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Classical Sequential Hypothesis Testing

Binary hypothesis testing: H0 : P = P0 and H1 : P = P1,
where P0 and P1 are probability distributions defined on the
same alphabet X .

{Xk}∞k=1 are i.i.d. random variables distributed according to P.

A sequence of decision functions dk taking values in {0, 1, ∗}.

T is the first time k that dk ̸= ∗.

dT is a {0, 1}-valued function and dT = i means Hi is the
underlying hypothesis.

α = P0(dT = 1) and β = P1(dT = 0).
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Classical Sequential Hypothesis Testing

Error Exponents

Given a sequence of SHTs {{(dn,k ,Tn)}∞k=1}∞n=1 satisfying the
constraint

max
i=0,1

Ei [Tn] ≤ n,

the error exponents (E0,E1) defined as

E0 = lim inf
n→∞

1

n
log

1

αn
and E1 = lim inf

n→∞

1

n
log

1

βn
.

In 1948, Wald and Wolfowitz showed that E0 ≤ D(P1∥P0) and
E1 ≤ D(P0∥P1) and the error exponent can be achieved by a
sequence of SPRTs.
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Setup

Cd : d-dimensional complex Euclidean space;

Quantum state ρ over Cd : a d × d positive-semidefinite
matrix with trace value 1.

A positive operator-valued measure (POVM)
m = {m(x) : x ∈ X} with outcomes in X : m(x) is a d × d
positive-semidefinite matrix such that

∑
x∈X m(x) = Id .

A projector-valued measure m = {m(x) : x ∈ X} with
outcomes in X : m is a POVM with the additional condition
that m(x)2 = m(x).

The probability of obtaining outcome x when m is applied to
the underlying state ρ:

Pρ,m(X = x) = Tr[ρm(x)].
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Setup

Quantum Divergence

For a d × d Hermitian matrix A, let
∑d

i=1 λiPi be the spectral

decomposition of A. We define logA ≜
∑d

i=1 log λiPi .
For a d × d Hermitian matrix A, the support of A is defined as the
subspace generated by the eigenvectors corresponding to non-0
eigenvalues.

Definition 1 (Quantum Relative Entropy)

Let ρ0 and ρ1 be two quantum states with the same support. The
quantum relative entropy between two quantum states ρ0 and ρ1 is
defined as

D(ρ0∥ρ1) = Tr[ρ0(log ρ0 − log ρ1)].
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Measured Relative Entropy

The measured relative entropy is defined as

DM(ρ0∥ρ1) := sup
m

D(Pρ0,m∥Pρ1,m), (1)

where the supremum runs over all rank-1 PVMs comprised of d
projectors.

Theorem 2 (Berta, Fawzi, Tomamichel (2017))

For two states ρ0 and ρ1 with full support, we have

DM(ρ0∥ρ1) = sup
X

sup
m∈MX

D(Pρ0,m∥Pρ1,m) (2)

and the supremum is achieved at some PVM m∗ with |X | = d .
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Quantum Hypothesis Testing

The quantum system is prepared in one of the two states ρ⊗n
0

and ρ⊗n
1 .

Make a quantum measurement {Λn, In − Λn} with outcome
{0, 1} to figure out the underlying states.

If the outcome is 0, guess the state ρ⊗n
0 ; otherwise guess the

state ρ⊗n
1 .

Probability of type I-error: αn := Tr[ρ⊗n
0 (In − Λn)].

Probability of type II-error: βn := Tr[ρ⊗n
1 Λn].
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Quantum Hypothesis Testing: Known Results

Quantum Stein’s Lemma [Hiai and Petz (1991), Ogawa and
Hayashi (2004)]

For any ε > 0, let βn(ε) ≜ inf{βn : (Λn, In − Λn) such thatαn ≤ ε}.
Then

lim
n→∞

1

n
log

1

βn(ε)
= D(ρ0∥ρ1).

Quantum Chernoeff exponent [Audenaert et al. (2007), Nussbaum
and Azko la (2009)]

Let Cn = inf{αn + βn : (Λn, In − Λn)}. Then

lim
n→∞

1

n
log

1

Cn
= C (ρ0, ρ1) = − log sup

0≤s≤1
Tr[ρs0ρ

1−s
1 ].
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Quantum Hypothesis Testing: Known Results

Quantum Hoeffding’s Bound [Hayashi and Nagaoka (2003), Ogawa
and Hayashi (2004), Nagaoka (2006)]

Let

R :=

{
(R0,R1) : ∃ (Λn, In − Λn) such that

R0 ≤ lim inf
n→∞

1
n log 1

αn
,

R1 ≤ lim inf
n→∞

1
n log 1

βn
.

}

Then

R =
⋃

0≤r≤D(ρ1∥ρ0)

{
(R0,R1) :

R0 ≤ r ,

R1 ≤ sup0≤s≤1
−sr−log Tr[ρ1−s

0 ρs1]
1−s

}
.
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Sequential Quantum Hypothesis Testing: Problem Set-Up

mk+1

Oracle

ρ0/ρ1

pk+1(mk+1|mk
1 , x

k
1 )

∗

dk(mk
1 , x

k
1 )

xkStop

0 or 1

Figure: The structure of a general adaptive sequential hypothesis testing
protocol.
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Sequential Quantum Hypothesis Testing: Problem Set-Up

Sequential Quantum Hypothesis Test

A sequential quantum hypothesis test (SQHT)
S =

(
X , {pk , dk}∞k=1

)
, in its most general form, is given by (see

also Figure 1):

a finite set of measurement outcomes, X ;

a sequence of (conditional) probability distributions to
determine the next measurement, pk(mk |xk−1

1 ,mk−1
1 ) for

every k ∈ N;

a sequence of {0, 1, ∗}-valued decision functions dk(xk1 ,m
k
1),

for every k ∈ N.

Let T be the first time that dk ̸= ∗. Thus the number of samples
of the underlying state ρ used during the test is T .
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Sequential Quantum Hypothesis Testing: Problem Set-Up

Sequential Quantum Probability Ratio Tests (SQPRTs)

For k ≥ 1, let pk be the probability density function according to
which the experimenter chooses POVM Mk at time k . Let

Sk := log
P0(X k

1 ,M
k
1 )

P1(X k
1 ,M

k
1 )
. (3)

Additionally, let A and B be two fixed positive real numbers. The
decision function dk at time k is defined as follows

dk(X k
1 ,M

k
1 ) =


0 Sk ≥ B

1 Sk ≤ −A

∗ otherwise.

(4)

Let T = inf{k ≥ 1 : Sk ̸∈ (−A,B)}. We say
(
X , {pk , dk}∞k=1,T

)
is an SQPRT with parameters A and B.
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Sequential Quantum Hypothesis Testing: Problem Set-Up

Adaptive Versus Non-adaptive Strategies

In an adaptive QSHT S , the measurement mk+1 depends on
mk

1 and xk1 .

In an non-adaptive QSHT S , the measurement mk+1 does not
depends on mk

1 and xk1 .
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Sequential Quantum Hypothesis Testing: Problem Set-Up

Consider sequences of QSHT Sn, indexed by n ∈ N. We use Pn,i

and En,i [·] to denote the probability measure and the expectation
induced by the QSHT Sn and the underlying state ρi .

Two Types of Errors

Type I-error: αn := Pn,0(dTn = 1).

Type II-error: βn := Pn,1(dTn = 0).

Constraints on the Sample Size

The first type of constraint is the expectation constraint:

max
i∈{0,1}

En,i [Tn] ≤ n. (5)

The second type of constraint is the probabilistic constraint

max
i∈{0,1}

Pn,i (Tn > n) < ε. (6)
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Sequential Quantum Hypothesis Testing: Problem Set-Up

Achievable Error Exponent Pairs

A pair (R0,R1) ∈ R2
+ is said to be an achievable error exponent

pair under the expectation constraint if there exists a sequence of
QSHTs {Sn}n∈N such that

lim inf
n→∞

1

n
log

1

αn
≥ R0, and lim inf

n→∞

1

n
log

1

βn
≥ R1, and (7)

lim sup
n→∞

(
max

i∈{0,1}
En,i [Tn] − n

)
≤ 0. (8)

Similarly, for 0 < ε < 1, a pair (R0,R1) ∈ R2
+ is said to be an

ε-achievable error exponent pair under the probabilistic constraint
if there exists a sequence of QSHTs {Sn}n∈N such that (7) hold
and (instead of(8)),

lim sup
n→∞

max
i∈{0,1}

Pn,i (Tn > n) < ε. (9)
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Sequential Quantum Hypothesis Testing: Problem Set-Up

Error Exponent Regions

AE is the closure of the set of all achievable error exponent
pairs under the expectation constraint using adaptive
strategies.

AP(ε) is the closure of the set of all ε-achievable error
exponent pairs under the probabilistic constraint using
adaptive strategies.

RE is the closure of the set of achievable error exponent pairs
under the expectation constraint using non-adaptive
strategies.

RP(ε) is the closure of the set of achievable error exponent
pairs under the probabilistic constraint using non-adaptive
strategies.
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Sequential Quantum Hypothesis Testing: Literature Review

Slussarenko et al. (2017, PRL) first applied sequential
strategy to discriminate two quantum states.
Mart́ınez-Vargas et al. (2021, PRL) proposed the problem of
sequential quantum hypothesis testing and showed the
following.

For vanishing error probabilities α and β,

E0[T ] =
1 + o(1)

D(Pρ0,m∥Pρ1,m)
log

1

β
,

E1[T ] =
1 + o(1)

D(Pρ1,m∥Pρ0,m)
log

1

α
.

For vanishing error probabilities α and β,

E0[T ] ≥ 1 + o(1)

D(ρ0∥ρ1)
log

1

β
,

E1[T ] ≥ 1 + o(1)

D(ρ1∥ρ0)
log

1

α
.
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Main Results for Adaptive Strategies

Theorem 3

Let ρ0 and ρ1 be two quantum states with full support. Then for
any 0 < ε < 1,

AP(ε) = AE =

{
(R0,R1) :

R0 ≤ DM(ρ1∥ρ0)
R1 ≤ DM(ρ0∥ρ1)

}
. (10)

Comparison with the result in Mart́ınez-Vargas et al. (2021, PRL)

For vanishing error probabilities α and β,

E0[T ] =
1 + o(1)

DM(ρ1∥ρ0)
log

1

β
,

E1[T ] =
1 + o(1)

DM(ρ0∥ρ1)
log

1

α
.
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Main Results for Adaptive Strategies

··· ······ ···

ρ⊗l ρ⊗l

Figure: Multiple copies

Consider the binary quantum hypothesis test,

H
(l)
0 : ρ⊗l = ρ⊗l

0 H
(l)
1 : ρ⊗l = ρ⊗l

1 . (11)

Define the achievable regions of the error exponent pairs A(l)
E and

A(l)
P (ε). Similar to Theorems 3, we have

A(l)
E = A(l)

P (ε) =

(R0,R1) :
R0 ≤

1

l
DM(ρ⊗l

1 ∥ρ⊗l
0 )

R1 ≤
1

l
DM(ρ⊗l

0 ∥ρ⊗l
1 )

 . (12)

20 / 42



20/42

Main Results for Adaptive Strategies

··· ······ ···

ρ⊗l ρ⊗l

Figure: Multiple copies

Consider the binary quantum hypothesis test,

H
(l)
0 : ρ⊗l = ρ⊗l

0 H
(l)
1 : ρ⊗l = ρ⊗l

1 . (11)

Define the achievable regions of the error exponent pairs A(l)
E and

A(l)
P (ε). Similar to Theorems 3, we have

A(l)
E = A(l)

P (ε) =

(R0,R1) :
R0 ≤

1

l
DM(ρ⊗l

1 ∥ρ⊗l
0 )

R1 ≤
1

l
DM(ρ⊗l

0 ∥ρ⊗l
1 )

 . (12)

20 / 42



21/42

Main Results for Non-Adaptive Strategies: Ultimate
Quantum Limit

Hiai and Petz, 1991

Let ρ0 and ρ1 be two quantum states with full support. Then

lim
l→∞

DM(ρ⊗l
1 ∥ρ⊗l

0 )

l
= D(ρ1∥ρ0). (13)

We now characterize the ultimate quantum limit of achievable
error exponent pairs using sequential adaptive testing strategies.

Theorem 4

Let ρ0 and ρ1 be two quantum states with full support. Then for
any 0 < ε < 1,

∞⋃
l=1

A(l)
E =

∞⋃
l=1

A(l)
P (ε) =

{
(R0,R1) :

R0 ≤ D(ρ1∥ρ0)
R1 ≤ D(ρ0∥ρ1)

}
. (14)
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Quantum Hypothesis Testing: Known Results

D(ρ1∥ρ0)C (ρ0, ρ1)

C (ρ0, ρ1)

lim
n→∞

1

n
log

1

αn

Chernoff exponent

Tradeoff given by Hoeffding

Tradeoff given by sequential tests

D(ρ0∥ρ1)

lim
n→∞

1

n
log

1

βn

0

Figure: Schematic of the optimal trade-off between the exponential decay
rates for the error of the first and second kind
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Main Results for Non-Adaptive Strategies

Theorem 5

Let ρ0 and ρ1 be two quantum states with full support. Then for
any 0 < ε < 1,

RE = RP(ε) = Conv(C), (15)

where

C =
⋃
X

⋃
m∈MX

{
(R0,R1) :

R0 ≤ D(Pρ1,m∥Pρ0,m)
R1 ≤ D(Pρ0,m∥Pρ1,m)

}
, (16)

and X runs over all finite sets and MX is the set of POVMs with
support X .
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Main Results for Non-Adaptive Strategies

Corollary 6

Let ρ0 and ρ1 be two quantum states with full support and let

C(l) =
⋃
X

⋃
m∈M(l)

X

(R0,R1) :
R0 ≤

1

l
D(Pρ1,m∥P0,m)

R1 ≤
1

l
D(Pρ0,m∥P1,m)

 . (17)

Then for any 0 < ε < 1, we have

R(l)
E = R(l)

P (ε) = Conv(C(l)), (18)

and

∞⋃
l=1

R(l)
E =

∞⋃
l=1

R(l)
P (ε). (19)
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Numerical Example

Let ρ0 = r0 |ψ0⟩ ⟨ψ0| + (1 − r0) I
2 and ρ1 = r1 |ψ1⟩ ⟨ψ1| + (1 − r1) I

2 ,

where |ψi ⟩ = cos θ
4 |0⟩ + (−1)i sin θ

4 |1⟩, 0 ≤ θ ≤ π, and 0 ≤ ri ≤ 1,
|0⟩ = (1, 0)⊤, |1⟩ = (0, 1)⊤, I is the 2 × 2 identity matrix. For ρ0
and ρ1 with parameters (r0, r1, θ), we define the sum rate of error
exponent pairs as follows:

f (r0, r1, θ) := DM(ρ1∥ρ0) + DM(ρ0∥ρ1) (20)

and

g(r0, r1, θ) := sup
X

sup
m∈MX

D(Pρ0,m∥Pρ1,m) + D(Pρ1,m∥Pρ0,m). (21)
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Numerical Example

Let [d2] = {1, 2, . . . , d2} and let

M(1)
[d2]

= {m ∈ M[d2] : m(x) is of rank one for all x ∈ [d2]}.

Theorem 7

Let ρ0 and ρ1 be two quantum states with full support. Then

Conv(C) = Conv(C(1)) (22)

where

C(1) =
⋃

m∈M(1)

[d2]

{
(R0,R1) :

R0 ≤ D(Pρ1,m∥Pρ0,m)
R1 ≤ D(Pρ0,m∥Pρ1,m)

}
. (23)
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Numerical Example
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Figure: Maxima of the sum rate of error exponent pairs with adaptive or
non-adaptive measurement strategies for r1 = r2 = 0.98 and θ ∈ (0, π2 ).
The gap is most pronounced for large values of θ.
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Numerical Example
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DM(ρ1∥ρ0)r

rDM(ρ0∥ρ1)

Figure: Achievable regions of error exponent pairs with adaptive or
non-adaptive measurement strategies for when
(r1, r2, θ) = (0.98, 0.98, 1.57). Note that the region for adaptive strategies
is the entire rectangle including the region for non-adaptive strategies.
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Numerical Example
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Figure: Error probabilities for different tests when
(r1, r2, θ) = (0.9, 0.9, π2 ).
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Proof of Achievability Part Theorem 3

Main Idea: Construct an appropriate sequence of SQPRTs.

SQPRTs

Let X = {1, 2, . . . , d}. Let m∗
0 = {m∗

0(x)}x∈X and
m∗

1 = {m∗
1(x)}x∈X be the projective-valued measurements that

achieve the suprema in the definitions of DM(ρ0∥ρ1) and
DM(ρ1∥ρ0), respectively. Recall that
Zj = log Tr

[
ρ0Mj(Xj)

]
− log Tr

[
ρ1Mj(Xj)

]
and Sk =

∑k
j=1 Zj .

Adaptive Strategies

For k ≥ 1, the adaptive strategies are defined as follows

pk(m∗
0|xk−1

1 ,mk−1
1 ) =

{
1
2 if k = 1

1 if k ≥ 2 and Sk−1 ≥ 0,
and (24)

pk(m∗
1|xk−1

1 ,mk−1
1 ) =

{
1
2 if k = 1

1 if k ≥ 2 and Sk−1 < 0.
(25)
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Proof of Achievability Part Theorem 3

SQPRTs

For any fixed 0 < τ < min{DM(ρ1∥ρ0),DM(ρ0∥ρ1)}, let

An := n(DM(ρ1∥ρ0) − τ) and Bn := n(DM(ρ0∥ρ1) − τ). (26)

Let Tn = inf{k ≥ 1 : Sk ̸∈ (−An,Bn)} and that

dn,k(X k
1 ,M

k
1 ) =


0 Sk ≥ Bn

1 Sk ≤ −An

∗ otherwise.

(27)

We will show that this sequence of SQPRTs
Sn =

(
X , {pk , dn,k}∞k=1,Tn

)
with parameters An and Bn achieves

(DM(ρ1∥ρ0),DM(ρ0∥ρ1)).
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Proof of Achievability Part Theorem 3

Bounds on the Error Probabilities

αn = P0(dTn = 1)

= E0[χ{STn≤−An}]

= E1[eSTnχ{STn≤−An}]

≤ e−An .

Similarly, βn ≤ e−Bn .
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Proof of Achievability Part Theorem 3

Verification of the Expectation Constraints for the Tests Sn

Let T̂n = inf{k : Sk ≥ Bn}. Then Tn ≤ T̂n and

ST̂n
≤ ST̂n−1 + Zn ≤ Bn + C .

E0[Tn] ≤ E0[T̂n]

=
−E0[ST̂n

− T̂nDM(ρ0∥ρ1)] + E0[ST̂n
]

DM(ρ0∥ρ1)

≤
−E0[ST̂n

− T̂nDM(ρ0∥ρ1)] + Bn + C

DM(ρ0∥ρ1)

≤ C1 + Bn + C

DM(ρ0∥ρ1)
= n − nτ − C1 − C

DM(ρ0∥ρ1)
.

33 / 42



34/42

Proof of Converse Part of Theorem 3

The following lemma provides lower bounds on the error
probabilities for a general SQHT

(
X , {pk , dk}∞k=1,T

)
.

Lemma 8

For any SQHT
(
X , {pk , dk}∞k=1,T

)
with adaptive strategies such

that

max
i=0,1

Ei [T ] <∞, (28)

the following inequalities hold,

log
1

β
≤ E0[T ]DM(ρ0∥ρ1) + 1

1 − α
and (29)

log
1

α
≤ E0[T ]DM(ρ0∥ρ1) + 1

1 − β
. (30)
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Proof of Converse Part of Theorem 3

Let {Sn}∞n=1 be a sequence of SQHTs with adaptive strategies
such that αn → 0 and βn → 0 and the sequence {Tn}∞n=1 satisfies
the expectation constraint (8). Then from (29) and (30) in
Lemma 8, we have that

lim sup
n→∞

1

n
log

1

βn
≤ lim sup

n→∞

En,0[Tn]DM(ρ0∥ρ1) + 1

n(1 − αn)
≤ DM(ρ0∥ρ1).

(31)

and

lim sup
n→∞

1

n
log

1

αn
≤ lim sup

n→∞

En,1[Tn]DM(ρ1∥ρ0) + 1

n(1 − βn)
≤ DM(ρ1∥ρ0).

(32)

Conclusion: any achievable error exponent pair (R0,R1) is such
that R0 ≤ DM(ρ1∥ρ0) and R1 ≤ DM(ρ0∥ρ1).
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Proof of Converse Part of Theorem 3

Proof of Lemma 8

Let Pi be the probability measure on (Ω,F) when the
underlying state is ρi .

Let FT be the sub-σ-algebra generated by T and let Pi ,T be
the restriction of Pi to the σ-algebra FT .

Then

exp(ST ) =
dP0,T

dP1,T
andE0[ST ] = D(P0,T∥P1,T ).

We define a stochastic kernel V with input alphabet Ω (with
elements ω) and output alphabet {0, 1} as follows:

V (0|ω) :=

{
1 if dT (ω) = 0

0 if dT (ω) = 1
. (33)
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Proof of Converse Part of Theorem 3

Let D(a∥b) = a log a
b + (1 − a) log 1−a

1−b for any 0 ≤ a, b ≤ 1.

Proof of Lemma 8

Using the data processing inequality to the classical relative
entropy when

(
P0,T ,P1,T

)
is processed via the stochastic kernel V ,

we obtain,

D(α∥1 − β) = D
(
P0(dT = 1)∥P1(dT = 1)

)
≤ D(P0,T∥P1,T ) = E0[ST ], (34)

which implies that

log
1

β
≤ D(α∥1 − β) + 1

1 − α
≤ E0[ST ] + 1

1 − α
. (35)
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Proof of Converse Part of Theorem 3

Proof of Lemma 8

Key Fact: {Sk − kDM(ρ0∥ρ1)}∞k=1 is a supermartingale.
Applying Optional Stopping Theorem to the supermartingale
{Sk − kDM(ρ0∥ρ1)}∞k=1 and the stopping time T , we obtain

E0[ST − TDM(ρ0∥ρ1)] ≤ E0[S1 − DM(ρ0∥ρ1)] ≤ 0. (36)

Combining (35) and (36), we obtain

log
1

β
≤ E0[ST ] + 1

1 − α
≤ E0[T ]DM(ρ0∥ρ1) + 1

1 − α
. (37)

Similarly, we have that

log
1

α
≤ E0[T ]DM(ρ0∥ρ1) + 1

1 − β
. (38)
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Proof of Converse Part of Theorem 4

Lemma 9

For any 0 ≤ Λn ≤ In, we have that
Tr[ρ⊗n

0 Λn] − γ Tr[ρ⊗n
1 Λn] ≤ Tr[ρ⊗n

0 {ρ⊗n
0 ≥ γρ⊗n

1 }].

Note that

P0(Tn > k) = 1 − P0(Tn ≤ n)

= 1 −
k∑

j=1

(
P0(Tn = j , dn = 0) + P0(Tn = j , dn = 1)

)
.

Let α̃k and β̃k be the type-I and type-II error probabilities of the
test: H0 is true if and only if {Tn ≤ k , δn = 0} holds.
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Proof of Converse Part of Theorem 4

Then we have that β̃k ≤ βn and

α̃k = P0(Tn > k) +
k∑

j=1

P0(Tn = j , dn = 1)

β̃k =
k∑

j=1

P0(Tn = j , dn = 0).

Hence

P0(Tn > k) = α̃k −
k∑

j=1

P0(Tn = j , dn = 1) ≥ α̃k − αn

≥ 1 − γnβ̃k − Tr[ρ⊗k
0 {ρ⊗k

0 ≥ γnρ
⊗k
1 }] − αn

= Tr[ρ⊗k
0 {ρ⊗k

0 ≤ γnρ
⊗k
1 }] − γnβn − αn. (39)
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Proof of Converse Part of Theorem 4

Let

kn =
1

D(ρ0∥ρ1) + τ
log

1

βn
and γn = ekn(D(ρ0∥ρ1)+τ1) (40)

with τ1 > τ > 0. Then we have that

n ≥ E0[Tn] ≥ P0(Tn > kn)kn

≥ (Tr[ρ⊗kn
0 {ρ⊗kn

0 ≤ γnρ
⊗kn
1 }] − γnβn − αn)kn

∼ (1 − β
τ1−τ

D(ρ0∥ρ1)+τ
n − αn)

1

D(ρ0∥ρ1) + τ
log

1

βn
. (41)
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Thanks for Your Attention!
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