THE PAINLEVÉ HANDBOOK, Second edition, 2020

ERRATA, CORRIGENDA to the version published in November 2020

1. - Gallica has changed its links. New url's for all Gallica references are
https://gallica.bnf.fr/ark:/12148/bpt6k7348q (Halphen vol I)
https://gallica.bnf.fr/ark:/12148/bpt6k73491 (Halphen vol II)
https://gallica.bnf.fr/ark:/12148/bpt6k7350h (Halphen vol III)
https://gallica.bnf.fr/ark:/12148/bpt6k99571w?rk=21459;2 (Briot et Bouquet)
https://gallica.bnf.fr/ark:/12148/bpt6k38984v (Appell)
https://gallica.bnf.fr/ark:/12148/bpt6k433697z/f214.image (Bonnet 1)
https://gallica.bnf.fr/ark:/12148/bpt6k433698b/f5.image (Bonnet 2)
https://gallica.bnf.fr/ark:/12148/bpt6k110147r (Legendre)
2. - Change http://historical.library.cornell.edu/math (3 volumes of Painlevé). to
https://catalog.hathitrust.org/Record/002129540/Cite
3. - Page iv, line 5, change "Cachan" to "Gif-sur-Yvette".
4. - Page 90, Table 3.3, line "Homoclinic double pulse", change "4P1 4P1" to "4P1 5P1".
5. - Page 95, line -4, delete "one of". Indeed, $\omega_{1}=\Omega_{1}-\Omega_{2}, \omega_{2}=\Omega_{1}+\Omega_{2}$, with (ω_{1}, ω_{2}) the half-periods of $\left(g_{2}, g_{3}\right)$ and $\left(\Omega_{1}, \Omega_{2}\right)$ the half-periods of $\left(G_{2}, G_{3}\right)$.
6. - Pages 96 and 97 , everywhere, change " a_{2} " to " m_{0} ", defined page 86 Eq. (3.164).
7. - Page 109, Ref [4] change "Math" to "Mod".
8. - Page 110, Ref [28] has appeared,
[28] R. Conte, M. Musette, Tuen Wai Ng and Chengfa Wu, New solutions to the complex Ginzburg-Landau equations, Physical review E 106:4 (2022) L042201. https://doi.org/10.1103/PhysRevE.106.L042201
https://arXiv.org/abs/2208.14945
9. - Page 110, Ref [29] has appeared,
[29] R. Conte, M. Musette, Tuen Wai Ng and Chengfa Wu, All meromorphic traveling waves of cubic and quintic complex Ginzburg-Landau equations, Physics letters A 481 (2023) 129024 (15 pp).
https://doi.org/10.1016/j.physleta.2023.129024
http://arXiv.org/abs/2307.04220
10. - Page 168, line after (5.200), change "Kornaev" to "Korneev".
11. - Page 193, Ref [4], change "Kornaev" to "Korneev".
12. - Page 194, Ref [24] has appeared,
[24] R. Conte, Explicit breather solution of the nonlinear Schrödinger equation, Teoreticheskaya i Matematicheskaya Fizika 209:1 (2021) 46-58. Theor. math. phys. 209:1
(2021) 1357-1366. https://doi.org/10.4213/tmf10095 RU
https://doi.org/10.1134/S0040577921100032 EN
http://arxiv.org/abs/2104.06205
13. - Page 294, formula (B.20), delete the second x^{2}, the equation should be

$$
\text { Bessel : } x^{2} \frac{\mathrm{~d}^{2} \psi}{\mathrm{~d} x^{2}}+x \frac{\mathrm{~d} \psi}{\mathrm{~d} x}+\left(x^{2}-\nu^{2}\right) \psi=0
$$

14. - Page 296, formula (B.28), first line, change the second term $+\frac{\theta_{\infty}^{2}}{4(z-x)}$ to $+\frac{\theta_{\infty}^{2}(z-x)}{4}$.
Page 297, formula (B.29), second line, change

$$
+2 \frac{u(u-1)(u-x)}{x^{2}(x-1)^{2}} \frac{\partial V_{\mathrm{VI}}(u)}{\partial u}
$$

to

$$
+2 \frac{u(u-1)(u-x)}{x^{2}(x-1)^{2}}\left(\frac{3}{4}+\frac{x(x-1)}{4(u-x)^{2}}+\frac{\partial V_{\mathrm{VI}}(u)}{\partial u}\right)
$$

15. - Page 307, formula (B.56). Lines 2 and 3, remove the minus sign in front of $1 / 2$. Lines 4 and 5 , remove the equal sign in front of $1 / 2$.
16. - Page 322, formula (B.114), first line, change " d^{2} " to " $-d^{2} / 2$ ".
17. - Page 315, Table B.5, entries numbers 17 and 16, change "((" to "(".
18. - Page 326, formula (B.130), one sign is wrong, replace lines 3 and 4 by

$$
\begin{aligned}
& +\frac{-\theta_{\infty}^{2}+\theta_{0}^{2}-\theta_{1}^{2}+\left(\theta_{x}-1\right)^{2}+4 \theta_{0}\left(\theta_{x}-1\right)}{8 a_{\mathrm{M}} x} \\
& +\frac{-\theta_{\infty}^{2}+\theta_{1}^{2}-\theta_{0}^{2}+\left(\theta_{x}-1\right)^{2}+4 \theta_{1}\left(\theta_{x}-1\right)}{8 a_{\mathrm{M}}(x-1)}
\end{aligned}
$$

19. - Page 334, first paragraph, delete "is a first order ODE twelfth degree for $u(x)$, which".
20. - Page 336, Eq. (B.165), after $\frac{\mathrm{d} \psi}{\mathrm{d} t}$, insert " + ".
21. - Page 344, replace last line by "Notation is $(2 \alpha,-2 \beta, \gamma,-2 \delta)=\left(\theta_{\infty}^{2}, \theta_{0}^{2},-d \theta_{1}, d^{2}\right)$. ."
22. - Pages 345-346, replace the whole Table B. 10 and its legend by the one in the page
https://fr.wikipedia.org/wiki/\�\�quations_de_Painlev\�\�
23. - Page 346, change the three lines "for the tetrahedron ... (B.195)" to for the tetrahedron [52,113,14] (genus zero, four branches, degree four)

$$
\begin{align*}
& 3 u^{4}-4(x+1) u^{3}+6 x u^{2}-x^{2}=0 \\
& \theta=(3 a, a, a, a), a \text { arbitrary } \tag{B.195}
\end{align*}
$$

24. - Page 346, formula (B.196), change " $x=$ " to " $u=-", " u="$ to " $x=$ ", " $(2,2,2,4) / 7$ " to " $(3,2,2,2) / 7$ ".
25. - Page 359, line 9, remove "copolar".
26. - Page 361, change the first line of formula (C.28) to

$$
\begin{equation*}
g_{2}=3 d^{2}, g_{3}=-d^{3}, \wp(x)=-d+\frac{3 d}{2} \operatorname{coth}^{2} \sqrt{\frac{3 d}{2}} x \tag{1}
\end{equation*}
$$

27. - Page 382, Ref 135, change "gase" to "gas".
