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Simulate a Source through a Channel

j\/f[ XTL YTL
- IIIIHHHIIII jtis?[;( T

@ How much information is needed to simulate a source through a given
channel?

@ Called the channel resolvability problem.

@ It was studied by Han-Verdu in 1993, but a similar simulation problem
was first studied by Wyner in 1975.
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Channel Resolvability

M, X" yn

@ M, is uniformly distributed over [e"?] := {1,..., e"®}.
@ An (n, R) code f, : [e"f] — &A™,
@ The output distribution:

Qvn(y") i=e ™ > PE (" |fn(m)).

melenk]

@ We want Qy~ approximates a target P3".
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Relative Entropy and Rényi Divergence

@ The Rényi divergence of order ¢ > 0 is

logZQ

reX

Dy(QIIP) :

@ The relative entropy (Kullback-Leibler divergence) is a special case:

i D,(QIIP) = DQIP) = Y Q) log 22

reX )

@ The conditional version:

Dy(Qy x| Pyx|Qx) == Dg(QxQy|x||@x Py|x)-

@ Rényi divergence is nondecreasing in its order.

Lei Yu (Nankai) Simulation under Rényi Divergences HKU 6/36



Rényi Resolvability

@ We minimize D,(Qy~||PE™) over all (n, R) codes f,.
@ The g¢-Rényi resolvability rate is defined as

R, :==inf{R: Dy(Qy~

PZ™) — 0}.

What is R,?
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Existing Results

@ Define 'P(Py‘X,Py) = {PX : ZT Py|X(|£L')Px(£L') = Py}
Theorem ([Han-Verdd’93, Hayashi’06,11])
For q = 1 (relative entropy),

R, = min I(X;Y).
Pxe€P(Py|x,Py)

@ Converse: standard IT techniques.
@ Achievability: soft-covering lemma [Wyner'75].
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Soft-covering Lemma

® LetC = {X"(m)}nepenry With X™(m) ~ Q%" m € [e"F] drawn
independently.

@ Randomly and uniformly choose one codeword from C.

@ The output distribution:

QuriclIC) == S PR ("X (m)).

melentt]

Lemma ([Wyner'75])

IfR>I1(X;Y), then
D(QyrcllPF"|Qc) = 0
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Soft-covering
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Rényi Resolvability Rates

Theorem

For q € [0, 00|, we have

Ry =T¢(Pyix, Pr),

where
i Ep, [Dq(Pyix||Py)], g¢€ (1,
exerlBim Br DA, g € 1,00
Ly(Pyix, Py) = i I(X;Y), S
a(Prix, Py) PXEPI(IIIDIYITX,PY)( ) a8
O, qZO
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Binary Example
@ For Py|x = BSC(e) and Py = Bern (1/2), it holds that

1_Hq(6)a qe (LOO}
1—‘q(PY|X7PY): 1_H(€)7 q:(071] ’
0, q=0

where H, is the ¢g-Rényi entropy.

Order q
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Typical Code is Optimal

® LetC = {X"(m)}me(enry With X7 (m) ~ PE" (/T (Px)),m € [e"F]

drawn independently, where 7™ (Py) is the e-typical set.
@ Randomly and uniformly choose one codeword from C.
@ The output distribution:

Qvrie@"C) = e Y PEL(y"1X" (m)).

melentt]

Lemma (Rényi-Covering Lemma)

If
Epy [Dg(Pyix |1 Py)], g€ (1,00]
R>{I(X;Y), q€(0,1] ,
0, q=0.
then

Dy(QyniclPY"|Qc) — 0

Lei Yu (Nankai) Simulation under Rényi Divergences HKU

15/36



Intuition

n 1 n n -
Dy(Qyn||PE™) = P > QWM Py
€T (@y)

X e,

vy g T (Qy)

@ To reduce D,(Qy~ | PZ™), the tail part should be as small as
possible—truncation to typical sets!
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What if R > Fq<PY|X, Py)?

Theorem (Exponential Behavior)

Given q € (0,00), if R > TI'y(Py|x, Py), then there exists a sequence of typical
codes such that D,(Qy~ || PE™) decays at least exponentially fast.

@ Characterize exact exponent?—Difficult!

Theorem (Exponential Behavior of i.i.d. Codes)

For the i.i.d. code, if the rate R > D,(Py|x||Py|Px), then we have

min{v(2),7(¢)}, ¢ € (2,00)

i ®@n max (% € (1,2
nhm nlOqu(Q§/7L|cn||PY |Pe,) = te[qa,Q] (t), q € (1,2] . (5)

max (¢ € (0,1

te[ri2] ®), g€ (0,1]

where 7(q) := (¢ — 1)(R — Dg(Py x| Py |Px))-
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What if R < Fq<PY|X, Py)?

Theorem (Linear Behavior)
@ Forgell, ),

1
lim —  inf D, (Qyn||PE™)

n—oo N, fi[enR]Xn

= Iélin max{Eq [Dq(Py|X||Py)] — R,
X

e —¢'D(Qy x| Pyix|@x) + D(Qy | Py)}.

Y|X

@ Forqe (0,1),

1
lim — inf  Dy(Qyn|PZ")

n—oo N filenk|xn

= gl}gi max{—¢'D(Qyx||Py|x|@x) + D(Qyx||Py|Qx) — R,

— ¢ D(Qy|x||Pyix|Qx) + D(Qy||Py)}.

(6)

(7)

Here, ¢ := q%l is the Holder conjugate of q.
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Key Lemma

Constant composition codes: Let C = {X™(m) },,¢[enr) With

X" (m) ~ Unif (T (Tx)), m € [e"F] drawn independently, where T (Tx) is the
type class w.r.t. Tx.

Lemma (Strong Packing-Covering Lemma)
Given Tx, R > 0, and any € > 0, with high probability it holds that

enft ‘7—TXY|
|TTX||TTY|

forall Ty x s.t. It(X;Y) < R —¢, and

Ty, (¥") NCl €

(1 + e—ne/S) _ en(R I7(X;Y)4o0(1))

0< [Ty (5™ NC| < €™

forall Ty x s.t. It(X;Y) > R —e.
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Hypercontractivity

@ Let (X,Y) ~ Pxy = DSBS(e), i.e., X ~ Bern(1/2) and Y| X ~ BSC(e).
@ Let (X™,Y") be ni.id. copies of (X,Y).
@ Denote Py (f)(y") = E[f(X")[Y" = y"].

Theorem ([Bonami '70][Beckner '75])
Forg>1andp>1+ (1—2¢)?(q—1),
1P (Hllg < 1£1lp, Vf > 0, 8)

andforg<landp <1+ (1-2¢?2(q—1),

1P (Dllg = I fllp, ¥ > 0. (9)
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Anti-contractivity

Theorem ([Y. 2024])
Forq>p>1,

IPER (Nllg=e™ O/ £, ¥f > 0, (10)
andfor0 <p<1landq<p,
IPER (Dllg<e™™ O£, vF > 0, (11)

where p’ := 1% is the Holder conjugate of p. The exponents above cannot be
further improved.

@ The special case of (10) with p = ¢ was first proven by Samorodnitsky
2022.
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Key Point

o If we write f = ‘jl%’:, then

log |1, = ﬁDmXHPx),
log [ Pxjy ()]l = iDq@ynPy),

where QY = QX o PY\X
@ Connecting Rényi resolvability and anti-contractivity.
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Wyner’s Common Information

@ M, is uniformly distributed over M,, = [e"%]
@ An (n, R)-synthesis code consists of (Q x|, , @y |ar,)-
@ The induced distribution is

Z Qxn i, (2" |m)Qynn, (y"|m)

QXnyn(”' 7y |
n meMy,

@ Goal:
Qxnyn ~ Py (target distribution)

Lei Yu (Nankai) Simulation under Rényi Divergences HKU 25/36



Wyner’s Common Information

@ In 1975, Wyner used normalized relative entropy 2 D(Q xny||Pgy) to

measure the “distance” between Q x»y~» and PYy..
@ He showed the minimum rate such that this “distance” vanishes is

Cw = min Io(XY;W).

B Qwlx \wQy|w: Qxy=Pxy

@ The same result still holds for D(Q xny~ || Piy ) [Hayashi 2006].

Lei Yu (Nankai) Simulation under Rényi Divergences HKU

26/36



Rényi Common Information

Define Rényi common information C;, := inf { R : Dy(Qxny=|Pgy) — 0}.
Theorem (Rényi CI for DSBS [Y.—Tan’20][Y.24])
Let Pxy = DSBS(e) with e € [0,1/2]. Then, for q € [0, o0],

0, q=20
1+ H(e) — 2H(a), q € (0,1]
Co=1<1—(1+2p* —2a)log(l —¢€) — (2a — 2p*)loge

—1t22H(a) + 1H(p*,a — p*,a — p*,1+ p* — 2a), g€ (1,00)

)

1—(1 —2a)log(1 — €) — 2aloge — 2H (a), g=o0
withs = g — 1, a = 32172 e — *1+\/N2(127(3a_>12)+4m<17a> —(-a),
o= (%)25’ and H (a1, as,a3,a1) = — Y1, a; log a;.

@ Achievability: Typical codes, similar to Rényi resolvability problem.
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Rényi Common Information

0.59

0.58

0.57

0.56

0.55 |

0.54

—>—— Renyi Com. Inf.
Renyi Com. Inf. of Order Infinity |
— — — Wyner Com. Inf.

0.53

Renyi Com. Inf. [Bits/Symbol]

0.52

0.51

Order «
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Exact Common Information?

@ What if we require Qx~y~=P % and the rate of W,, is measured by
LH(W,,) (variable-length coding)? [Kumar—Li-El Gamal'14]

@ Exact common information:
1
Cpx = inf{—H(W,) : X" < W, < Y"}.
n
@ A surprising equivalence:

Theorem ([Y.—Tan’20])

For Pxy on a finite alphabet,

Cix = Co.
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Common Information for Gaussian Sources

Theorem ([Y.—Tan’20])

For a Gaussian source (X,Y') with correlation coefficient p € [0,1), we have

1 1
log{ tr
I—p

I+p p
< Coo =Cpx < 51 ——
2 ] G = Og{l—p}+1+p

(12)

@ The lower bound is just Wyner’s Cl.
@ We conjecture the upper bound is tight—still open!
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Channel Simulation

X"~ P

PWW,|X"

Wi,

noiseless

P, Y |W,

Yn ~ Pyn‘Xn

By flipping Px~w, to Py, x~, it is equivalent to the common information

problem:
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General Version (with Shared Randomness)

K, ~ Unif[e"Ff°] (Shared Randomness)

X"~ P"

@ Goal: Ensure that

Py, |xnk,

Pyniw, K,

Y™ ~ Py jxn

Pxnyn = PYY (Approximate) or Pyxny» = Pgy. (Exact).

@ Equivalently,

Pynxn ~ P?& (Approximate) or Py xn = Pf}& (Exact).
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General Version (with Shared Randomness)

@ Known as reverse Shannon coding problem [Bennett et. al. '02],
compression of sources of distributions [Winter '02], or distributed
channel synthesis/simulation [Cuff ’12].

@ The solution for the TV-distance version was given by Cuff 2012.

@ The solution for the TV-distance version in quantum setting was given by
[Bennett et. al. '02][Bennett et. al. '14].

@ The solution for exact channel simulation using fixed-length codes when
Ry = oo was given by [Cubitt et. al. '02].

@ The solution for Rényi channel simulation using fixed-length codes when
Ry = oo was given by [Li-Li-Y. ’24].
» Interestingly, co-Rényi simulation rate = exact simulation rate.

@ Exact channel simulation using variable-length codes was studied by
[Y.—Tan ’20], and the solution for the DSBS was given.

» Interestingly, co-Rényi simulation rate = exact simulation rate.
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Concluding Remarks

Why simulation under Rényi divergences?
@ oo-Rényi simulation <= exact simulation.
@ Rényi divergences <= norms of a function.
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Thank you!
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