Shifts of finite type defined by forbidding one block

Chengyu Wu

University of British Columbia

(Joint work with Nishant Chandgotia, Brian Marcus and Jacob Richey)

Outline

- Preliminaries on Symbolic dynamics
- SFTs obtained by forbidding one word in one-dimension
 - Earlier results
 - When will such two SFTs be conjugate to each other?
 - Main results
 - Generalization to the GM ambient shift
- SFTs obtained by forbidding one pattern in higher dimension
 - Self-overlap set
 - Mutual replaceability and bijection between sets of allowed patterns
 - Mutual replaceability and bijection between sets of periodic points

Let \mathcal{A} be a finite alphabet and $\mathcal{A}^{\mathbb{Z}}$ (the full-shift) be the set of all bi-infinite sequences over \mathcal{A} .

- A *shift apsce* is a shift invariant subset of $\mathcal{A}^{\mathbb{Z}}$.
- A shift space X can be define by a list of forbidden words \mathcal{F} :

$$X=X_{\mathcal{F}}=\{x\in\mathcal{A}^{\mathbb{Z}}:x ext{ contains no words from }\mathcal{F}\}$$

- If *F* can be chosen to be finite, then X = X_F is a shift of finite type (SFT).
- Example: $\mathcal{A} = \{0, 1\}$, $\mathcal{F} = \{11\}$, $X_{\mathcal{F}}$ is the so-called *golden mean shift*.
- Any SFT can be represented by a finite directed graph, where any point in the SFT is represented by a unique bi-infinite path on the graph.

Preliminaries on symbolic dynamics

• A shift space X is call *irreducible* if any two allowed words in X can be connected by another allowed word.

 \rightarrow If X is an SFT, X is irreducible if the adjacency matrix of some representing graph is irreducible.

Preliminaries on symbolic dynamics

• A shift space X is call *irreducible* if any two allowed words in X can be connected by another allowed word.

 \rightarrow If X is an SFT, X is irreducible if the adjacency matrix of some representing graph is irreducible.

 Sliding block code (φ : X → Y): continuous, shift commuting map between shift spaces. Usually defined by a block code.

$$\cdots x_{i-m-1} \underbrace{x_{i-m} x_{i-m+1} \cdots x_{i+n-1} x_{i+n}}_{\downarrow \Phi} x_{i+n+1} \cdots \\ \downarrow \Phi \\ \cdots y_{i-1} \underbrace{y_i}_{\downarrow i+1} \cdots$$

- ϕ is an *embedding* if it is one-to-one.
- ϕ is a *factor code* if it is onto.
- ϕ is a *conjugacy* if it is one-to-one and onto.

SFTs obtained by forbidding one word in one-dimension

- Notation: for w ∈ [q]^k, let X_{{w}} be the SFT obtained by forbidding w from the (ambient) full shift.
- Motivating question: let u = 10110, v = 10100 and consider X_{u}, X_{{v}}. Which one has larger entropy? Can we determine this immediately with only little computation?
- It turns out that the answer to the question is related to the "self-overlap" (auto-correlation) of words *u* and *v*.

Quantities of interest

Let $w = w_1 w_2 \cdots w_k$.

• Self-overlap set:

overlap $(w, w) := \{i \in [1, k] : w_{[1,i]} = w_{[k-i+1,k]}\}.$ (*w* has trivial self-overlap if overlap $(w, w) = \{k\}.$)

Quantities of interest

Let $w = w_1 w_2 \cdots w_k$.

- Self-overlap set:
 - overlap $(w, w) := \{i \in [1, k] : w_{[1,i]} = w_{[k-i+1,k]}\}.$ (*w* has trivial self-overlap if overlap $(w, w) = \{k\}.$)
- Correlation polynomial: $\phi_w(t) = \sum_{i \in \text{overlap}(w,w)} t^{i-1}$.
- Characteristic polynomial: $\chi_w^*(t) = t^{-d} p_G(t)$ where G is a conjugacy presentation of $X_{\{w\}}$ and d is the unique constant such that $\chi_w^*(t)$ has a non-zero constant term.
- Zeta function: $\zeta_w(t) = \exp\left(\sum_{n=1}^{\infty} \frac{p_n(X_{\{w\}})}{n} t^n\right) = \frac{1}{t^r P_G(t^{-1})}$
- Number of allowed words of length *n*: $|\mathcal{B}_n(X_{\{w\}})|$.
- Topological entropy:

$$h(X_{\{w\}}) = \lim_{n \to \infty} \frac{1}{n} \log |\mathcal{B}_n(X_{\{w\}})| = \log(\lambda_{A_G}).$$

Proposition (from Guibas&Odlyzko 81, Lind 89 and Erikkson 97)

Let u, v be two strings of length k over the q-ary alphabet $(q \ge 2)$. Then the following are equivalent:

• overlap
$$(u, u) = \text{overlap}(v, v);$$

2
$$\phi_u(q) = \phi_v(q);$$

$$\, \bullet \, \zeta_u(t) = \zeta_v(t) \, \text{ for all } t;$$

•
$$|\mathcal{B}_n(X_{\{u\}})| = |\mathcal{B}_n(X_{\{v\}})|$$
 for all n;

5
$$h(X_{\{u\}}) = h(X_{\{v\}}).$$

•
$$(2) \Rightarrow (3)$$
 is due to Lind's formula:

$$\chi_w^*(t) = (t-q)\phi_w(t) + 1$$
 for any w .

Earlier results (inequality version)

Proposition

Let $u, v \in [q]^k$. Then, the following are equivalent: (a) $\phi_u(q) > \phi_v(q)$; (b) $|\mathcal{B}_n(X_{\{u\}})| \ge |\mathcal{B}_n(X_{\{v\}})|$ for all n and $|\mathcal{B}_n(X_{\{u\}})| > |\mathcal{B}_n(X_{\{v\}})|$ for all sufficiently large n; (c) $h(X_{\{u\}}) > h(X_{\{v\}})$.

• The equivalence between item (a) and item (c) answers the question we raised before:

$$\begin{array}{l} u = 10110 \rightarrow \phi_u(t) = t^4 + t, \ \phi_u(2) = 18 \\ v = 10100 \rightarrow \phi_v(t) = t^4, \ \phi_v(2) = 16 \\ \text{Since } \phi_u(2) > \phi_v(2), \ \text{we must have } h(X_{\{u\}}) > h(X_{\{v\}}). \\ (\text{Indeed, } h(X_{\{u\}}) \approx 0.954, \ h(X_{\{v\}}) = 0.947 \) \end{array}$$

When will $X_{\{u\}}$ conjugate to $X_{\{v\}}$?

Lind's formula implies that X_{u}, X_{{v} have the same zeta function when overlap(u, u) = overlap(v, v).

Q: Will $X_{\{u\}}$ be conjugate to $X_{\{v\}}$ if u, v have the same self-overlap set?

Observation: Let G_u and G_v be the unlabelled follower set graph of X_{u} and X_{v}, respectively. If G_u is graph isomorphic to G_v, then X_{{u} is conjugate to X_{{v}}.

Proposition

 G_u and G_v are isomorphic if and only if there is a permutation on [q] that takes u to v.

• Thus, if *u* and *v* are essentially different, there is no "graph isomorphic conjugacy" between X_{u} and X_{v}.

Swap conjugacies

- Q: Are there other conjugacies?
 - Idea of conjugacy given by replacement: take a point x ∈ X_{u}. We want to replace appearances of v in x with u to obtain a point y ∈ X_{{v}}. If this replacement gives a one-to-one correspondence, then X_{{u}} is conjugate to X_{{v}}.

 \rightarrow When is this possible?

Fact

If u and v both have trivial self-overlap and they have no cross-correlation, then the replacement gives a conjugacy between $X_{\{u\}}$ and $X_{\{v\}}$.

• We define *swap conjugacy* to be either a graph isomorphic conjugacy or a conjugacy given by replacement.

Theorem (Chandgotia, Marcus, Richey, Wu 24')

Let $u, v \in [q]^k$ both have only trivial self-overlap. Then, there exist (other than four exceptional cases given below) a positive integer $N \leq 5$ and a set of swap conjugacies $\phi_1, \phi_2, \dots, \phi_N$ such that

$$\phi_N \circ \phi_{N-1} \circ \cdots \circ \phi_1(X_{\{u\}}) = X_{\{v\}}.$$

- Exceptional cases: q = 2, and $w \in \{10^{k-1}, 1^{k-1}0, 01^{k-1}, 0^{k-1}1\}$. Indeed, $X_{\{w\}}$ is reducible iff q = 2 and $w \in \{10^{k-1}, 1^{k-1}0, 01^{k-1}, 0^{k-1}1\}$.
- The theorem requires no assumption on the cross-correlation between *u* and *v*.
- Trivial self-overlap is important in this result: if u = 100100, v = 110110, then there is no swap conjugacy chain between $X_{\{u\}}$ and $X_{\{v\}}$.

Idea of the proof

- Idea of the proof for the binary alphabet case (and k > 4): find interpolating words $w^{(1)}, w^{(2)}, w^{(3)}, w^{(4)}$ to form a swap conjugacy chain between u and v.
 - Test words: $p(j) = 1^{j} 0^{k-j} \ (2 \le j \le k-2).$
 - The "connector" for test words: $q = 1010^{k-3}$

•
$$u \to p(j) \to q \to p(j') \to \overline{v} \to v$$

• Example: *u* = 110010, *v* = 000101.

- They both have trivial self-overlap; and they do have non-trivial cross-correlation.
- But there is a swap conjugacy chain:

 $u = 110010 \rightarrow 110000 \rightarrow 101000 \rightarrow 111000 \rightarrow 111010 \rightarrow 000101 = v$

and therefore $X_{\{u\}}$ is (chain-swap) conjugate to $X_{\{v\}}$.

Extension of swap conjugacy result to the GM ambient shift

What if the ambient SFT is not a full shift?

• Lind's formula for 1-step ambient SFT (presented by G):

$$\chi_w^*(t) = P_G(t)\phi_w(t) + \operatorname{cof}_{ij}(tId - A_G).$$

- So, for example, let the ambient shift be the GM shift and let $u, v \in \mathcal{B}_k(X_{\{11\}})$ be such that
 - $\operatorname{overlap}(u, u) = \operatorname{overlap}(v, v)$ and

•
$$u_1 = v_1, u_k = v_k$$

then $\chi_u^*(t) = \chi_v^*(t)$ and therefore $(X_{\{11\}})_{\{u\}}$ and $(X_{\{11\}})_{\{v\}}$ have the same zeta function.

$$\rightarrow$$
 Q: Is $(X_{\{11\}})_{\{u\}}$ also conjugate to $(X_{\{11\}})_{\{v\}}$?

Extension of swap conjugacy result to the GM ambient shift

Theorem (Chandgotia, Marcus, Richey, Wu 24')

Let $u, v \in \mathcal{B}_k(X_{\{11\}})$. If $u_1 = v_1, u_k = v_k$ and both u and v have only trivial self-overlap (and neither of them is in the set of exceptional words $\{10^{k-1}, 0^{k-1}1, (10)^{\frac{k-1}{2}}0, 0(01)^{\frac{k-1}{2}}\}$), then there is a chain of swap conjugacies between $(X_{\{11\}})_{\{u\}}$ and $(X_{\{11\}})_{\{v\}}$. Furthermore, the length of the chain is upper bounded by 4.

Idea of the proof is similar to the full-shift case, the main difference is the choice of "test words": instead of choosing 1^j0^{k-j}, we choose (10)^j0^{k-2j} to be the test words.

SFTs obtained by forbidding one pattern in higher dimension

We want to generalize the definition of self-overlap set to a pattern whose support is a finite subset (possibly non-contiguous) in \mathbb{Z}^d .

Definition

Given a finite set $S \subset \mathbb{Z}^d$ and a pattern $u \in [q]^S$, we define overlap(u, u) to be the set of sites $i \in S - S$ for which u and its translate $\sigma^i(u)$ agree on $S \cap (S + i)$. Let u, v be allowed patterns in the ambient SFT X with the same support. Then u is *replaceable* by v in X if for all $x \in X$ and for any given sites where u occur, we can replace all the u by vsimultaneously to obtain an allowed configuration in X. u, v are *mutually replaceable* if u is replaceable by v and v is replaceable by u.

- When X is the full shift, then u is replaceable by v iff overlap(u, u) ⊂ overlap(v, v);
- If X is not the full shift, things become subtle: for example when the ambient is given by $\mathcal{F} = \{0101, 1010\}$ and u = 101, v = 122. Then, $\operatorname{overlap}(u, u) \not\subset \operatorname{overlap}(v, v)$, but u is still replaceable by v.

Mutual replaceability and bijection between set of allowed words

Given a finite set $S \subset \mathbb{Z}^d$, define

 $B_S(X_F, u) = \{x|_S : x \in X_F \text{ and } u \text{ does not appear in } x|_S\}.$

Theorem (Chandgotia, Marcus, Richey, Wu 24')

Let $X_{\mathcal{F}}$ be the ambient SFT and u, v be mutually replaceable in $X_{\mathcal{F}}$. Then for any finite sets $S \subset \mathbb{Z}^d$ there is a bijection between $\mathcal{B}_S(X_{\mathcal{F}}, u)$ and $\mathcal{B}_S(X_{\mathcal{F}}, v)$.

- Idea of proof: mutually replaceable + inclusion-exclusion principle
- We don't know how to prove the converse (while in the 1d full-shift case we can), because some properties of the self-overlap set hold in 1-dimension but does not hold in higher dimension.

Replaceability and periodic points

Let $\Lambda \subset \mathbb{Z}^d$ be a subgroup and X_F be the ambient SFT in \mathbb{Z}^d . Define

$$per^{\Lambda}(X_{\mathcal{F}}) = \{ x \in X_{\mathcal{F}} : \sigma^{i}(x) = x \text{ for all } i \in \Lambda \}$$
$$per^{\Lambda}_{S}(X_{\mathcal{F}}) = \{ x |_{S} : x \in X_{\mathcal{F}}, \sigma^{i}(x) = x \text{ for all } i \in \Lambda \}.$$

Proposition

Let $D \subset \mathbb{Z}^d$ be a fundamental domain for Λ . Let u and v be patterns in the ambient SFT X_F which are mutually replaceable. Then for any finite sets $S \subset D$ there is a bijection between $per_S^{\Lambda}(X_F, u)$ and $per_S^{\Lambda}(X_F, v)$.

- If (X_F)_{u} and (X_F)_{{v}} both have finitely many periodic points, then |per[∧]((X_F)_{{u}})| = |per[∧]((X_F)_{{v})|.
- If they have infinitely many periodic points, then the corresponding topological entropies are the same.