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Simulate a Source through a Channel

How much information is needed to simulate a source through a given
channel?
Called the channel resolvability problem.
It was studied by Han-Verdú in 1993, but a similar simulation problem
was first studied by Wyner in 1975.
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Channel Resolvability

Mn is uniformly distributed over [enR] := {1, . . . , enR}.
An (n,R) code fn : [enR] → Xn.
The output distribution:

QY n(yn) := e−nR
∑

m∈[enR]

P⊗n
Y |X(yn|fn(m)). (1)

We want QY n approximates a target P⊗n
Y .
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Relative Entropy and Rényi Divergence

The Rényi divergence of order q ≥ 0 is

Dq(Q∥P ) :=
1

q − 1
log

∑
x∈X

Q(x)qP (x)1−q.

The relative entropy (Kullback-Leibler divergence) is a special case:

lim
q→1

Dq(Q∥P ) = D(Q∥P ) :=
∑
x∈X

Q(x) log
Q(x)

P (x)
.

The conditional version:

Dq(QY |X∥PY |X |QX) := Dq(QXQY |X∥QXPY |X).

Rényi divergence is nondecreasing in its order.
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Rényi Resolvability

We minimize Dq(QY n∥P⊗n
Y ) over all (n,R) codes fn.

The q-Rényi resolvability rate is defined as

Rq := inf{R : Dq(QY n∥P⊗n
Y ) → 0}.

What is Rq?
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Existing Results

Define P(PY |X , PY ) :=
{
PX :

∑
x PY |X(·|x)PX(x) = PY

}
.

Theorem ([Han-Verdú’93, Hayashi’06,’11])
For q = 1 (relative entropy),

R1 = min
PX∈P(PY |X ,PY )

I(X;Y ).

Converse: standard IT techniques.
Achievability: soft-covering lemma [Wyner’75].
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Soft-covering Lemma

Let C = {Xn(m)}m∈[enR] with Xn(m) ∼ Q⊗n
X ,m ∈ [enR] drawn

independently.
Randomly and uniformly choose one codeword from C.
The output distribution:

QY n|C(y
n|C) := e−nR

∑
m∈[enR]

P⊗n
Y |X(yn|Xn(m)). (2)

Lemma ([Wyner’75])
If R > I(X;Y ), then

D(QY n|C∥P⊗n
Y |QC) → 0.
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Covering
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Soft-covering
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Rényi Resolvability Rates

Theorem

For q ∈ [0,∞], we have

Rq = Γq(PY |X , PY ), (3)

where

Γq(PY |X , PY ) :=


min

PX∈P(PY |X ,PY )
EPX

[Dq(PY |X∥PY )], q ∈ (1,∞]

min
PX∈P(PY |X ,PY )

I(X;Y ), q ∈ (0, 1]

0, q = 0.

.
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Binary Example

For PY |X = BSC(ϵ) and PY = Bern (1/2), it holds that

Γq(PY |X , PY ) =


1−Hq(ϵ), q ∈ (1,∞]

1−H(ϵ), q = (0, 1]

0, q = 0

,

where Hq is the q-Rényi entropy.
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Typical Code is Optimal

Let C = {Xn(m)}m∈[enR] with Xn(m) ∼ P⊗n
X (·|T (n)

ϵ (PX)),m ∈ [enR]

drawn independently, where T (n)
ϵ (PX) is the ϵ-typical set.

Randomly and uniformly choose one codeword from C.
The output distribution:

QY n|C(y
n|C) := e−nR

∑
m∈[enR]

P⊗n
Y |X(yn|Xn(m)). (4)

Lemma (Rényi-Covering Lemma)
If

R >


EPX

[Dq(PY |X∥PY )], q ∈ (1,∞]

I(X;Y ), q ∈ (0, 1]

0, q = 0.

,

then
Dq(QY n|C∥P⊗n

Y |QC) → 0.
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Intuition

Dq(QY n∥P⊗n
Y ) =

1

q − 1
log

( ∑
yn∈T (n)

ϵ (QY )

Q(yn)qP (yn)1−q

+
∑

yn /∈T (n)
ϵ (QY )

Q(yn)qP (yn)1−q

)
.

To reduce Dq(QY n∥P⊗n
Y ), the tail part should be as small as

possible—–truncation to typical sets!
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What if R > Γq(PY |X , PY )?

Theorem (Exponential Behavior)
Given q ∈ (0,∞), if R > Γq(PY |X , PY ), then there exists a sequence of typical
codes such that Dq(QY n∥P⊗n

Y ) decays at least exponentially fast.

Characterize exact exponent?—Difficult!

Theorem (Exponential Behavior of i.i.d. Codes)

For the i.i.d. code, if the rate R > Dq(PY |X∥PY |PX), then we have

lim
n→∞

− 1

n
logDq(QY n|Cn

∥P⊗n
Y |PCn

) =


min{γ(2), γ(q)}, q ∈ (2,∞)

max
t∈[q,2]

γ(t), q ∈ (1, 2]

max
t∈[1,2]

γ(t), q ∈ (0, 1]

, (5)

where γ(q) := (q − 1)(R−Dq(PY |X∥PY |PX)).
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What if R < Γq(PY |X , PY )?

Theorem (Linear Behavior)
1 For q ∈ [1,∞],

lim
n→∞

1

n
inf

f :[enR]→Xn
Dq(QY n∥P⊗n

Y )

= min
QX

max{EQX
[Dq(PY |X∥PY )]−R,

max
QY |X

−q′D(QY |X∥PY |X |QX) +D(QY ∥PY )}. (6)

2 For q ∈ (0, 1),

lim
n→∞

1

n
inf

f :[enR]→Xn
Dq(QY n∥P⊗n

Y )

= min
QXY

max{−q′D(QY |X∥PY |X |QX) +D(QY |X∥PY |QX)−R,

− q′D(QY |X∥PY |X |QX) +D(QY ∥PY )}. (7)

Here, q′ := q
q−1 is the Holder conjugate of q.
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Key Lemma

Constant composition codes: Let C = {Xn(m)}m∈[enR] with
Xn(m) ∼ Unif(T (TX)),m ∈ [enR] drawn independently, where T (TX) is the
type class w.r.t. TX .

Lemma (Strong Packing-Covering Lemma)
Given TX , R > 0, and any ϵ > 0, with high probability it holds that

|TTX|Y (y
n) ∩ C| ∈ enR|TTXY

|
|TTX

||TTY
|
(1± e−nϵ/3) = en(R−IT (X;Y )+o(1))

for all TY |X s.t. IT (X;Y ) ≤ R− ϵ, and

0 ≤ |TTX|Y (y
n) ∩ C| ≤ enϵ

for all TY |X s.t. IT (X;Y ) > R− ϵ.
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Hypercontractivity

Let (X,Y ) ∼ PXY = DSBS(ϵ), i.e., X ∼ Bern(1/2) and Y |X ∼ BSC(ϵ).
Let (Xn, Y n) be n i.i.d. copies of (X,Y ).
Denote P⊗n

X|Y (f)(y
n) = E[f(Xn)|Y n = yn].

Theorem ([Bonami ’70][Beckner ’75])
For q ≥ 1 and p ≥ 1 + (1− 2ϵ)2(q − 1),

∥P⊗n
X|Y (f)∥q ≤ ∥f∥p,∀f ≥ 0, (8)

and for q ≤ 1 and p ≤ 1 + (1− 2ϵ)2(q − 1),

∥P⊗n
X|Y (f)∥q ≥ ∥f∥p,∀f ≥ 0. (9)
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Anti-contractivity

Theorem ([Y. 2024])
For q ≥ p ≥ 1,

∥P⊗n
X|Y (f)∥q≥e−nHq(ϵ)/p

′
∥f∥p,∀f ≥ 0, (10)

and for 0 ≤ p ≤1 and q ≤ p,

∥P⊗n
X|Y (f)∥q≤e−nHp(ϵ)/p

′
∥f∥p,∀f ≥ 0, (11)

where p′ := p
p−1 is the Holder conjugate of p. The exponents above cannot be

further improved.

The special case of (10) with p = q was first proven by Samorodnitsky
2022.
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Key Point

If we write f = dQX

dPX
, then

log ∥f∥p =
1

p′
Dp(QX∥PX),

log ∥PX|Y (f)∥q =
1

q′
Dq(QY ∥PY ),

where QY := QX ◦ PY |X .
Connecting Rényi resolvability and anti-contractivity.
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Wyner’s Common Information

�
�
��

@
@
@R

PXn|Wn

PY n|Wn

-

-

Wn

Xn

Y n

Mn is uniformly distributed over Mn = [enR]

An (n,R)-synthesis code consists of (QXn|Mn
, QY n|Mn

).
The induced distribution is

QXnY n(xn, yn) :=
1

|Mn|
∑

m∈Mn

QXn|Mn
(xn|m)QY n|Mn

(yn|m)

Goal:
QXnY n ≈ P⊗n

XY (target distribution)
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Wyner’s Common Information

In 1975, Wyner used normalized relative entropy 1
nD(QXnY n∥P⊗n

XY ) to
measure the “distance” between QXnY n and P⊗n

XY .
He showed the minimum rate such that this “distance” vanishes is

CW := min
QWQX|WQY |W :QXY =PXY

IQ(XY ;W ).

The same result still holds for D(QXnY n∥P⊗n
XY ) [Hayashi 2006].
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Rényi Common Information

Define Rényi common information Cq := inf
{
R : Dq(QXnY n∥P⊗n

XY ) → 0
}

.

Theorem (Rényi CI for DSBS [Y.–Tan’20][Y.’24])

Let PXY = DSBS(ϵ) with ϵ ∈ [0, 1/2]. Then, for q ∈ [0,∞],

Cq =



0, q = 0

1 +H(ϵ)− 2H(a), q ∈ (0, 1]

1− (1 + 2p∗ − 2a) log(1− ϵ)− (2a− 2p∗) log ϵ

− 1+s
s 2H(a) + 1

sH(p∗, a− p∗, a− p∗, 1 + p∗ − 2a), q ∈ (1,∞)

1−(1− 2a) log(1− ϵ)− 2a log ϵ− 2H(a), q = ∞

,

with s = q − 1, a = 1−
√
1−2ϵ
2 , p∗ =

−1+
√

κ2(1−2a)2+4κa(1−a)

2(κ−1) − ( 12 − a),

κ =
(
1−ϵ
ϵ

)2s, and H(a1, a2, a3, a4) = −
∑4

i=1 ai log ai.

Achievability: Typical codes, similar to Rényi resolvability problem.
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Rényi Common Information
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Exact Common Information?

What if we require QXnY n=P⊗n
XY and the rate of Wn is measured by

1
nH(Wn) (variable-length coding)? [Kumar–Li–El Gamal’14]
Exact common information:

CEx = inf{ 1
n
H(Wn) : X

n ↔ Wn ↔ Y n}.

A surprising equivalence:

Theorem ([Y.–Tan’20])

For PXY on a finite alphabet,

CEx = C∞.
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Common Information for Gaussian Sources

Theorem ([Y.–Tan’20])
For a Gaussian source (X,Y ) with correlation coefficient ρ ∈ [0, 1), we have

1

2
log

[
1 + ρ

1− ρ

]
≤ C∞ = CEx ≤ 1

2
log

[
1 + ρ

1− ρ

]
+

ρ

1 + ρ
. (12)

The lower bound is just Wyner’s CI.
We conjecture the upper bound is tight—still open!
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Channel Simulation

-
Xn ∼ P⊗n

X PWn|Xn -
Wn

noiseless
PY n|Wn

-
Y n ∼ PY n|Xn

By flipping PXn|Wn
to PWn|Xn , it is equivalent to the common information

problem:

�
�
��

@
@
@R

PXn|Wn

PY n|Wn

-

-

Wn

Xn

Y n
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General Version (with Shared Randomness)

-
Xn ∼ P⊗n

X PWn|XnKn
-

Wn
PY n|WnKn

-
Y n ∼ PY n|Xn

?

Kn ∼ Unif[enR0 ] (Shared Randomness)

?

Goal: Ensure that

PXnY n ≈ P⊗n
XY (Approximate) or PXnY n = P⊗n

XY (Exact).

Equivalently,

PY n|Xn ≈ P⊗n
Y |X (Approximate) or PY n|Xn = P⊗n

Y |X (Exact).
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General Version (with Shared Randomness)

Known as reverse Shannon coding problem [Bennett et. al. ’02],
compression of sources of distributions [Winter ’02], or distributed
channel synthesis/simulation [Cuff ’12].
The solution for the TV-distance version was given by Cuff 2012.
The solution for the TV-distance version in quantum setting was given by
[Bennett et. al. ’02][Bennett et. al. ’14].
The solution for exact channel simulation using fixed-length codes when
R0 = ∞ was given by [Cubitt et. al. ’02].
The solution for Rényi channel simulation using fixed-length codes when
R0 = ∞ was given by [Li–Li–Y. ’24].

▶ Interestingly, ∞-Rényi simulation rate = exact simulation rate.

Exact channel simulation using variable-length codes was studied by
[Y.–Tan ’20], and the solution for the DSBS was given.

▶ Interestingly, ∞-Rényi simulation rate = exact simulation rate.
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Concluding Remarks

Why simulation under Rényi divergences?
∞-Rényi simulation ⇐⇒ exact simulation.
Rényi divergences ⇐⇒ norms of a function.
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Thank you!

Lei Yu (Nankai) Simulation under Rényi Divergences HKU 36 / 36


	Introduction
	Main Result
	Application to Anti-contractivity
	Common Information 
	Channel Simulation 

