∞

Γ(z)Xz

[
log
(m
π

)
+

1

2
· Γ′

Γ

(
2− z − w

2

)

+
1

2
· Γ′

Γ

(
1 + z + w

2

)
+
L′

L
(1− z − w)

]
dz.

Consider z = −u − 1/2 + iy. Using Lemma 3.26, with Re
(

1+s+w
2

)
= 1+u−u−1/2

2
= 1

4
,

Im
(

1+s+w
2

)
= t+y

2
= −Im

(
2−s−w

2

)
, and Re

(
2−s−w

2

)
= 2−u+u+1/2

2
= 5

4
> 1, we obtain

Γ′

Γ

(
1 + z + w

2

)
+

Γ′

Γ

(
2− z − w

2

)
≤ 74

5
+ log(1 + t2) + log(1 + y2)

Additionally, since Re(1− z − w) = 3
2
,∣∣∣∣L′L (1− z − w)

∣∣∣∣ ≤ ∞∑
n=1

|Λ(n)χ(n)|
n

3
2

≤ ζ ′

ζ

(
3

2

)
≤ 151

100
.
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Therefore, we have obtained∣∣∣∣L′L (1− z − w) +
1

2

Γ′

Γ

(
1 + z + w

2

)
+

1

2

Γ′

Γ

(
2− z − w

2

)∣∣∣∣
≤ 891

100
+

1

2
log(1 + t2) +

1

2
log(1 + y2). (3.30)

Since |Γ(x+ iy)| ≤ |Γ(x)|, the functional equation for Γ yields

|XzΓ(z)| = X−u−1/2 · |Γ(z + 2)|
|z(z + 1)|

≤ X−u−1/2 · |Γ(3/2− u)|
(1/2 + u)(u− 1/2) + y2

.

It is easy to see that for X > e
γ+ 1

3
2−σ , this function on the right hand side decreases in

[1/2, σ], so we get that the maximum for u ∈ [σ0, σ] is attained at u = σ0.

This gives the bound

|XzΓ(z)| ≤ X−σ0−1/2 · |Γ(3/2− σ0)|
(1/2 + σ0)(σ0 − 1/2) + y2

. (3.31)

Furthermore, shifting the line of integration in the remaining term to the far left, noting

that −2 < −σ − 1/2 < −u− 1/2 < −σ0 − 1/2 < −1, then (for X sufficiently large)

1

2πi

−u−1/2+i∞∫
−u−1/2−i∞

Γ(z)Xz log
(m
π

)
= log

(m
π

) ∞∑
n=2

(−X)−n

n!
≤

log
(

m
π

)
X2 . (3.32)

Recall r =
√

(σ0 + 1/2)(σ0 − 1/2). Plugging in the bounds from equations (3.30), (3.31),

and (3.32) give

|R(w)| ≤ log(m
π )

X2 + |Γ(3/2−σ0)|
2πXσ0+1/2

∞∫
−∞

1
y2+r2

(
891
100

+ 1
2
log(1 + t2) + 1

2
log(1 + y2)

)
dy

=
log(m

π )
X2 + |Γ(3/2−σ0)|

2πXσ0+1/2

(
rπ
(

891
100

+ 1
2
log(1 + t2)

)
+

∞∫
0

log(1+y2)
y2+r2 dy

)
.

Splitting the remaining integral into the range 0 to 15 and 15 to ∞ gives a bound of

∞∫
0

log(1 + y2)

y2 + r2
dy =

15∫
0

log(1 + y2)

y2 + r2
dy +

∞∫
15

log(1 + y2)

y2 + r2
dy

≤ log(1 + 152)

r2

∞∫
0

dy

1 + y2
+

1

r2

∞∫
15

1

y3/2
dy =

π log(226)

2r2
+

2√
15r2

.
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This gives the overall bound for |R(w)| of

|R(w)| ≤
log
(

m
π

)
X2 +

|Γ(3/2− σ0)|
2πXσ0+1/2

(
rπ

(
891

100
+

1

2
log(1 + t2)

)
+
π log(226)

2r2
+

2√
15r2

)
.

Since this is independent of w, integrating from w = s0 to w = s gives equation (3.29).

(ii) We will next find a bound for 1
X

log
∣∣ s0−1

s−1

∣∣. We will show

1

X
log

∣∣∣∣L(s0 − 1)

L(s− 1)

∣∣∣∣ ≥ 1

X
log

|L(s)|
|L(s0)|

+ |σ − σ0| log
(m
π

)
− 1− σ0

2

(
22

3
+

log(1 +
(

3−σ0

2

)2
)

2
+ log(1 + t2) +

log(2)

2
+

2

σ0

)

− σ − 1

2

(
22

3
+ log(1 + t2) + log(2) +

2

3− σ0

+
2

σ0

)
. (3.33)

Again using the functional equation for L′

L
, we obtain

log
L(s0 − 1)

L(s− 1)
= log

L(2− s0)

L(2− s)
+ |σ − σ0| log

(m
π

)
+

1

2

s∫
s0

(
Γ′

Γ

(
3− w

2

)
+

Γ′

Γ

(w
2

))
dw.

Since σ0 = 2−σ, and Im(σ) = Im(σ0), it follows that |L(2−s0)| = |L(s)| and |L(2−s)| =

|L(s0)|. Therefore

log
|L(s0 − 1)|
|L(s− 1)|

≥ log
|L(s)|
|L(s0)|

+ |σ − σ0| log
(m
π

)
− 1

2

s∫
s0

∣∣∣∣Γ′Γ
(

3− w

2

)
+

Γ′

Γ

(w
2

)∣∣∣∣ |dw|.
(3.34)

We will again use Lemma 3.26 and also Lemma 3.27. Note that Re
(

3−w
2

)
= 3

2
− 1

2
Re(w).

Therefore, if Re(w) ≤ 1, then Re
(

3−w
2

)
≥ 1. In the range σ ≥ Re(w) ≥ 1, we will use

equation (3.27).

Thus, for any w ∈ [σ0, 1], we may bound the term with 3−w
2

by equation (3.24) and

the term with w
2

with (3.27) to get∣∣∣∣Γ′Γ
(

3− w

2

)
+

Γ′

Γ

(w
2

)∣∣∣∣ ≤ 22

3
+

log(1 +
(

3−σ0

2

)2
)

2
+ log(1 + t2) +

log(2)

2
+

2

σ0

.
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For w ∈ [1, σ], both will be bounded by equation (3.27), obtaining∣∣∣∣Γ′Γ
(

3− w

2

)
+

Γ′

Γ

(w
2

)∣∣∣∣ ≤ 22

3
+ log(1 + t2) + log(2) +

2

3− σ0

+
2

σ0

. (3.35)

Combining equations (3.35) and (3.34) yields equation (3.33).

(iii) Finally, we bound
s∫
s0

Esig(w)dw. We will show here

s∫
s0

Re(Esig(w))dw ≥ −δ(X) ·

[
log

|L(s)|
|L(s0)|

+
σ − σ0

8
log
(m
π

)
+ 2 log

Γ
(

σ+1
2

)
Γ
(

σ0+1
2

)
+ 2 log

(
σ + 1

σ0 + 1

)
· t2

t2 + (σ0 + 1)2
+

(
σ + 1

2
− σ0 + 1

2

)
log

(
1 +

t2

(σ0 + 1)2

)]
. (3.36)

An individual zero ρ := 1/2 + iy contributes

s∫
s0

Re(Xρ−wΓ(ρ− w))dw.

The real part of the above integral is greater than or equal to the negative of the absolute

value and

Re

 s∫
s0

dw

w − ρ

 = Re

(
log

s− ρ

s0 − ρ

)
= log

|s− ρ|
|s0 − ρ|

,

because w has real part larger than 1/2, and hence 1
w−ρ

is analytic over this integral.

This yields

s∫
s0

Re(Xρ−wΓ(ρ− w))dw ≥ −

∣∣∣∣∣∣
σ∫
σ0

X1/2−uΓ(1/2− u+ i(y − t))du

∣∣∣∣∣∣ ·(
log

|s− ρ|
|s0 − ρ|

)−1

·
s∫
s0

Re

(
1

w − ρ

)
dw. (3.37)

The term (3.37) is 1, so that the right hand side of the inequality is the negative of the

absolute value of the integral. We have added the additional term (3.37) so that we may

use Re
(

1
w−ρ

)
later in Hadamard’s factorization formula (see [19]).
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Since the integral and the log term merely make up one such term for y fixed, we

know that they are bounded above by δ(X). Therefore, we have

s∫
s0

Re(Xρ−wΓ(ρ− w))dw ≥ −δ(X)

s∫
s0

Re

(
dw

w − ρ

)
.

Summing the contributions of all zeros gives us

s∫
s0

Re(Esig(w))dw ≥ −δ(X)

s∫
s0

∑
ρ

Re
1

w − ρ
dw. (3.38)

By Hadamard’s factorization formula

Re

(
L′

L
(w)

)
= −1

8
log
(m
π

)
− 1

2
Re

(
Γ′

Γ

(
w + 1

2

))
+
∑

ρ

Re

(
1

w − ρ

)
.

Integration yields

s∫
s0

∑
ρ

Re

(
1

w − ρ

)
dw = log

|L(s)|
|L(s0)|

+
σ − σ0

8
log
(m
π

)
+

s∫
s0

Re

(
Γ′

Γ

(
w + 1

2

))
dw.

(3.39)

Noting that u+1
2

= Re
(

w+1
2

)
> σ0+1

2
> 3

4
, we now use equation (3.25) to obtain

Re

(
Γ′

Γ

(
w + 1

2

))
≤ Γ′

Γ

(
u+ 1

2

)
+

t2/4
u+1

2
(
(

u+1
2

)2
+ t2/4)

+ log

(√
t2

4
(

u+1
2

)2 + 1

)
.

Integration and 4
(

u+1
2

)2
+ t2 ≥ t2 + (σ0 + 1)2 yield

s∫
s0

Re

(
Γ′

Γ

(
w + 1

2

))
dw ≤ 2 log

Γ
(

σ+1
2

)
Γ
(

σ0+1
2

) + 2 log

(
σ + 1

σ0 + 1

)
· t2

t2 + (σ0 + 1)2

+

(
σ + 1

2
− σ0 + 1

2

)
log

(
1 +

t2

(σ0 + 1)2

)
. (3.40)

Thus, combining equations (3.38), (3.39) and (3.40) yield equation (3.36).

Finally, rearranging equations (3.29), (3.33), and (3.36 and combining the terms

involving log L(s0)
L(s)

yields Theorem 3.29.
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3.6 Bounding Li(s) from above

We use the same notation as in Section 3.5. We also define σ1 := 3−σ and s1 := σ1 + it.

In addition, we will fix σ2 and consider s2 := σ2 + it.

We will find a bound from above for log(|Li(s)|), depending on X, t, and σ. Recall

our definition (3.23) of F 1 and denote

F (w,X) :=
∞∑

n=1

λi(n)χ(n)

nw log(n)
e−n/X =

∫
F1(w,X)dw.

Theorem 3.31. Assume GRH for weight 2 modular forms, and Li(s) := L(Gi, χ, s) with

χ a primitive character such that the modulus of Li is q. Then, recalling the definition

of the euler constant (3.13),

log |Li(s)| ≤
X

X + 1
F (s,X)− X((2 + γ(X))α(X)− β(X)

(X + 1)(1 + γ(X))
F 1(s2,X)

+
X

X + 1
(cθ,σ,X,2 + cθ,σ,X,t,2 + cθ,σ,X,q,2) ,

where

cθ,σ,X,2 :=
(
1− e−n/X

) d∑
n=2

|λi(n)|
nσ1 log(n)

+ 2 log(ζ(σ1 − 1/2))− 2
d∑

n=1

Λ(n)nσ1−1/2 log(n)

+ max{|Γ(σ)|, |Γ(σ1)|} ·
X1−σ

(X − 1) log(x)

+ |log(ζ(4− σ1 − 1/2))− log(ζ(4− σ − 1/2))|
(

1

2X2 +
1

6(X + 1)(X − 1)

)
+

1

X
log(ζ(3− σ − 1/2)) +

σ1 − σ

2X2

(
49

6
+

X

X + 1
log(12)

)
+

log σ1−1
σ−1

− log 2−σ1

2−σ

2X2 +
2

X + 1
log

Γ(σ1)

Γ(σ)

+
(2 + γ(X))α(X)− β(X)

(1 + γ(X))

(
Γ′

Γ
(σ2) +

1

σ2

)
+
|Γ(−σ2)|X1−σ2

X − 1
+

1

X − 1

(
55

6
+

1

(2− σ2)(σ2 − 1)
+ 2

∣∣∣∣ζ ′ζ (3− 1/2− σ2)

∣∣∣∣) ,
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cθ,σ,X,t,2 := log(1 + t2)

(
σ1 − σ

2X(X + 1)
+

2(σ1 − σ)

X
+

(2 + γ(X))α(X)− β(X)

2(1 + γ(X))

+
1

X − 1

)
,

cθ,σ,X,q,2 := log
( q

4π2

)((2 + γ(X))α(X)− β(X)

2(1 + γ(X))

+
(α(X)− β(X))

(1 + γ(X))
· |Γ(−σ2)|X1−σ2

X − 1
+

1

X − 1
+
σ1 − σ

X

)
,

γ(X) := max
y
|Γ(1− σ2 + iy)|

(
(σ2 − 1) +

y2

σ2 − 1

)
,

β(X) :=



(σ2−1)Xσ2−1

Xσ2−1−Γ(2−σ2)

σ1∫
σ

Re
(
X1−uΓ(1− u)

)
du if X ≤ Γ(2− σ2)

− (σ2−1)Xσ2−1

Xσ2−1+Γ(2−σ2)

σ1∫
σ

Re
(
X1−uΓ(1− u)

)
du if Γ(2− σ2) < X ≤Mσ2

0 otherwise

,

(3.41)

and finally

α(X) := max
y

∣∣∣∣∣∣
σ1∫
σ

(
X1−uΓ(1− u+ iy)

)
du−

(
β(X)X1−σ2Γ(1− σ2 + iy)

)∣∣∣∣∣∣(3.42)

·
(

(σ2 − 1) +
y2

σ2 − 1

)
.

Remark 3.32. Choosing σ2 appropriately, it is suspected that the maximum in (3.42)

is attained at y = 0. In such a case, we would have α(X) = β(X).

Proof. Integrating both sides of Lemma 3.25 from s to s1 yields

logLi(s) = logLi(s1) + F (s,X)− F (s1,X) +

s1∫
s

(Rsig(w) +Rins(w) +Rtri(w))dw.

We take real parts of both sides to bound log |Li(s)|. Since |λi(n)| ≤ 2
√
n, we bound

log |Li(s1)|−Re(F 1(s1,X)) ≤
(
1− e−n/X

) d∑
n=2

|λi(n)|
nσ1 log(n)

+
∞∑

n=d+1

2Λ(n)

nσ1−1/2 log(n)
. (3.43)
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Notic that taking the logarithmic derivative of ζ and integrating yields

∞∑
n=d

2Λ(n)

nσ1−1/2 log(n)
= 2 log(ζ(σ1 − 1/2))− 2

d∑
n=1

Λ(n)nσ1−1/2 log(n),

which can easily be computed numerically with a computer.

(i) We first bound the contribution from the trivial zeros:

Since 1 < σ < w < σ1 < 2 and |Γ(−n − w)| < |Γ(−w)| by the functional equation,

we know that the maximum is attained either at s or s1, so that the maximum is less

than or equal to max{|Γ(σ)|, |Γ(σ1)|}. Thus

s1∫
s

Rtri(w)dw ≤ max{|Γ(σ)|, |Γ(σ1)|}
∞∑

n=0

σ1∫
σ

X−n−udu

≤ max{|Γ(σ)|, |Γ(σ1)|} ·
X1−σ

(X − 1) log(x)
. (3.44)

(ii) We now bound the contribution from the poles of Γ: We will show

s1∫
s

Rins(w)dw ≤ |log(ζ(4− σ1 − 1/2))− log(ζ(4− σ − 1/2))|
(

1

2X2 +
1

6X2(X − 1)

)

− log(|Li(s)|)
X

+
1

X
log(ζ(3− σ − 1/2)) +

σ1 − σ

2X2

(
49

6
+ log(1 + t2) + log(12)

)
+

log σ1−1
σ−1

− log 2−σ1

2−σ

2X2 +
2

X
log

Γ(σ1)

Γ(σ)
+

2(σ1 − σ)

X
log(1 + t2) +

(σ1 − σ)

X
log

q

4π2
.

(3.45)

We use the functional equation to obtain

s1∫
s

Rins(w)dw =
∞∑

n=1

(−X)−n

n!

s1∫
s

L′i
Li

(w − n)dw

=
∞∑

n=1

(−X)−n

n!

(
log

Li(2 + n− s1)

Li(2 + n− s)
+ (σ − σ1) log

q

4π2

−
s1∫
s

(
Γ′

Γ
(2− w + n) +

Γ′

Γ
(w − n)

)
dw

 .
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First we note that

∞∑
n=1

(−X)−n

n!
(σ − σ1) log

q

4π2
≤

(σ1 − σ) log q
4π2

X
. (3.46)

Additionally, we have

log
Li(2 + n− s1)

Li(2 + n− s)
≤

∞∑
m=2

|λi(m)|
logm

(
1

m2+n−σ1
− 1

m2+n−σ

)
.

Clearly for n ≥ 2, 1
m2+n−σ1

− 1
m2+n−σ ≤ 1

m4−σ1
− 1

m4−σ , so that we get the bound∣∣∣∣log
Li(2 + n− s1)

Li(2 + n− s)

∣∣∣∣ ≤ |log(ζ(4− σ1 − 1/2))− log(ζ(4− σ − 1/2))| .

This yields

∞∑
n=2

(−X)−n

n!
log

Li(2 + n− s1)

Li(2 + n− s)

≤ |log(ζ(4− σ1 − 1/2))− log(ζ(4− σ − 1/2))|
(

1

2X2 +
1

6X2(X − 1)

)
. (3.47)

For n = 1, taking the real part and noting that |Li(3− s1)| = |Li(s)|, we have

(−X)−1 log
|Li(3− s1)|
|Li(3− s)|

= − log |Li(3− s1)|
X

+
∞∑

m=2

|λi(m)|
m3−σ logm

≤ − log(|Li(s)|)
X

+
1

X
log(ζ(3− σ − 1/2)). (3.48)

It remains to bound

s1∫
s

(
Γ′

Γ
(2− w + n) +

Γ′

Γ
(w − n)

)
dw.

Since 1 < σ ≤ w ≤ σ1 < 2, we know that 2 − w + n ≥ 1 for all n ≥ 1, so that we can

use equation (3.24) to bound that term. We will use equation (3.26) to bound the term

with w − n for n ≥ 2. For n = 1, we have u − n ∈ (0, 1), so that we can use equation
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(3.27). We also see, independent of n, < u− n > (1− < u− n >) = (2− u)(u− 1), as

either < u− n >≡ u (mod 1) or < u− n >≡ −u (mod 1), and < u− n >∈ (0, 1).

This yields, for n ≥ 2,

Γ′

Γ
(2− w + n) +

Γ′

Γ
(w − n)

≤ 49

6
+

log ((3 + n− u)(2 + n− u))

2
+ log(1 + t2) + log(3 + n− u).

Now note that for n ≥ 2, 2 + |n− u| = 2 +n− u, and 1 + (2 +n− u)2 < (3 +n− u)2, so

that log(1+(2+n−u)2)
2

+ log(2 + |n− u|) ≤ log ((3 + n− u)(2 + n− u)). For n = 1, we have

u− 1 > 0 and 3−u > 0, so that we can use equation (3.25) and the functional equation

to obtain

Re

(
Γ′

Γ
(w − 1)

)
≤ Re

(
Γ′

Γ
(w)

)
− Re

(
1

w − 1

)
≤ Re

(
Γ′

Γ
(w)

)
≤ Γ′

Γ
(u) +

t2

u(t2 + u2)
+

1

2
log(1 + t2) ≤ Γ′

Γ
(u) + log(1 + t2)

and

Re

(
Γ′

Γ
(3− w)

)
≤ Γ′

Γ
(3− u) +

t2

(3− u)(t2 + (3− u)2)
+

1

2
log(1 + t2)

≤ Γ′

Γ
(3− u) + log(1 + t2).

Now we have, since u > 1 and log(n+ 2) · n < n! for n ≥ 3 and X > 2,

−
∞∑

n=1

(−X)−n

n!

s1∫
s

Re

(
Γ′

Γ
(2− w + n) +

Γ′

Γ
(w − n)

)

≤ σ1 − σ

2X2

(
49

6
+ log(1 + t2) + log(12)

)
+

log σ1−1
σ−1

− log 2−σ1

2−σ

2X2

+
2

X
log

Γ(σ1)

Γ(σ)
+

2(σ1 − σ)

X
log(1 + t2). (3.49)
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Rearranging and combining equations (3.46), (3.47), (3.48), and (3.49) yields equation

(3.45).

(iii) Finally we bound the contribution from the significant zeros of Li:

We will show

s1∫
s

Re (Rsig(w)) dw ≤
(
α(X) +

α(X)− β(X)

1 + γ(X)

)(
1

2
log
( q

4π2

)
+

1

2
log
(
1 + t2

)
+

Γ′

Γ
(σ2) +

1

σ2

− F 1(s2,X)

)
+
α(X)− β(X)

1 + γ(X)
· |Γ(−σ2)|X1−σ2

X − 1
log
( q

4π2

)
+
|Γ(−σ2)|X1−σ2

X − 1
+

1

X − 1

(
55

6
+

1

(2− σ2)(σ2 − 1)
+ log(1 + t2)

+ 2
ζ ′

ζ
(3− 1/2− σ2) + log

( q

4π2

))
. (3.50)

Fix an individiual zero ρ := 1 + iy.

s1∫
s

Re
(
Xρ−wΓ(ρ− w)

)
dw = Re

(
β(X)Xρ−s2Γ(ρ− s2)

)
+

s1∫
s

Re
(
Xρ−wΓ(ρ− w)

)
dw − Re

(
β(X)Xρ−s2Γ(ρ− s2)

)
≤ Re

(
β(X)Xρ−s2Γ(ρ− s2)

)
+ α(X)Re

(
1

s2 − ρ

)
.

Now, summing over all non-trivial zeros of Li gives the bound

s1∫
s

Re (Rsig(w)) dw ≤ β(X)Re (Rsig(s2)) + α(X)
∑

ρ

Re

(
1

s2 − ρ

)
(3.51)

Now we obtain by lemma 3.28∑
ρ

Re

(
1

s− ρ

)
= Re

(
L′i
Li

(s2)

)
+

1

2
log
( q

4π2

)
+ Re

(
Γ′

Γ
(s2)

)
(3.52)

We again use the exact formula for
L′

i

Li
from Lemma 3.25 to obtain

L′i
Li

(s2) = −F 1(s2,X)−Rsig(s2)−Rtri(s2)−Rins(s2). (3.53)
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We again need to bound each of these.

Clearly, taking the absolute value and noting that |Γ(−n− s)| ≤ |Γ(−σ2)|, we have

Rtri(s2) ≤ |Γ(−σ2)|
∞∑

n=0

X−n−σ2 =
|Γ(−σ2)|X1−σ2

X − 1
. (3.54)

We next bound Rins(s2). We use the functional equation of
L′

i

Li
to obtain

Rins(s2) =
∞∑

n=1

n!

x−n

(
L′i
Li

(n+ 2− s2) +
Γ′

Γ
(s2 − n) +

Γ′

Γ
(n+ 2− s2) + + log

( q

4π2

))
.

(3.55)

Since
L′

i

Li
(w) =

∞∑
n=0

λ(m)χ(m)
mw and λ(m) ≤ 2

√
mΛ(m), we know that for n ≥ 1

∣∣∣∣L′iLi

(n+ 2− s2)

∣∣∣∣ ≤ ∣∣∣∣L′iLi

(3− s2)

∣∣∣∣ ≤ ∞∑
n=0

2Λ(m)

m3−1/2−σ2
≤ 2

∣∣∣∣ζ ′ζ (3− 1/2− σ2)

∣∣∣∣ . (3.56)

We again use Equations (3.26) and (3.24) of Lemma 3.26 to obtain

∣∣∣∣Γ′Γ (s2 − n) +
Γ′

Γ
(n+ 2− s2)

∣∣∣∣
≤ 49

6
+

1

(2− σ2)(σ2 − 1)
+ log((n+ 1)(n+ 2)) + log(1 + t2). (3.57)

Therefore, combining equations (3.55), (3.56), and (3.57) yields

|Rins(s2)| ≤
1

X − 1

(
55

6
+

1

(2− σ2)(σ2 − 1)
+ log(1 + t2)

+ 2

∣∣∣∣ζ ′ζ (3− 1/2− σ2)

∣∣∣∣+ log
( q

4π2

))
. (3.58)

We use Equation (3.25) of Lemma 3.26 to obtain

Re

(
Γ′

Γ
(s2)

)
≤ Γ′

Γ
(σ2) +

t2

σ2(t2 + σ2
2)

+
1

2
log

(
1 +

t2

σ2
2

)
≤ Γ′

Γ
(σ2) +

1

σ2

+
1

2
log
(
1 + t2

)
. (3.59)
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Combining the terms involving Re(Rsig(s2)), it remains to bound

|β(X)− α(X)|Re(Rsig(s2)). (3.60)

We bound Re(Rsig(s2)) similarly to the way that we bound Rsig bound above. A

non-trivial zero ρ of Li contributes

Re
(
Xρ−s2Γ(ρ− s2)

)
≤
∣∣Re

(
Xρ−s2Γ(ρ− s2)

)∣∣
= X1−σ2 |Γ(1− σ2 + i(y − t))|

(
(σ2 − 1) +

(t− y)2

σ2 − 1

)
· Re

(
1

s2 − ρ

)
.

We then bound γ(X) so that we have shown, using the functional equation for
L′

i

Li

and the exact formula from Lemma 3.25,

Re(Rsig(s2)) = Re
∑

ρ

(
Xρ−s2Γ(ρ− s2)

)
≤ γ(X)Re

(∑
ρ

1

s2 − ρ

)

= γ(X)

(
1

2
log
( q

4π2

)
+ Re

(
Γ′

Γ
(s2)

)
+ Re

(
L′i
Li

(s2)

))
= γ(X)·((

1

2
+
|Γ(−σ2)|X1−σ2

X − 1

)
log
( q

4π2

)
+ Re

(
Γ′

Γ
(s2)

)
− F 1(s2,X)− Re(Rsig(s2))

)
.

We have already shown how to bound

Re

(
Γ′

Γ
(s2)

)
≤ Γ′

Γ
(σ2) +

1

σ2

+
1

2
log
(
1 + t2

)
,

so combining the Re(Rsig(s2)) terms yields

|Re(Rsig(s2))| ≤
1

1 + γ(X)

((
1

2
+
|Γ(−σ2)|X1−σ2

X − 1

)
log
( q

4π2

)
+

Γ′

Γ
(σ2) +

1

σ2

+
1

2
log
(
1 + t2

)
− F 1(s2,X)

)
. (3.61)

The inequalities (3.54), (3.58), and (3.61) bound the terms in equation (3.53). Noting

that α(X) ≥ β(X) because plugging y = 0 into the term we are maximizing in α(X)

gives exactly β(X), we get equation (3.50) as a consequence.
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Combining equations (3.45), (3.44), and (3.50), and noting that α(x) + α(X)−β(X)
1+γ(X)

=

α(X)(2+γ(X))−β(X)
1+γ(X)

completes the proof.

3.7 Fundamental Discriminants and Bounds for

Weight 3/2 Cusp Forms

In this section we show how to find a bound Dθ,σ,σ2 such that for every fundamental

discriminant −D with D > Dθ,σ,σ2 we have aθ(D) > 0. Thus, combining this result with

Section 3.3 gives the result for all discriminants.

3.7.1 Bounds for Fundamental Discriminants and Half Integer

Weight Cusp Forms

We now proceed to show how bounds for α(X), γ(X), and δ(X) are obtained.

Lemma 3.33. Fix a finite number of intervals [y0,n, y1,n] with 0 ≤ y0,n < y1,n <∞ such

that
⋃m

n=1[y0,n, y1,n] ∪ [y1,m,∞) = (0,∞). Then

δ(X) ≤ max

maxn≤m

σ−1/2∫
σ0−1/2

x−u|Γ(−u+ iy0,n)|du ·
(

1

2
log

y2
1,n + (σ − 1/2)2

y2
1,n + (σ0 − 1/2)2

)−1

,

σ−1/2∫
σ0−1/2

x−u|Γ(2− u+ iy1,m)| 2((
σ0 − 1

2

)2
+ y2

1,m

)
log

(
(σ− 1

2)
2
+y2

1,m

(σ0− 1
2)

2
+y2

1,m

)
 . (3.62)
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For γ(X), we obtain the bound

γ(X) ≤ max

{
maxn≤m |Γ(1− σ2 + iy0,n)|

(
(σ2 − 1) +

y2
1,n

σ2 − 1

)
,

|Γ(3− σ2 + iy1,m)| 1

σ2 − 1

}
. (3.63)

Finally, for α(X) we obtain

α(X) ≤ max

maxn≤m

σ1∫
σ

X1−u|Γ(1− u+ iy0,n)|
(

(σ2 − 1) +
y2

1,n

σ2 − 1

)

−β(X)x1−σ2Γ(1− σ2 + iy1,n)

(
(σ2 − 1) +

y2
0,n

σ2 − 1

)
,

σ1∫
σ

X1−u|Γ(3− u+ iy1,m)|

(σ2 − 1) +
y2
1,m

σ2−1

(σ − 1)2 + y2
1,m

 . (3.64)

Proof. We will show the result for δ(X), and the analogous calculation for α(X) and

γ(X) is left to the reader.

First define δ[y0,y1](X) to be the max taken in the interval y0 ≤ y ≤ y1. Further,

define

f(y) :=

σ−1/2∫
σ0−1/2

x−u|Γ(−u+ iy)|du

and

g(y) :=

(
1

2
log

y2 + (σ − 1/2)2

y2 + (σ0 − 1/2)2

)−1

.

Notice first that f is strictly decreasing in y ≥ 0, while g is strictly increasing. Therefore,

noting that both functions are even in y, we fix 0 ≤ y0 < y < y1 < ∞, then pull the

absolute value inside the integral to give

δ[y0,y1](X) ≤ f(y0)g(y1).
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Now we deal with the case where y1 = ∞. The functional equation of Γ(z) gives us

f(y) =

σ−1/2∫
σ0−1/2

x−u |Γ(2− u+ iy)|
(u2 + y2)1/2((1− u)2 + y2)1/2

du.

Now, noting that 1− u ≥ 1−
(
σ − 1

2

)
= 3

2
− σ = σ0 − 1

2
and u ≥ σ0 − 1

2
, along with the

fact that |Γ(2− u+ iy)| is decreasing in y, we get

f(y) ≤
σ−1/2∫
σ0−1/2

x−u|Γ(2− u+ iy0)|du
1(

σ0 − 1
2

)2
+ y2

.

Now, defining z :=
(
σ0 − 1

2

)2
+ y2 and a :=

(
σ − 1

2

)2 − (σ0 − 1
2

)2
requires us to bound

2

z log
(
1 + a

z

) .
Since a > 0 we easily see that this function is decreasing for z > 0. Hence we obtain

δ[y0,∞) ≤
σ−1/2∫
σ0−1/2

x−u|Γ(2− u+ iy0)|
2((

σ0 − 1
2

)2
+ y2

0

)
log

(
(σ− 1

2)
2
+y2

0

(σ0− 1
2)

2
+y2

0

) .

We have now set up the framework to show our main theorems.

Proof of Corollary 3.1. Let N be squarefree and odd, g ∈ S+
3/2(4N), and ε > 0. Choose

1 < σ < 1 + ε
2
.

Observing the bounds for α(X), β(X), and γ(X) in Lemma 3.33, we see that the

coefficient in front of log
(

q
4π2

)
in Theorem 3.31 goes to zero as X goes to ∞. Using the

functional equation for L(Gi,−D, s), we get an additional term σ−1
2

log(q). Therefore,

taking σ < 1 + ε
2

and X sufficiently large yields

|Li(1)| �ε D
ε,
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where the coefficient is explicitly computable from Theorem 3.31.

Now, using Lemma 3.9, if −D is a fundamental discriminant, then we have shown

|agi
(D)| �ε D

1
4
+ε.

Finally, we use Lemma 3.12 to obtain the result for all discriminants.

Remark 3.34. This result shows the Ramanujan-Petersson Conjecture for k = 3/2 and

N squarefree and odd, conditional upon GRH for weight 2 modular forms.

For weight 2k cusp forms we have L(G,−D, s) centered at k with functional equation

s → 2k − s when multiplied by a Γ factor and the appropriate power of q. Therefore,

this argument should be easily generalized for all weights k + 1
2
, with k ≥ 1.

We use the following lemma of Duke [10] to prove Theorem 3.7.

Lemma 3.35 (Duke [10]). Fix f ∈ S3/2 (Γ0(N), ψ). Then

‖f‖2 � Γ(α)d(N)N2α

∞∑
n=1

|an|2n−α,

where α > 1
2

is any number so that the series exists, d(·) is the divisor function, and the

constant is absolute.

Proof of Theorem 3.7. Set g := θ − E. We will bound E and g independent of θ. We

will use the bound obtained in Corollary 3.1. However, some of bounds were dependent

on θ. We now describe how to bound these terms independent of θ. The terms with F

and F 1 may be bound independent of Li by bounding λi ≤ 2
√
nΛ(n) in Theorem 3.31

and taking the absolute value inside the sums F and F 1. Thus, Corollary 3.1 yields

ag(d) �ε ‖g‖d1/4+ε. (3.65)
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We know that for a discriminant −d with
(
−d
p

)
6= 1 and p2 - d,

aE(d) =
12

2vp(d)(p− 1)
·H(−d). (3.66)

Assuming the Riemann hypothesis for Dirichlet L-functions, Littlewood has effectively

shown that H(−d) �
√

d
log(log(d))

[26]. Thus

aE(d) �ε
1

p
d1/2−ε. (3.67)

It remains to use Lemma 3.35 to bound ‖g‖ independent of θ. Define ωQ to be the

number of automorphs of the quadratic form Q. Denote the genus of Q by G. Define

further

M(G) :=
∑
Q′∈G

ω−1
Q′ ,

where the sum is taken over all ternary quadratic forms Q′ in the genus.

Siegel proved (cf. [14]) that

aE(d) =
1

M(G)

∑
Q′∈G

ω−1
Q′ aθQ′ (d).

Therefore, since aθQ′ (d) ≥ 0 for every Q′, we have

ag(d) ≤ (M(G)ωQ + 1)aE(d).

Moreover, it is well known [27] that ωQ ≤ 48, so

ag(d) �M(G)aE(d).

Clearly, since ωQ ≥ 1, M(G) ≤ #G.

Now notice that for any Q 6= Q′ ∈ G, we have aθQ
− aθQ′ ∈ S+

3/2(4p). Due to the

isomorphism between S+
3/2(4p) and S2(p), we know that

#G ≤ dimCS2(p) + 1.
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It is well known (cf. [28] p. 10) that dimCS2(p) ≤ dp+1
12
e+ 1. Thus, #G ≤ p. Therefore,

ag(d) � paE(d).

Plugging in equation (3.66), we have

ag(d) � p2H(−d).

Siegel’s work [33] shows effectively that H(−d) �ε d
1/2+ε. Therefore,

ag(d) �ε p
2d

1
2
+ε.

It is important to note here that our constant does not depend on g.

Therefore, the power of d attained allows us to choose α = 2 + 2ε in Lemma 3.35 for

the convergence of the sum. Since we know that N = p is the level, this yields

‖g‖2 � p4+4εp2.

Therefore,

ag(d) �ε ‖g‖d1/4+ε �ε p
3+εd1/4+ε. (3.68)

Combining equations (3.67) and (3.68), aE(d) �ε ag(d) if

1

p
d1/2−ε �ε p

3+εd1/4+ε,

i.e.

d�ε p
16+ε.
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Theorem 3.36 (Theorem 1.2). Fix θ ∈ M+
3/2(4p). Assume GRH for Dirichlet L-series

and weight 2 modular forms. For every X > γ + 1
3/2−σ

such that

(2 + γ(X))γ(X)

1 + γ(X)
+

2γ(X)

1 + γ(X)
· |Γ(−σ2)|X1−σ2

X − 1

+
2(σ1 − σ)

X
+

2

X − 1
+
δ(X)

8
− X − 1

X2 + (σ − 1) <
1

2

there exists an effectively computable constant Dσ,X such that for all fundamental dis-

criminants −D < −Dσ,X with
(
−D
p

)
6= 1, one has aθ(D) 6= 0.

Moreover, such an X exists, so, assuming GRH for Dirichlet L-functions and weight

2 modular forms, there is an effectively computable constant Dσ such that for all funda-

mental discriminants −D < −Dσ with
(
−D
p

)
6= 1, aθ(D) 6= 0.

Proof. By equation (3.9), it suffices to bound F (s). By definition,

log |F (s)| = log(|Li(s)|) + log(|Γ(s)|)− log(|L(s0)|)− log(|L(s)|) +
σ − 1

2
log

q

4π2
.

Using Theorem 3.31, we obtain constants cθ,σ,X,2, cθ,σ,X,t,2, and cθ,σ,X,q,2 such that

log(|Li(s)|) ≤
X

X + 1
F (s,X)− X((2 + γ(X))α(X)− β(X)

(X + 1)(1 + γ(X))
F 1(s2,X)

+ cθ,σ,X,2 + cθ,σ,X,t,2 + cθ,σ,X,q,2. (3.69)

Moreover, Theorem 3.29 gives us constants cθ,σ,X,1, cθ,σ,X,t,1, and cθ,σ,X,m,1 such that

log
|L(s0)|
|L(s)|

≥ X

X − 1− δ(X)X
(Re(G(s0,X))− Re(G(s,X))) + c1,X,σ,θ

+ cθ,σ,X,1 + cθ,σ,X,t,1 + cθ,σ,X,m,1. (3.70)
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Therefore we have obtained

log |F (s)| ≤ X

X + 1
F (s,X)− X((2 + γ(X))α(X)− β(X)

(X + 1)(1 + γ(X))
F 1(s2,X)

− X

X − 1− δ(X)X
( Re(G(s0,X))− Re(G(s,X))) + cθ,σ,X,2 + cθ,σ,X,t,2 + cθ,σ,X,q,2

− (cθ,σ,X,1 + cθ,σ,X,t,1 + cθ,σ,X,m,1) + log |Γ(s)| − 2 log |L(s)|.

Using the fact that q = pD2 and m = D, it remains to deal with log |Γ(s)|, 2 log |L(s)|,

and the remaining terms involving F , F 1, and G. We will combine the terms cθ,σ,X,t,1

and cθ,σ,X,t,2 with log |Γ(σ + it)| to remove the dependence on t. The exponential decay

of Γ(σ + it) in the t term will swamp the contribution from the other terms, as a

quick calculation indicates these only have polynomial growth. The term dealing with

log |L(s)| may be bound easily by

log |L(s)| ≥ − log |ζ(σ)|. (3.71)

If we denote the sum of the terms involving F , F 1, and G, using the notation used

in [29], as
∞∑

n=2

Re
χ(n)

nit log(n)
v(n; X), (3.72)

then, fixing a constant N0, we may bound the first N0 terms by a constant, and the

remaining terms we will bound separately. Notice that the dependence on X on the

first N0 terms will be inconsequential for X large, as we can bound e−n/x by 1, whereas

for X small we will explicitly use the value of X to obtain a better bound.

Now note that the contribution to v(n; X) from the terms involving F and F 1 is

e−n/xλ(n)χ(n) · X

X + 1
·
(

1

nσ
− ax

log(n)

nσ2

)
,
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where ax is above. Since ax > 0, we would like ax
log(n)
nσ2

≤ n−σ so that we can bound this

contribution by

λ(n)χ(n) · X

X + 1
·
(

1

nσ

)
.

Choosing σ2 > σ, the asymptotic growth shows us that there exists an N0 such that

n > N0 will suffice. Therefore, we will choose N0 sufficiently large to obtain this result.

Now, using the fact that |λ(n)| ≤ 2Λ(n)
√

(n), we have

|v(n; X)| ≤ e−n/x

(
2Λ(n)

nσ−1/2
+ bx

(
Λ(n)

nσ0
− Λ(n)

nσ

))
≤ cx

Λ(n)

nmin(σ0,σ−1/2)
e−n/x.

Therefore, since cx is independent of n, it remains to bound sums of the form

H(α,X) :=
∞∑

n=N0+1

Λ(n)

nα log(n)
e−n/x.

We will need the following lemma which is a small generalization of a lemma from [29]

to proceed with bounding the terms n→∞. Recall our definition (3.14) of ψ(x).

Lemma 3.37. Conditional upon the Riemann Hypothesis, one has for 0 < α < 1,

H(α,X) ≤ e−N0/X

Nα
0 log(N0)

(cN0N0 − ψ(N0)) +
cN0X

1−α

log(N0)
Γ(1− α,N0/X)

where

Γ(x; y) :=

∞∫
y

tx−1e−tdt,

and ψ(x) < cN0x for every x ≥ N0.

Proof. Since ψ(x) jumps only at prime powers, it follows that

H(α,X) =

∞∫
N0

e−t/X

tα log(t)
dψ(t)
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Using the results in Rosser and Schoenfeld [31], we have ψ(x) < cN0x for x ≥ N0 − 1/2,

and some cN0 > 1. Since Chebyshev showed that ψ(x) ∼ x (cf. [15]) this constant goes

to 1 as N0 goes to infinity, but Rosser and Schoenfeld give an explicit constant of

1 +
log(N0)

2

8π
√
N0

assuming the Riemann Hypothesis.

Integration by parts now yields

H(α,X) ≤ e−N0/X

Nα
0 log(N0)

(cN0N0 − ψ(N0) + cN0

∞∫
N0

e−t/X

tα log(t)
dt

≤ e−N0/X

Nα
0 log(N0)

(cN0N0 − ψ(N0)) +
cN0

log(N0)

∞∫
N0

e−t/X

tα
dt

=
e−N0/X

Nα
0 log(N0)

(cN0N0 − ψ(N0)) +
cN0e

−N0/XX1−α

log(N0)
Γ(1− α,N0/X).

We now return to the proof of Theorem 1.2. Notice that we have now shown that

the only terms involving D are the terms σ−1
2

log
(

q
4π2

)
, cθ,σ,X,q,2 and −cθ,σ,X,m,1.

Investigating equation (3.9) shows that if the constant in front of log(D) is less than

1
2
, then we will have a result of the form D ≤ c. Therefore, it only remains to show that

there is an X such that the coefficient in front of D is less than or equal to 1
2
. Plugging

in m = D and q = pD2, and using our bounds for α(X), γ(X) and δ(X) obtained in

Lemma 3.33, we see that the limit of the power of D as X →∞ is σ − 1. Since σ < 3
2
,

such an X exists.

Remark 3.38. In practice, we will fix a constant N0 and use cancellation between the

first N0 terms of the sum in equation (3.71) and the first N0 terms of (3.72) to get a

better explicit bound. The details are described further in Section 4.2.3.
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Chapter 4

Explicit Algorithms for Computing

Good Bounds for E

4.1 Introduction

In Chapter 3([21]), we have shown an effective bound for certain positive definite ternary

quadratic forms representing every integer up to local conditions, conditional upon GRH

for Dirichlet L-functions and L-functions of weight 2 newforms. In this chapter, we give

an algorithm to compute this bound and use it to obtain a good bound for E. The

algorithm is mainly comprised of an efficient decompostion of a certain space of modular

forms and the computation of bounds for certain constants defined in Chapter 3 ([21]).

Using this algorithm, a good bound for E is calculated for every E/Fp with p ≤ 107.

The chapter concludes with computational data obtained using the algorithms de-

scribed herein to obtain good bounds Dp for p ≤ 107 and computations of the set

of fundamental discriminants −D > −Dp for which the map is not surjective. For

p ∈ {3, 5, 7, 13}, a simple dimension argument about modular forms shows that every D

is a good bound for p. Collecting the data for the primes p ≤ 107, the following theorem

is obtained.

Theorem 4.1. Assume GRH for Dirichlet L-functions and L-functions of weight 2
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p Good Bound Dp for p. p Good Bound Dp for p.
3, 5, 7, 13 1 59 1.166× 1019

11 5.359× 109 61 1.413× 1017

17 1.221× 1014 67 2.323× 1019

19 7.544× 1012 71 1.793× 1021

23 2.418× 1016 73 7.035× 1017

29 4.305× 1015 79 2.370× 1020

31 4.866× 1016 83 1.033× 1020

37 4.552× 1014 89 3.257× 1025

41 1.786× 1018 97 4.750× 1018

43 2.069× 1015 101 5.296× 1020

47 1.804× 1018 103 8.748× 1019

53 3.817× 1019 107 1.761× 1021

Table 1: Good bounds Dp for every prime p ≤ 107.

newforms. Then 3.257 × 1025 is a good bound for p ≤ 107. More precisely, we obtain

Table 1 of good bounds Dp for each p.

For a fixed fundamental discriminant −D, we also show an algorithm to determine

whether the reduction map from elliptic curves with CM by O−D is surjective. In cases

where the good bound obtained is small enough, we furthermore compute whether the

map is surjective for each fundamental discriminant −D > −Dp, hence giving a full list

of D for which the map is surjective, conditional upon GRH. To accomplish this for a

wider range of p, a specialized algorithm is given here for computing surjectivity more

efficiently for D < Dp when the supersingular elliptic curves are defined over Fp. For

those defined over Fp2 , to reduce calculations we simply have a loop with variables x, y,

and z, and bound x and y by a fixed constant.

The bound Dp is feasible for p = 11, p = 17, and p = 19, using our specialized

algorithm and the fact that every supersingular elliptic curve is defined over Fp. This
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yields the following theorems.

Theorem 4.2. Assume GRH for Dirichlet L-functions and L-functions of weight 2

newforms. Then the reduction map mod 11 from elliptic curves with CM by O−D is

surjective for every fundamental discriminant −D for which 11 does not split if and

only if

D /∈ {3, 4, 11, 67, 88, 91, 163, 187, 232, 235, 427499, 595, 627, 715, 907, 1387,

1411, 3003, 3355, 4411, 5107, 6787, 10483, 11803} (4.1)

Theorem 4.3. Assume GRH for Dirichlet L-functions and L-functions of weight 2

newforms. Then the set of fundamental discriminants −D for which 17 does not split

and the reduction map mod 17 from elliptic curves with CM by O−D is not surjective

has size 91, the largest of which is D = 89563.

Theorem 4.4. Assume GRH for Dirichlet L-functions and L-functions of weight 2

newforms. Then the set of fundamental discriminants −D for which 19 does not split

and the reduction map mod 19 from elliptic curves with CM by O−D is not surjective

has size 45, the largest of which is D = 27955.

Having established such surjectivity results, it is straightforward to ask whether

similar results can be shown about the multiplicity of the reduction map. This question

was addressed and an ineffective solution was given by Elkies, Ono, and Yang [12]. We

will need to define two functions before giving their result as it is stated in their paper.

For −D a fundamental discriminant, define HD(x) ∈ Q[x] to be the Hilbert class

polynomial, of degree h(−D), whose roots are precisely the j-invariants of the elliptic
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curves with complex multiplication by O−D. These roots are referred to as singular

moduli of discriminant −D.

Define further Sp(x) ∈ Fp[x] to be the polynomial with roots precisely the j-invariants

of those elliptic curves defined over Fp which are supersingular. Since the j-invariant is

invariant modulo the prime p under the Deuring map, our result may be rewritten as

follows.

Theorem 4.5. Conditional upon GRH for Dirichlet L-functions and L-functions of

weight 2 newforms, there is an effectively computable constant Dp such that for all D >

Dp up to local conditions,

Sp(x) | HD(x)

over Fp[x].

Elkies, Ono, and Yang have shown unconditionally in [12] the following unconditional

but ineffective answer to the question of multiplicity.

Theorem 4.6 (Elkies-Ono-Yang [12]). Fix t ≥ 1. There exists an (ineffective) constant

Dp,t such that, for every fundamental discriminant −D < −Dp,t for which p does not

split in O−D,

Sp(x)
t | HD(x)

over Fp[x].

In terms of our notation, they have shown for every t ≥ 1, every supersingular elliptic

curve over Fp lifts to at least t elliptic curves with CM by O−D whenever D is sufficiently

large. A slight alteration to our proof in [21] would lead to an effectively computable

bound of this type, conditional upon GRH for L-functions of weight 2 newforms and

Dirichlet L-functions, which should be feasible for small p and small t.
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Using the connection between bounds for coefficients of theta series and good bounds

for E described in Section 2.1, it will suffice to show a good bound for Q for each Q

with associated theta in Kohnen’s plus space of level 4p. In Section 3.7, we obtained a

bound for coefficients of these theta series. Given the connection from Section 2.1, this

gives a good bound for E, dependent on numerically calculating certain constants, and

hence a good bound for p, since there are only finitely many supersingular elliptic curves

over Fp. In Section 4.2, we fix a basis and decompose a certain space of modular forms

in order to calculate some of the constants obtained from Section 3.7. Furthermore,

we give explicit algorithms for calculating the remaining constants carefully in order to

obtain better good bounds for E. In Section 4.3, we use a trick based on the Ibukiyama’s

classification [16] of the set of OE, when E is defined over Fp, in order to calculate the

set of D < DE which are generated by QE. Finally, in Section 4.4, we give a summary

of the results obtained by explicitly implementing the algorithms from Sections 4.2 and

4.3 for p ≤ 107.

4.2 Algorithm to compute DE and Dp

We will first calculate the maximal order, then the corresponding quadratic forms. Once

we have obtained the quadratic forms, we decompose the space into the Eisenstein series

and a direct sum of Hecke eigenforms. We will also give an algorithm to choose the

Hecke eigenforms gi and a choice of the Shimura lift S. This will allow us to calculate

the constants bi. In order to calculate the constants ci, we use S in order to obtain the

Shimura lifts Gi, and then we may use a result of Cremona [5] in order to calculate the

special value of a twist of Gi.



70

These algorithms are implemented using MAGMA [3] and the C programming lan-

guage. Many algorithms are made more efficient by built in functionality in MAGMA,

and the wonderful implementations made the actual calculations much simpler. I would

like to thank anyone who has contributed to this wonderful computer algebra system.

First we need to calculate the maximal orders of the quaternion algebra ramified

exactly at p and ∞. We use Pizer’s randomized algorithm [30]. This is based on choos-

ing (randomly) an integral element of the algebra, and then finding the corresponding

quadratic order. Then membership in the quaternion order is quickly checked, since this

simply corresponds to calculating whether adding it to the existing matrix leads to an

infinitely generated module over Z or not.

4.2.1 Calculating Maximal Orders and Theta Series

Using the algorithm of Pizer above, we calculate all of the maximal orders for the

quaternion algebra ramified exactly at p and ∞ using a built in function in MAGMA.

We next need to calculate the theta series of all of these. Since we have the 4 generators

of the maximal order, we will represent any sublattice by a 4×4 matrix. The j-th column

will represent the coefficients of the j-th generator in terms of the standard basis of 1,

α, β, and αβ with α2 = −p, β2 = −q, and βα = −αβ.

We can find another set of generators by applying SL4(Z) operations. Doing so, we

can find a choice of generators so that the corresponding matrix is lower triangular. Since

it is lower triangular, finding the trace zero elements is simple, as the only generator

which is not trace zero is the element represented by the first column.
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Adding an Element to a Lattice

We will describe here the function which takes a Z-module M and an additional element

and returns the module generated by the element and M . Using our representation of

the lattice as a 4 × 4 matrix, we generate the new lattice by taking the 4 × 5 matrix

with the first 4 columns identical to the lattice and the 5-th column representing the

additional element. We then do column operations until the number of non-zero columns

matches the rank of the matrix and the matrix is in lower triangular form.

Getting a Basis for LE

We take each maximal order, multiply by 2, and add the element 1 = (1, 0, 0, 0) using

the above function. We have now generated the Gross order. Since our matrix is in

lower triangular form, the trace zero elements are simply the elements which are linear

combinations of columns 2 through 4. We thus obtain a basis of LE by taking the

generators represented by columns 2 through 4.

Finding the θ-Series

Now that we have computed generators for LE, we need to calculate the corresponding

θ-series up to a fixed chosen C coefficients. To do so, we first need to calculate the

quadratic form

Q(x, y, z) = ax2 + by2 + cz2 + dxy + exz + fyz.

This is a simple calculation, since, if the basis of the trace zero elements are γ2, γ3, γ4,

with γi =
4∑

j=2

Lj,iδj for δ2 = α, δ3 = β, δ4 = αβ, and Lj,i ∈ Q, then, since the matrix is
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lower triangular,

Q(x, y, z) = N(xγ2+yγ3+zγ4) = (L2
2,2p+L

2
3,2q+L

2
4,2pq)x

2+(L2
3,3q+L

2
4,3pq)y

2+L2
4,4pqz

2

+ (2(L3,3L3,2q + L4,3L4,2pq))xy + (2L4,4L4,2pq)xz + (2L4,4L4,3pq)yz.

We then simply run over all (x, y, z) such that Q(x, y, z) ≤ C, noting that Q is positive

definite. To determine the range of x, y, and z satisfying these conditions, we first assume

x and y are fixed and solve the equation Q(x, y, z) = C for z, running our innermost

loop between these solutions. Then we find zx,y which minimizes Q(x, y, z)− C with x

and y fixed and find the solutions for y to the equation Q(x, y, zx,y) = C. Our second

most inner loop runs between these solutions. Finally, we solve for yx which minimizes

Q(x, y, zx,y)−C and run our outermost loop between the solutions to Q(x, yx, zx,yx) = C.

4.2.2 Decomposition and Choice of the Hecke Eigenforms and

Shimura Lift

Calculating the Cuspidal Contribution

We subtract the Eisenstein series from each θ-series to get the cuspidal part. This

is calculated by using the formula in [14] for the Eisenstein series and the built in

functionality of MAGMA to calculate the class numbers. For each θ, we have now

calculated the cusp form

g := θ − E ∈ S+
3/2(4p).
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Finding Significant Coefficients

To distinguish between different cusp forms, we need to find which coefficients of the

cusp forms we want to compare, so we must find t−1 independent coefficients of the t−1

cusp forms, where t is the type number. To do so, we simply add the next coefficient as

a new column one at a time to a matrix, and then check the new rank of the matrix.

If the rank increases, we keep this coefficient, and otherwise we refill this column with

the next possible coefficient. Thus, in the end we return the matrix containing as the

i-th row the first t− 1 independent coefficients of the i-th g, as well as an array listing

which coefficients these are. Since Gross [14] showed that the subspace of S+
3/2(4p)

containing these theta series is spanned by the theta series, these coefficients will suffice

to distinguish any cusp forms.

Checking if a form g is in the span of other forms

We will often need to check whether a particular cusp form is in the span of another

set of cusp forms, or if it is independent of those forms. To do so, we first calculate as

above the significant coefficients.

After we know which coefficients to check, we simply make the matrix as above and

then check if adding another row corresponding to the coefficients of our new form is

consistent with the matrix. If it is consistent, then this returns a solution so that we

can write g in terms of the existing forms. Otherwise, we know that it is not a linear

combination of these previous terms.
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Calculation of Hecke Eigenforms

We would now like to decompose our cusp form g into a sum of Hecke eigenforms.

To do so, we first determine the action of the Hecke algebra on g. First note that

S2(p) = Snew
2 (p), so that we have multiplicity one.

Kohnen has shown that there is an isomorphism between S+
3/2(4p) and Snew

2 (p) which

commutes with the Hecke operators Tn for (n, p) = 1 [24]. Therefore, if we fix a newform

gi ∈ S+
3/2(4p), then we know that the eigenspace of cusp forms which have the same

eigenvalues as gi is dimension one. Furthermore, Sturm has shown that a finite set of

Hecke operators generates the Hecke algebra and has given an effectively computable

bound N so that {Tn2|n ≤ N} generates the Hecke algebra [36]. Hence we will only need

to diagonalize a finite number of Hecke operators in order to determine the eigenspace.

Calculating the coefficients under the Hecke operators is a simple calculation (cf.

[28]). We will diagonalize incrementally each Hecke operator T = Tn2 . After each

diagonalization, we will divide the space into subspaces V1,n, V2,n, . . . Vm,n such that for

every f, g ∈ Vi,n the eigenvalues of f equal the eigenvalues of g for every n′ ≤ n. By

our discussion above, the dimension of Vi,n will be one for every i and some n ≤ N . For

each Hecke operator, we simply iterate the Hecke operator T

g, g|T, g|T 2, g|T 3, . . . ,

using our function above to check at each stage whether g|T n is in the span of the set

{g, g|T, g|T 2, . . . , g|T n−1} . As soon as this occurs, we get an operator matrix with all

zeros, except ones directly below the diagonal and the last column is the coefficients of

the linear combination of g|T i that yield g|T n.
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The special form of this matrix makes the characteristic polynomial simple to deter-

mine and hence it is straightforward to diagonalize.

From computational evidence, the following conjecture seems very likely.

Conjecture 4.7. There exists a cusp form g = θ − E such that the closure of g under

the Hecke algebra generates the entire subspace of cusp forms spanned by the all of the

cusp forms θ′ − E.

Assuming Conjecture 4.7, we can find a particular g such that the closure of g under

the Hecke algebra generates the entire space. Take such a g. Note that if this conjecture

is not true, we simply need to repeat this process for each subspace, but we have verified

the conjecture for all p < 1000. We now diagonalize the Hecke operator matrices for

this g to determine the eigenvectors. If one of the eigenspaces is dimension greater than

one, then we choose another Hecke operator T and diagonalize again, until we have

dimension one.

Choosing a Shimura Lift and Choosing gi

We will now choose an embedding into S2(p), shown to exist by the Shimura lift between

S+
3/2(4p) and Snew

2 (p) = S2(p) [24].

We start by calculating a basis for S2(p), a built in function in MAGMA. Then we

compute enough coefficients of the t-th Shimura correspondence (cf. [28])

∞∑
n=1

ag|St(n)

ns
:= L(χ−t, s)

∞∑
n=1

ag(tn
2)

ns

for all t < t0 on the form g which generates the subspace. Since g generates the entire

subspace, g|S is in S2(p) if and only if every such (θ − E)|S ∈ S2(p).
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We first check that g|St 6= 0, and iterate this process with t0 larger until there exist

constants ct such that

S :=
∑
t<t0

ctSt

satisfies g|S ∈ S2(p). Here we again use our function to check whether one form can be

written as the sum of other forms to determine whether g|S can be written in terms of

the basis for S2(p), using Sturm’s bound to determine which coeffients to compare.

Now that we have the choice S of a Shimura lift, we are ready to choose gi. We

have already decomposed our space above in Section 4.2.2, so we have chosen gi up to a

constant. Under the fixed embedding S, we will normalize gi so that its Shimura lift Gi

has constant coefficient 1.

Calculating bi

We are now able to calculate bi. Since we have fixed our choice of gi in Section 4.2.2, we

only need to use our function to determine g as a linear combination of these eigenforms,

for each g. The coefficients obtained from this function are bi, so that g =
t∑

i=1

bigi.

Calculating ci

Recall first that

ci =
|agi

(mi)|2

L(Gi,mi, 1)m
1/2
i

for mi a fixed integer such that agi
(mi) 6= 0 and mi 6= 0 (mod p). We may simply choose

mi to be the smallest such integer.

Since we have already calculated gi, we already have agi
(mi). It remains to find

L(Gi,mi, 1). After using the Shimura lift to find Gi, we use the following formula of
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Cremona [5],

L(Gi,mi, 1) =
∞∑

n=1

2aL(n)χ(n)e
−2πi n

mi
√

p ,

which is shown to converge very quickly, so that we may calculate L(Gi,mi, 1) to a

sufficient accuracy by calculating the partial sum

K∑
n=1

2aL(n)χ(n)e
−2πi n

mi
√

p

and choosing K large enough. A very small number of coefficients is actually needed,

since the partial sum with K = 100 is accurate to beyond 25 decimal places.

4.2.3 Calculating the other constants from Section 3.7

These constants are actually fairly easy to calculate once we show clearly where they

come from, given the theoretical results stated in [21]. The methods involved and nota-

tion used are similar to those used in [29].

Most of the constants obtained are explicit in terms of Γ and ζ factors along the

real line, but we need some work to calculate the terms involving F , F1, and G. Define

v(n,X) by

v(n,X) := cθ,X,1,F
λi(n)e−n/X

nσ
+ cθ,X,1,F 1

log(n)λi(n)e−n/X

nσ2

− cθ,X,2,G

(
Λ(n)e−n/X

nσ0
− Λ(n)e−n/X

nσ

)
,

where σ = Re(s), σ0 = Re(2− s), and σ2 = Re(s2), so that

∞∑
n=2

Re

(
χ(n)

nit log(n)
v(n,X)

)
= cθ,X,1,F Re(F (s,X)) + cθ,X,1,F 1Re(F 1(s2,X))

− cθ,X,2,GRe(G(s0,X)−G(s,X)).
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We will bound the following to get a constant independent of the variables involved.

From above, we need to bound

−2 log |L(s)|+ 2

N0∑
n=2

Re

(
χ(n)Λ(n)

ns log(n)

)
. (4.2)

We also need a bound for the constants depending on t, the imaginary part of s. We

will use the Γ factor to remove these terms. Thus, we will bound

log |Γ(s)|+ cθ,X,1,t − cθ,X,2,t. (4.3)

A computer is then used to bound

N0∑
n=2

Re

(
χ(n)

nit log(n)

(
v(n,X)− 2Λ(n)

nσ

))
. (4.4)

Notice that the term we are subtracting is exactly the term being added in Equation

(4.2). The only nonzero terms are p powers, so the maximum is taken by calculating

1
log(n)

(
v(n,X)− 2Λ(n)

nσ

)
for each n = pk and then noting that either χ(pk) = χ(p)k,

which is either one or alternates. Finding the t which maximizes this sum for each p,

independent of whether the sum alternates or not, gives the bound, since we then add

up the absolute value of each of these terms together.

It remains to bound

∞∑
n=N0+1

Re

(
χ(n)

nit log(n)
(v(n,X))

)
. (4.5)

We first bound the part dependent on t in equation (4.3) by noting that the depen-

dence on t in the logarithm is polynomial in t, while Γ decays exponentially. We will

find that in every case that we check for each σ, the decay swamps this growth so that

the maximum is attained at t = 0. Therefore,

log |Γ(s)|+ cθ,X,1,t − cθ,X,2,t ≤ log |Γ(σ)|,
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so this contribution will be added to our constant cθ,X,1.

We next show how to bound Equation (4.2), the term involving log(L(s)). Noting

that

log(|L(s)|) =
∞∑

n=2

Re

(
χ(n)Λ(n)

ns
log(n)

)
,

we have

−2 log(|L(s)|) + 2

N0∑
n=2

Re

(
χ(n)Λ(n)

ns log(n)

)
= −2

∞∑
n=N0

Re

(
Λ(n)

ns log(n)

)
.

Therefore, taking the absolute value inside the sum gives

−2
∞∑

n=N0

Λ(n)

ns log(n)
≤ 2

∞∑
n=N0+1

Λ(n)

nσ log(n)
= 2 log(|ζ(σ)|)−

N0∑
n=2

Λ(n)

nσ log(n)
,

and this final finite sum and ζ(σ) are easily computed.

Finally, we need to find a bound for the remaining terms in Equation (4.5). Notice

first, since σ2 > σ, that for n sufficiently (namely we choose N0 such that this occurs for

n > N0) the term from the F 1 part of v(n,X) satisfies the bound

cθ,X,1,F 1

log(n)

nσ2
≤ cθ,X,1,F

nσ
.

Therefore, we see that

|v(n,X)| ≤ e−n/X

(
2cθ,X,1,F

|λi(n)|
nσ

+ cθ,X,2,GΛ(n)

(
1

nσ0
− 1

nσ

))
.

Since λi(n) ≤ 2
√
n log(n), we can further bound this by

cθ,X,v
Λ(n)

nmin(σ−1/2,σ0)
e−n/x.

In [21], we have shown for α = min(σ − 1/2, σ0) an explicit constant cN0 such that

H(α,X) =
∞∑

n=N0+1

Λ(n)

nα log(n)
e−n/x

≤ e−N0/X

Nα
0 log(N0)

(cN0N0 − ψ(N0)) +
cN0X

1−α

log(N0)
Γ(1− α,N0/X). (4.6)
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We then calculate the incomplete Gamma factor Γ(1−α,N0/X) using another built in

function in MAGMA.

4.3 Determining CM Lifts for D < DE when E is

Defined over Fp

In this section, we give an algorithm to determine whether E/Fp is in the image of the

reduction map from elliptic curves with CM by O−D for a fixed D to deal with D < DE.

4.3.1 Calculating which D are Represented by the Gross Lat-

tice

Lemma 4.8. Let E be a supersingular elliptic curve defined over Fp and let LE be its

associated Gross lattice and O0
E be the lattice of trace zero coefficients. Then there exists

a lattice L satisfying LE ⊆ L ⊂ O0
E such that L is Z-equivalent to (Z, Q) of the form

Q(x, y, z) = px2 + (by2 + fyz + cz2).

Proof. Ibukiyama [16] shows that all maximal orders of this type are either of the form

O(q, r) := Z + Z
1 + β

2
+ Z

α(1 + β)

2
+ Z

(r + α)β

q
(4.7)

or

O′(q, r′) := Z + Z
1 + α

2
+ Zβ + Z

(r′ + α)β

2q
, (4.8)

where q is a prime satisfying q ≡ 3 (mod 8) and
(
−q
p

)
= −1, α2 = −p, β2 = −q,

αβ = −βα, r2 + p ≡ 0 (mod q) and r′2 + p ≡ 0 (mod 4q) in the case when p ≡ 3

(mod 4).
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The lattice generated by the trace zero coefficients of y even and setting x′ := x−ry,

y′ := z + qy and z′ := y gives the quadratic form

q(x′)2 +
r2 + p

q
(y′)2 + p(z′)2 + 2rx′y′,

as desired, since every element of the Gross lattice is an element of this lattice with z

even. Changing z to 2z above implies that y′ ≡ z′ (mod 2), while otherwise x′, y′, and

z′ can be any arbitrary integer.

For elements of O′(q, r′), we have a simpler task. In this case, the corresponding

quadratic form for O′(q, r′) is simply

px2 + qy2 +
(r′)2 + p

4q
z2 + r′yz.

To get the elements of the Gross lattice, we simply multiply y and z by 2 to get

Q′(x, y, z) := px2 + (4q)y2 +
(r′)2 + p

q
z2 + (4r′)yz.

Given Lemma 4.8, the quadratic forms from LE are either of the form

Q(x′, y′, z′) := q(x′)2 +
r2 + p

q
(y′)2 + p(z′)2 + 2rx′y′,

with y′ ≡ z′ (mod 2), or

Q′(x, y, z) := px2 + (4q)y2 +
(r′)2 + p

q
z2 + (4r′)yz.

To check if an integer n is represented, we first set two integers M and N and do a

precomputation for efficiency. For Q, we do a precomputation of the two sets

SEM := {n ≤M : n = q(x′)2 +
r2 + p

q
(y′)2 + 2rx′y′, y′ even},
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and analogously

SOM := {n ≤M : n = q(x′)2 +
r2 + p

q
(y′)2 + 2rx′y′, y′ odd}.

Since we know that, with x′ fixed, the minimum value is obtained at xdiv := (q− rq
p+r2 )x

′2,

we run x′ from 0 to
(

M
xdiv

)1/2
and then y′ from 0 to

2rx′+

r
4r2x′−4 p+r2

q
·(q(x′)2−M)

2 p+r2

q

, and simply

calculate n = Q(x′, y′, 0). If y′ is odd, we add n to SOM , and if y′ is even then we add

n to SEM .

Similarly, for Q′, we calculate

SM := {n ≤M : n = Q′(0, y, z)}.

Given SEM and SOM , we now calculate

TN,M := {n ≤ N : n = m+ p(z′)2,m ∈ SEM and z′ even, or m ∈ SOM and z′ odd}.

Notice that, if we define

TN := {n ≤ N : n = Q(x′, y′, z′), y′ ≡ z′ (mod 2)},

then TM ⊆ TN,M ⊆ TN . Therefore, for every n ∈ TN,M , we know n ∈ TN , and for every

n /∈ TN,M with n ≤ M , we know n /∈ TN . Since we expect that after a low bound M

we will not have any such eligible elements which are not in TN , we can set M lower for

optimization purposes.

We now describe the algorithm to calculate TN,M . For each eligible D ≤ n, we

check from z′ =
(

D−M
p

)1/2

to z′ =
(

D
p

)1/2

. For each z′, if z′ is even, then we check if

D− p(z′)2 ∈ SEM , and if z′ is odd, we check if D− p(z′)2 ∈ SOM . If so, then we add D

to TN,M . The algorithm for Q′ is entirely analogous, only needing to check membership
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in SM instead of breaking it up into the even and odd cases. We know that np2 ∈ TN,M

if and only if n ∈ TN,M , so we can skip checking these cases.

We shall show that the running time for this function is O(p+NM1/2). We need time

O(M) to calculate SEM and SOM . Calculating the modulus of p which are eligible takes

time O(p). For each D, we have to check at most M1/2 possible z′. Therefore, since there

are O(N) such D, this calculation takes O(NM1/2). Thus, the overall running time is

O(M + p+NM1/2) = O(p+NM1/2) (since we will choose N > p, we have O(NM1/2)).

Notice that for an individual n /∈ TN,M , we can check membership in TN in O(N1/2)

time by calculating checking membership in SEN and SON (or SN for O′). By doing

this as a precomputation again, we get a running time of O(N +N1/2E) where E is the

number of exceptional D /∈ TN,M . Therefore, if we choose M so that E < (NM)1/2,

then we can calculate TN in O(NM1/2).

4.4 Data

Using the algorithm described in Section 4.2, we will find a good bound for each E with

p ≤ 107. For p fixed, the maximum good bound for E will give a good bound for p.

Example 4.9. We will now compute good bounds for p ≤ 107, using X = 455, σ =

1.15, N0 = 1000, and σ2 = 1.3256 (These were chosen by a binary search for σ and

a heuristically based search for σ2 given σ.). The table below will give our results in

the following manner. For each maximal order M , we will list the prime p, then the

size of the field Fq (q = p or q = p2) which the corresponding elliptic curve is defined

over. We will then list the corresponding ternary quadratic form as [a, b, c, d, e, f ] =

ax2 + by2 + cz2 + dxy + exz + fyz. We then list a good bound D0 for E which suffices



84

when (D, p) = 1, and a good bound D1 which also suffices when p | D. We separate these

cases since a better bound is obtained for D relatively prime to p and skipping (D, p) = 1

is a computational gain. We omit here the primes 3, 5, 7, and 13, since we have Dp = 1

trivially. Theorem 4.1 follows from the data obtained below in Tables 2, 3, 4, and 5.

Example 4.10. Now we use the method of Bhargava [1] described in Section 4.3 to

check which discriminants are not represented up to a feasible N . When our feasible

bound N is greater than the bounds D0 and D1 above, then we have (conditional upon

GRH) a full list of all discriminants which are not represented and do not have p2 | d

(We know that d is represented if and only if dp2 is represented [21]). We will list the

quadratic form corresponding to our maximal order, along with the bounds N0/N1 which

we have checked up to, and a full list of all d < N0 and all d = pd2 < N1 which are not

represented by the form. We shall omit dp2 from our list to save space. This data is

presented in Tables 6, 7, and 8 below.

Looking at Table 6 from Example 4.10 and comparing with the bound from Table 2

in Example 4.9, we see that N0 > D0 and N1 > D1 when p = 11, p = 17 and p = 19.

This shows Theorems 4.2, 4.3, and 4.4.

p #Fq Quadratic Form D0 D1

11 p [4, 11, 12, 0, 4, 0] 1.311× 107 2.095× 108

11 p [3, 15, 15,−2, 2, 14] 3.354× 108 5.359× 109

17 p [7, 11, 20,−6, 4, 8] 1.850× 109 1.869× 1010

17 p [3, 23, 23,−2, 2, 22] 7.640× 1012 1.221× 1014

19 p [7, 11, 23,−2, 6, 10] 1.850× 109 2.956× 1010

19 p [4, 19, 20, 0, 4, 0] 4.722× 1011 7.544× 1012

Table 2: Good bounds DQ for every θQ ∈M+
3/2(4p) with p ≤ 19.
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p #Fq Quadratic Form D0 D1

23 p [8, 12, 23, 4, 0, 0] 1.143× 1012 5.539× 1012

23 p [4, 23, 24, 0, 4, 0] 4.638× 1014 4.495× 1015

23 p [3, 31, 31,−2, 2, 30] 3.870× 1015 2.418× 1016

29 p [11, 12, 32, 8, 4, 12] 2.741× 1011 4.052× 1011

29 p [8, 15, 31, 4, 8, 2] 1.377× 1013 1.054× 1014

29 p [3, 39, 39,−2, 2, 38] 5.628× 1014 4.305× 1015

31 p [8, 16, 31, 4, 0, 0] 3.730× 1013 4.397× 1014

31 p [7, 19, 36,−6, 4, 16] 6.606× 1013 4.918× 1014

31 p [4, 31, 32, 0, 4, 0] 5.219× 1015 4.866× 1016

37 p2 [15, 20, 23,−4, 14, 8] 1.116× 1011 1.783× 1012

37 p [8, 19, 39, 4, 8, 2] 2.849× 1013 4.552× 1014

41 p [12, 15, 44, 8, 12, 4] 9.351× 1013 4.228× 1014

41 p [11, 15, 47,−2, 10, 14] 4.647× 1013 7.424× 1014

41 p [7, 24, 47, 4, 2, 24] 2.456× 1015 1.757× 1016

41 p [3, 55, 55,−2, 2, 54] 2.036× 1017 1.786× 1018

43 p2 [15, 23, 24, 2, 8, 12] 3.543× 1010 5.073× 1011

43 p [11, 16, 47, 4, 2, 16] 8.333× 1012 1.289× 1013

43 p [4, 43, 44, 0, 4, 0] 1.445× 1014 2.069× 1015

47 p [12, 16, 47, 4, 0, 0] 4.927× 1013 6.552× 1014

47 p [8, 24, 47, 4, 0, 0] 1.202× 1015 1.920× 1016

47 p [7, 27, 55,−2, 6, 26] 2.699× 1015 2.308× 1016

47 p [4, 47, 48, 0, 4, 0] 5.330× 1016 6.552× 1017

47 p [3, 63, 63,−2, 2, 62] 1.797× 1017 1.804× 1018

53 p2 [20, 23, 32,−12, 4, 20] 1.257× 1014 1.458× 1015

53 p [12, 19, 56, 8, 12, 4] 5.001× 1015 7.990× 1016

53 p [8, 27, 55, 4, 8, 2] 2.238× 1016 2.124× 1017

53 p [3, 71, 71,−2, 2, 70] 4.046× 1018 3.817× 1019

59 p [15, 16, 63, 4, 2, 16] 6.695× 1013 7.662× 1014

59 p [15, 19, 64,−14, 8, 12] 6.695× 1013 7.662× 1014

59 p [7, 35, 68,−6, 4, 32] 4.612× 1014 2.426× 1015

59 p [12, 20, 59, 4, 0, 0] 2.811× 1015 4.492× 1016

59 p [4, 59, 60, 0, 4, 0] 1.106× 1017 1.174× 1018

59 p [3, 79, 79,−2, 2, 78] 7.295× 1017 1.166× 1019

Table 3: Good bounds DQ for every θQ ∈M+
3/2(4p) with 23 ≤ p ≤ 59.
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p #Fq Quadratic Form D0 D1

61 p2 [23, 24, 32, 16, 4, 12] 3.596× 1014 3.209× 1015

61 p [7, 35, 71,−2, 6, 34] 7.292× 1014 3.927× 1015

61 p [8, 31, 63, 4, 8, 2] 6.102× 1015 4.342× 1016

61 p [11, 23, 68,−6, 8, 20] 1.696× 1016 1.413× 1017

67 p2 [15, 36, 39,−4, 14, 16] 1.115× 1015 1.781× 1016

67 p2 [23, 24, 35, 8, 2, 12] 1.152× 1015 1.841× 1016

67 p [16, 19, 71, 12, 16, 6] 1.359× 1016 2.171× 1017

67 p [4, 67, 68, 0, 4, 0] 2.446× 1017 2.323× 1019

71 p [15, 20, 76, 8, 4, 20] 2.458× 1016 1.815× 1018

71 p [15, 19, 79,−2, 14, 18] 2.458× 1016 1.815× 1018

71 p [16, 20, 71, 12, 0, 0] 6.707× 1016 9.247× 1018

71 p [12, 24, 71, 4, 0, 0] 1.824× 1017 1.764× 1019

71 p [8, 36, 71, 4, 0, 0] 5.578× 1017 7.929× 1019

71 p [4, 71, 72, 0, 4, 0] 1.602× 1019 9.300× 1020

71 p [3, 95, 95,−2, 2, 94] 1.123× 1019 1.793× 1021

73 p2 [15, 39, 40, 2, 8, 20] 5.001× 1014 3.678× 1015

73 p2 [20, 31, 44,−12, 4, 28] 2.856× 1015 1.710× 1016

73 p [7, 43, 84,−6, 4, 40] 7.799× 1015 2.953× 1016

73 p [11, 28, 80, 8, 4, 28] 8.360× 1016 7.035× 1017

79 p2 [23, 31, 44, 18, 16, 20] 4.859× 1015 3.753× 1016

79 p [16, 20, 79, 4, 0, 0] 7.326× 1016 8.289× 1017

79 p [19, 20, 84, 16, 8, 20] 5.334× 1017 8.523× 1018

79 p [11, 31, 87,−10, 6, 26] 1.017× 1018 1.119× 1019

79 p [8, 40, 79, 4, 0, 0] 1.099× 1018 1.1402× 1019

79 p [4, 79, 80, 0, 4, 0] 1.483× 1019 2.370× 1020

83 p2 [23, 31, 44,−14, 8, 12] 4.054× 1015 6.477× 1016

83 p [12, 28, 83, 4, 0, 0] 1.721× 1016 2.591× 1017

83 p [7, 48, 95, 4, 2, 48] 3.913× 1016 6.251× 1017

83 p [16, 23, 87, 12, 16, 6] 8.775× 1016 1.328× 1018

83 p [11, 31, 92,−6, 8, 28] 1.574× 1016 2.514× 1018

83 p [3, 111, 111,−2, 2, 110] 4.776× 1018 7.089× 1019

83 p [4, 83, 84, 0, 4, 0] 6.461× 1018 1.033× 1020

Table 4: Good bounds DQ for every θQ ∈M+
3/2(4p) with 61 ≤ p ≤ 83.
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p #Fq Quadratic Form D0 D1

89 p2 [23, 31, 48, 2, 12, 16] 1.480× 1018 2.869× 1018

89 p [15, 24, 95, 4, 2, 24] 3.555× 1018 1.012× 1019

89 p [15, 27, 96,−14, 8, 20] 3.555× 1018 1.012× 1019

89 p [19, 23, 95,−18, 10, 14] 4.045× 1018 2.048× 1019

89 p [7, 51, 103,−2, 6, 50] 1.663× 1020 3.582× 1020

89 p [3, 119, 119,−2, 2, 118] 5.144× 1021 2.900× 1022

89 p [12, 31, 92, 8, 12, 4] 5.724× 1024 3.257× 1025

97 p2 [15, 52, 55,−4, 14, 24] 1.184× 1016 4.217× 1016

97 p2 [20, 39, 59,−4, 8, 38] 5.265× 1016 1.257× 1017

97 p2 [23, 39, 51,−22, 6, 14] 2.616× 1016 1.599× 1017

97 p [7, 56, 111, 4, 2, 56] 1.549× 1017 2.616× 1017

97 p [19, 23, 104,−14, 12, 16] 9.506× 1017 4.750× 1018

101 p2 [32, 39, 44,−12, 28, 20] 8.477× 1015 3.603× 1016

101 p [12, 35, 104, 8, 12, 4] 1.709× 1017 1.223× 1018

101 p [15, 28, 108, 8, 4, 28] 1.572× 1018 3.193× 1018

101 p [15, 27, 111,−2, 14, 26] 5.261× 1017 3.388× 1018

101 p [8, 51, 103, 4, 8, 2] 2.948× 1018 7.940× 1018

101 p [7, 59, 116,−6, 4, 56] 2.341× 1018 1.015× 1019

101 p [11, 39, 111,−10, 6, 34] 4.559× 1018 2.415× 1019

101 p [3, 135, 135,−2, 2, 134] 9.667× 1019 5.296× 1020

103 p2 [23, 36, 59,−4, 22, 16] 1.076× 1016 1.620× 1016

103 p [16, 28, 103, 12, 0, 0] 9.459× 1015 4.236× 1016

103 p2 [15, 55, 56, 2, 8, 28] 4.016× 1016 5.313× 1016

103 p [19, 23, 111,−10, 14, 18] 1.645× 1017 5.558× 1017

103 p [7, 59, 119,−2, 6, 58] 1.765× 1017 1.861× 1018

103 p [8, 52, 103, 4, 0, 0] 1.032× 1018 2.160× 1018

103 p [4, 103, 104, 0, 4, 0] 2.647× 1019 8.748× 1019

107 p2 [35, 39, 44,−18, 32, 4] 1.769× 1016 9.442× 1016

107 p2 [23, 40, 56,−16, 40, 20] 1.352× 1016 2.102× 1017

107 p [16, 27, 111,−4, 16, 2] 7.861× 1016 1.256× 1018

107 p [12, 36, 107, 4, 0, 0] 1.061× 1017 1.694× 1018

107 p [19, 23, 116,−6, 16, 20] 9.625× 1017 5.827× 1018

107 p [11, 39, 119,−2, 10, 38] 1.105× 1018 1.732× 1019

107 p [4, 107, 108, 0, 4, 0] 4.853× 1019 4.368× 1020

107 p [3, 143, 143,−2, 2, 142] 1.102× 1020 1.761× 1021

Table 5: Good bounds DQ for every θQ ∈M+
3/2(4p) with 89 ≤ p ≤ 107.
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p Quadratic Form N0/N1 T = {d < N not represented.}
or #T and largest d ∈ T

11 [4, 11, 12, 0, 4, 0] 3× 109 3, 67, 235, 427
11 [3, 15, 15,−2, 2, 14] 1010 4, 11, 88, 91, 163, 187, 232, 499,

595, 627, 715, 907, 1387, 1411,
3003, 3355, 4411, 5107, 6787,
10483, 11803

17 [7, 11, 20,−6, 4, 8] 2× 1010 3, 187, 643
17 [3, 23, 23,−2, 2, 22] 8× 1012/ #T = 88, largest = 89563

1.55× 1014

19 [7, 11, 23,−2, 6, 10] 3× 1010 4, 19, 163, 760, 1051
19 [4, 19, 20, 0, 4, 0] 5× 1011/ 7, 11, 24, 43, 115, 123, 139, 228,

6× 1012 232, 267, 403, 424, 435, 499, 520,
568, 627, 643, 691, 883, 1099,
1411, 1659, 1672, 1867, 2139,
2251, 2356, 2851, 3427, 4123,
5131, 5419, 5707, 6619, 7723,
8968, 12331, 22843, 27955

23 [8, 12, 23, 4, 0, 0] 3× 109 3, 4, 27, 115, 123, 163, 403, 427,
443, 667, 1467, 2787, 3523

23 [4, 23, 24, 0, 4, 0] 3× 109 #T = 78, largest = 72427
23 [3, 31, 31,−2, 2, 30] 3× 109 #T = 196, largest = 286603
29 [11, 12, 32, 8, 4, 12] 3× 1011 / #T = 24, largest = 22243

5× 1011

29 [8, 15, 31, 4, 8, 2] 2× 109 #T = 23, largest = 7987
29 [3, 39, 39,−2, 2, 38] 109 #T = 382, largest = 1107307
31 [8, 16, 31, 4, 0, 0] 109 #T = 36, largest = 17515
31 [7, 19, 36,−6, 4, 16] 1010 #T = 29, largest = 15283
31 [4, 31, 32, 0, 4, 0] 1011 #T = 166, largest = 174003
37 [15, 20, 23,−4, 14, 8] 109 8, 19, 43, 163, 427, 723, 2923,

3907
37 [8, 19, 39, 4, 8, 2] 2.0× 1013 #T = 55, largest = 24952
41 [12, 15, 44, 8, 12, 4] 1010 #T = 60, largest = 82123
41 [11, 15, 47,−2, 10, 14] 1010 #T = 65, largest = 48547
41 [7, 24, 47, 4, 2, 24] 3× 109 #T = 82, largest = 83107
41 [3, 55, 55,−2, 2, 54] 1010 #T = 896, largest = 5017867

Table 6: The set d < N1 not represented by Q for every θQ ∈M+
3/2(4p) with p ≤ 41.
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p Quadratic Form N0/N1 T = {d < N not represented.}
or #T and largest d ∈ T

43 [15, 23, 24, 2, 8, 12] 3.6× 1010 4, 11, 16, 52, 67, 187, 379, 403,
568, 883, 1012, 2347, 2451

43 [11, 16, 47, 4, 2, 16] 1.3× 1013 #T = 81, largest = 73315
43 [4, 43, 44, 0, 4, 0] 109 #T = 439, largest = 1079467
47 [12, 16, 47, 4, 0, 0] 109 #T = 106, largest = 272083
47 [8, 24, 47, 4, 0, 0] 109 #T = 108, largest = 85963
47 [7, 27, 55,−2, 6, 26] 109 #T = 112, largest = 78772
47 [4, 47, 48, 0, 4, 0] 2× 109 #T = 556, largest = 5345827
47 [3, 63, 63,−2, 2, 62] 109 #T = 1165, largest = 4812283
53 [20, 23, 32,−12, 4, 20] 109 #T = 30, largest = 33147
53 [12, 19, 56, 8, 12, 4] 109 #T = 138, largest = 178027
53 [8, 27, 55, 4, 8, 2] 109 #T = 152, largest = 137323
53 [3, 71, 71,−2, 2, 70] 109 #T = 1604, largest = 6474427
59 [15, 16, 63, 4, 2, 16] 2× 109 #T = 158, largest = 304027
59 [15, 19, 64,−14, 8, 12] 2× 109 #T = 174, largest = 318091
59 [7, 35, 68,−6, 4, 32] 2× 109 #T = 228, largest = 132883
59 [12, 20, 59, 4, 0, 0] 2× 109 #T = 193, largest = 316747
59 [4, 59, 60, 0, 4, 0] 2× 109 #T = 920, largest = 3136219
59 [3, 79, 79,−2, 2, 78] 2× 109 #T = 2072, largest = 8447443
61 [23, 24, 32, 16, 4, 12] 1.5× 108 #T = 43, largest = 11923
61 [7, 35, 71,−2, 6, 34] 2× 109 #T = 271, largest = 1096867
61 [8, 31, 63, 4, 8, 2] 2× 109 #T = 233, largest = 363987
61 [11, 23, 68,−6, 8, 20] 2× 109 #T = 201, largest = 190747
67 [15, 36, 39,−4, 14, 16] 109 #T = 57, largest = 20707
67 [23, 24, 35, 8, 2, 12] 109 #T = 59, largest = 126043
67 [16, 19, 71, 12, 16, 6] 2× 109 #T = 264, largest = 421579
67 [4, 67, 68, 0, 4, 0] 109 #T = 1271, largest = 3846403
71 [15, 20, 76, 8, 4, 20] 2× 109 #T = 275, largest = 321883
71 [15, 19, 79,−2, 14, 18] 2× 109 #T = 273, largest = 267883
71 [16, 20, 71, 12, 0, 0] 2× 109 #T = 310, largest = 1540771
71 [12, 24, 71, 4, 0, 0] 2× 109 #T = 307, largest = 635947
71 [8, 36, 71, 4, 0, 0] 2× 109 #T = 346, largest = 1053427
71 [4, 71, 72, 0, 4, 0] 2× 109 #T = 1450, largest = 6463627
71 [3, 95, 95,−2, 2, 94] 2× 109 #T = 3170, largest = 15135283

Table 7: The set d < N1 not represented by Q for every θQ ∈M+
3/2(4p) with 43 ≤ p ≤ 71.
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p Quadratic Form N0/N1 T = {d < N not represented.}
or #T and largest d ∈ T

73 [15, 39, 40, 2, 8, 20] 109 #T = 81, largest = 53188
73 [20, 31, 44,−12, 4, 28] 109 #T = 72, largest = 111763
73 [7, 43, 84,−6, 4, 40] 2× 109 #T = 420, largest = 364708
73 [11, 28, 80, 8, 4, 28] 2× 109 #T = 336, largest = 723795
79 [23, 31, 44, 18, 16, 20] 109 #T = 88, largest = 50955
79 [16, 20, 79, 4, 0, 0] 2× 109 #T = 383, largest = 1419867
79 [19, 20, 84, 16, 8, 20] 2× 109 #T = 391, largest = 1210675
79 [11, 31, 87,−10, 6, 26] 2× 109 #T = 409, largest = 12778803
79 [8, 40, 79, 4, 0, 0] 2× 109 #T = 495, largest = 1116507
79 [4, 79, 80, 0, 4, 0] 2× 109 #T = 1886, largest = 25575460
83 [23, 31, 44,−14, 8, 12] 109 #T = 97, largest = 36763
83 [12, 28, 83, 4, 0, 0] 2× 109 #T = 432, largest = 635347
83 [7, 48, 95, 4, 2, 48] 2× 109 #T = 529, largest = 1358107
83 [16, 23, 87, 12, 16, 6] 2× 109 #T = 416, largest = 1202587
83 [11, 31, 92,−6, 8, 28] 2× 109 #T = 469, largest = 1381867
83 [3, 111, 111,−2, 2, 110] 2× 109 #T = 4639, largest = 62337067
83 [4, 83, 84, 0, 4, 0] 2× 109 #T = 2134, largest = 9405643
89 [23, 31, 48, 2, 12, 16] 109 #T = 118, largest = 137707
89 [15, 24, 95, 4, 2, 24] 5× 108 #T = 502, largest = 682147
89 [15, 27, 96,−14, 8, 20] 5× 108 #T = 464, largest = 1534723
89 [19, 23, 95,−18, 10, 14] 5× 108 #T = 540, largest = 981403
89 [7, 51, 103,−2, 6, 50] 5× 108 #T = 646, largest = 1427827
89 [3, 119, 119,−2, 2, 118] 2× 109 #T = 5357, largest = 28654707
89 [12, 31, 92, 8, 12, 4] 5× 108 #T = 478, largest = 653227

Table 8: The set d < N1 not represented by Q for every θQ ∈M+
3/2(4p) with 73 ≤ p ≤ 89.
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