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Preliminaries on symbolic dynamics

Let A be a finite alphabet and AZ (the full-shift) be the set of all
bi-infinite sequences over A.

A shift apsce is a shift invariant subset of AZ.

A shift space X can be define by a list of forbidden words F :

X = XF = {x ∈ AZ : x contains no words from F}

If F can be chosen to be finite, then X = XF is a shift of
finite type (SFT).

Example: A = {0, 1}, F = {11}, XF is the so-called golden
mean shift.

Any SFT can be represented by a finite directed graph, where
any point in the SFT is represented by a unique bi-infinite
path on the graph.
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Preliminaries on symbolic dynamics

A shift space X is call irreducible if any two allowed words in
X can be connected by another allowed word.

→ If X is an SFT, X is irreducible if the adjacency matrix of
some representing graph is irreducible.

Sliding block code (φ : X → Y ): continuous, shift commuting
map between shift spaces. Usually defined by a block code.

· · · xi−m−1 xi−mxi−m+1 · · · xi+n−1xi+n xi+n+1 · · ·

↓ Φ

· · · yi−1 yi yi+1 · · ·

φ is an embedding if it is one-to-one.
φ is a factor code if it is onto.
φ is a conjugacy if it is one-to-one and onto.
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SFTs obtained by forbidding one word in one-dimension

Notation: for w ∈ [q]k , let X{w} be the SFT obtained by
forbidding w from the (ambient) full shift.

Motivating question: let u = 10110, v = 10100 and consider
X{u}, X{v}. Which one has larger entropy? Can we determine
this immediately with only little computation?

It turns out that the answer to the question is related to the
“self-overlap” (auto-correlation) of words u and v .
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Quantities of interest

Let w = w1w2 · · ·wk .

Self-overlap set:
overlap(w ,w) := {i ∈ [1, k] : w[1,i ] = w[k−i+1,k]}.
(w has trivial self-overlap if overlap(w ,w) = {k}.)

Correlation polynomial: φw (t) =
∑

i∈overlap(w ,w) t
i−1.

Characteristic polynomial: χ∗w (t) = t−dpG (t) where G is a
conjugacy presentation of X{w} and d is the unique constant
such that χ∗w (t) has a non-zero constant term.

Zeta function: ζw (t) = exp
(∑∞

n=1
pn(X{w})

n tn
)

= 1
trPG (t−1)

Number of allowed words of length n: |Bn(X{w})|.
Topological entropy:
h(X{w}) = limn→∞

1
n log |Bn(X{w})| = log(λAG

).
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Earlier results (equality version)

Proposition (from Guibas&Odlyzko 81, Lind 89 and Erikkson 97)

Let u, v be two strings of length k over the q-ary alphabet
(q ≥ 2). Then the following are equivalent:

1 overlap(u, u) = overlap(v , v);

2 φu(q) = φv (q);

3 ζu(t) = ζv (t) for all t;

4 |Bn(X{u})| = |Bn(X{v})| for all n;

5 h(X{u}) = h(X{v}).

(2)⇒ (3) is due to Lind’s formula:

χ∗w (t) = (t − q)φw (t) + 1 for any w .
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Earlier results (inequality version)

Proposition

Let u, v ∈ [q]k . Then, the following are equivalent:

(a) φu(q) > φv (q);

(b) |Bn(X{u})| ≥ |Bn(X{v})| for all n and
|Bn(X{u})| > |Bn(X{v})| for all sufficiently large n;

(c) h(X{u}) > h(X{v}).

The equivalence between item (a) and item (c) answers the
question we raised before:
u = 10110 → φu(t) = t4 + t, φu(2) = 18
v = 10100 → φv (t) = t4, φv (2) = 16
Since φu(2) > φv (2), we must have h(X{u}) > h(X{v}).
(Indeed, h(X{u}) ≈ 0.954, h(X{v}) = 0.947 )
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When will X{u} conjugate to X{v}?

Lind’s formula implies that X{u},X{v} have the same zeta
function when overlap(u, u) = overlap(v , v).

Q: Will X{u} be conjugate to X{v} if u, v have the same
self-overlap set?

Observation: Let Gu and Gv be the unlabelled follower set
graph of X{u} and X{v}, respectively. If Gu is graph
isomorphic to Gv , then X{u} is conjugate to X{v}.

Proposition

Gu and Gv are isomorphic if and only if there is a permutation on
[q] that takes u to v .

Thus, if u and v are essentially different, there is no “graph
isomorphic conjugacy” between X{u} and X{v}.
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Swap conjugacies

Q: Are there other conjugacies?

Idea of conjugacy given by replacement: take a point
x ∈ X{u}. We want to replace appearances of v in x with u to
obtain a point y ∈ X{v}. If this replacement gives a
one-to-one correspondence, then X{u} is conjugate to X{v}.

→ When is this possible?

Fact

If u and v both have trivial self-overlap and they have no
cross-correlation, then the replacement gives a conjugacy between
X{u} and X{v}.

We define swap conjugacy to be either a graph isomorphic
conjugacy or a conjugacy given by replacement.
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Main results on swap conjugacies

Theorem (Chandgotia, Marcus, Richey, Wu 24’)

Let u, v ∈ [q]k both have only trivial self-overlap. Then, there exist
(other than four exceptional cases given below) a positive integer
N ≤ 5 and a set of swap conjugacies φ1, φ2, · · · , φN such that

φN ◦ φN−1 ◦ · · · ◦ φ1(X{u}) = X{v}.

Exceptional cases: q = 2, and
w ∈ {10k−1, 1k−10, 01k−1, 0k−11}. Indeed, X{w} is reducible

iff q = 2 and w ∈ {10k−1, 1k−10, 01k−1, 0k−11}.
The theorem requires no assumption on the cross-correlation
between u and v .
Trivial self-overlap is important in this result: if u = 100100,
v = 110110, then there is no swap conjugacy chain between
X{u} and X{v}.
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Idea of the proof

Idea of the proof for the binary alphabet case (and k > 4):
find interpolating words w (1),w (2),w (3),w (4) to form a swap
conjugacy chain between u and v .

Test words: p(j) = 1j0k−j (2 ≤ j ≤ k − 2).
The “connector” for test words: q = 1010k−3

u → p(j)→ q → p(j ′)→ v → v

Example: u = 110010, v = 000101.

They both have trivial self-overlap; and they do have
non-trivial cross-correlation.
But there is a swap conjugacy chain:

u = 110010→ 110000→ 101000→ 111000→ 111010→ 000101 = v

and therefore X{u} is (chain-swap) conjugate to X{v}.
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Extension of swap conjugacy result to the GM ambient
shift

What if the ambient SFT is not a full shift?

Lind’s formula for 1-step ambient SFT (presented by G ):

χ∗w (t) = PG (t)φw (t) + cofij(tId − AG ).

So, for example, let the ambient shift be the GM shift and let
u, v ∈ Bk(X{11}) be such that

overlap(u, u) = overlap(v , v) and
u1 = v1, uk = vk ,

then χ∗u(t) = χ∗v (t) and therefore (X{11}){u} and (X{11}){v}
have the same zeta function.

→ Q: Is (X{11}){u} also conjugate to (X{11}){v}?
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Extension of swap conjugacy result to the GM ambient
shift

Theorem (Chandgotia, Marcus, Richey, Wu 24’)

Let u, v ∈ Bk(X{11}). If u1 = v1, uk = vk and both u and v have
only trivial self-overlap (and neither of them is in the set of

exceptional words {10k−1, 0k−11, (10)
k−1

2 0, 0(01)
k−1

2 }), then there
is a chain of swap conjugacies between (X{11}){u} and (X{11}){v}.
Furthermore, the length of the chain is upper bounded by 4.

Idea of the proof is similar to the full-shift case, the main
difference is the choice of “test words”: instead of choosing
1j0k−j , we choose (10)j0k−2j to be the test words.

Chengyu Wu University of British Columbia



SFTs obtained by forbidding one pattern in higher
dimension

We want to generalize the definition of self-overlap set to a pattern
whose support is a finite subset (possibly non-contiguous) in Zd .

Definition

Given a finite set S ⊂ Zd and a pattern u ∈ [q]S , we define
overlap(u, u) to be the set of sites i ∈ S − S for which u and its
translate σi (u) agree on S ∩ (S + i).
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Mutual replaceability

Let u, v be allowed patterns in the ambient SFT X with the same
support. Then u is replaceable by v in X if for all x ∈ X and for
any given sites where u occur, we can replace all the u by v
simultaneously to obtain an allowed configuration in X . u, v are
mutually replaceable if u is replaceable by v and v is replaceable by
u.

When X is the full shift, then u is replaceable by v iff
overlap(u, u) ⊂ overlap(v , v);

If X is not the full shift, things become subtle: for example
when the ambient is given by F = {0101, 1010} and
u = 101, v = 122. Then, overlap(u, u) 6⊂ overlap(v , v), but u
is still replaceable by v .
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Mutual replaceability and bijection between set of allowed
words

Given a finite set S ⊂ Zd , define

BS(XF , u) = {x |S : x ∈ XF and u does not appear in x |S}.

Theorem (Chandgotia, Marcus, Richey, Wu 24’)

Let XF be the ambient SFT and u, v be mutually replaceable in
XF . Then for any finite sets S ⊂ Zd there is a bijection between
BS(XF , u) and BS(XF , v).

Idea of proof: mutually replaceable + inclusion-exclusion
principle
We don’t know how to prove the converse (while in the 1d
full-shift case we can), because some properties of the
self-overlap set hold in 1-dimension but does not hold in
higher dimension.
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Replaceability and periodic points

Let Λ ⊂ Zd be a subgroup and XF be the ambient SFT in Zd .
Define

perΛ(XF ) = {x ∈ XF : σi (x) = x for all i ∈ Λ}
perΛ

S (XF ) = {x |S : x ∈ XF , σ
i (x) = x for all i ∈ Λ}.

Proposition

Let D ⊂ Zd be a fundamental domain for Λ. Let u and v be
patterns in the ambient SFT XF which are mutually replaceable.
Then for any finite sets S ⊂ D there is a bijection between
perΛ

S (XF , u) and perΛ
S (XF , v).

If (XF ){u} and (XF ){v} both have finitely many periodic

points, then |perΛ((XF ){u})| = |perΛ((XF ){v})|.
If they have infinitely many periodic points, then the
corresponding topological entropies are the same.
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