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dr is a {0, 1}-valued function and d7 = i means H; is the
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a = Po(dT = 1) and ,3 = Pl(d'r = 0).
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Classical Sequential Hypothesis Testing

Error Exponents

Given a sequence of SHTs {{(dn, Th)}32 ;72 satisfying the
constraint

max E;[T,] < n,

i=0,1

the error exponents (Ey, E1) defined as

1
Eo = lim |nf - Iog— and E; =lim |nf— Iog

n—oco n Qp n—oo n [3n

In 1948, Wald and Wolfowitz showed that Ey < D(Py||Po) and
E; < D(Py||P1) and the error exponent can be achieved by a
sequence of SPRTSs.
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Setup

e C?: d-dimensional complex Euclidean space;

@ Quantum state p over C?: a d x d positive-semidefinite
matrix with trace value 1.

@ A positive operator-valued measure (POVM)

m = {m(x) : x € X'} with outcomes in X: m(x)isa d x d
positive-semidefinite matrix such that - . m(x) = /g.

@ A projector-valued measure m = {m(x) : x € X'} with
outcomes in X: m is a POVM with the additional condition
that m(x)? = m(x).

@ The probability of obtaining outcome x when m is applied to
the underlying state p:

Pym(X = x) = Tr[pm(x)].
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Setup

Quantum Divergence

For a d x d Hermitian matrix A, let 27:1 A;P; be the spectral
decomposition of A. We define log A2 3% log \;P;.

For a d x d Hermitian matrix A, the support of A is defined as the
subspace generated by the eigenvectors corresponding to non-0
eigenvalues.

Definition 1 (Quantum Relative Entropy)

Let pp and p; be two quantum states with the same support. The
quantum relative entropy between two quantum states pg and pj is
defined as

D(pollp1) = Tr[po(log po — log p1)]-
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Measured Relative Entropy

The measured relative entropy is defined as
D(pollpr) == sup D(Pyo,ml| Ppy.m); (1)
m

where the supremum runs over all rank-1 PVMs comprised of d
projectors.

Theorem 2 (Berta, Fawzi, Tomamichel (2017))

For two states pg and p1 with full support, we have

Dm(pollm)—sup sup  D(Ppy,ml|Ppy,m) (2)

X meMpy

and the supremum is achieved at some PVM m* with |X| = d.
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Quantum Hypothesis Testing

@ The quantum system is prepared in one of the two states ,089”
®n
and p;".
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Quantum Hypothesis Testing: Known Results

Quantum Stein’'s Lemma [Hiai and Petz (1991), Ogawa and
Hayashi (2004)]

For any £ > 0, let B,(e) = inf{B, : (An, In — An) such thata, < €}.
Then

1
lim —log

P an(g) = D(pOle)
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Quantum Hypothesis Testing: Known Results

Quantum Hoeffding's Bound [Hayashi and Nagaoka (2003), Ogawa
and Hayashi (2004), Nagaoka (2006)]

Let

Ro < liminf L log L,
R := < (Ro, R1) : 3 (An, In — Ap) such that oo i

o s 1 1
R < |Innl>lol’l)f - log 7
Then

RO < r,
R = U {(R07 Rl) : fsrflogTr[péfspf] } o

R < su
0<r<D(p1|po) 1 = StPo<s<1 1=

v
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Sequential Quantum Hypothesis Testing: Problem Set-Up

Oracle

M po/p1

Prr1(Mir1|mf, xf)

dk(mfaxlk)

Oorl

Xk

Stop

Figure: The structure of a general adaptive sequential hypothesis testing
protocol.
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Sequential Quantum Hypothesis Testing: Problem Set-Up

Sequential Quantum Hypothesis Test

A sequential quantum hypothesis test (SQHT)
S = (X, { Pk, dk}iozl), in its most general form, is given by (see
also Figure 1):

@ a finite set of measurement outcomes, X;
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Sequential Quantum Hypothesis Test

A sequential quantum hypothesis test (SQHT)
S = (X, { Pk, dk}iozl), in its most general form, is given by (see
also Figure 1):

@ a finite set of measurement outcomes, X;

@ a sequence of (conditional) probability distributions to
determine the next measurement, py(my|xft, mk=1) for

every k € N;

@ a sequence of {0, 1, x}-valued decision functions dj(xf, m¥),
for every k € N.

Let T be the first time that dx # *. Thus the number of samples
of the underlying state p used during the test is T.
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Sequential Quantum Hypothesis Testing: Problem Set-Up

Sequential Quantum Probability Ratio Tests (SQPRTS)

For k > 1, let px be the probability density function according to
which the experimenter chooses POVM M, at time k. Let

Po(X{, MY)

Sk i=log ————=. 3
<= B O, M) e

Additionally, let A and B be two fixed positive real numbers. The
decision function dj at time k is defined as follows

0 S>B
de(X{,Mf)=4¢1 S <—-A (4)

* otherwise.

Let T =inf{k >1: 5, & (—A,B)}. We say (X, {px, di}32, T)
is an SQPRT with parameters A and B.
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Sequential Quantum Hypothesis Testing: Problem Set-Up

Adaptive Versus Non-adaptive Strategies
@ In an adaptive QSHT S, the measurement my; depends on
mi‘ and X{‘.
@ In an non-adaptive QSHT S, the measurement my_; does not
depends on mk and xk.
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Sequential Quantum Hypothesis Testing: Problem Set-Up

Consider sequences of QSHT S, indexed by n € N. We use P, ;
and E,, ;[] to denote the probability measure and the expectation
induced by the QSHT S, and the underlying state p;.

Two Types of Errors

e Type l-error: o :=P,o(d7, =1).
e Type ll-error: 3, :=P,1(dT, = 0).
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Consider sequences of QSHT S, indexed by n € N. We use P, ;
and E,, ;[] to denote the probability measure and the expectation
induced by the QSHT S, and the underlying state p;.

Two Types of Errors

e Type l-error: o :=P,o(d7, =1).
e Type ll-error: 3, :=P,1(dT, = 0).

A\

Constraints on the Sample Size

@ The first type of constraint is the expectation constraint:

E,.[T,]<n. 5
o ilTal <n (5)

@ The second type of constraint is the probabilistic constraint

P, (T, > < €. 6
T il n) <e (6)

15/ 42




Sequential Quantum Hypothesis Testing: Problem Set-Up

Achievable Error Exponent Pairs

A pair (Ro, R1) € ]Ri is said to be an achievable error exponent
pair under the expectation constraint if there exists a sequence of
QSHTs {Sh}nen such that

1
lim |nf Iog— > Ro, and lim |nf Iog— >Ry, and (7)

n—o00 N op n—oo n B
li E,,, T, — <0. 8
imsup (max By {T,] ~ n) ®)

Similarly, for 0 < e < 1, a pair (Ro, R1) € R is said to be an
e-achievable error exponent pair under the probabilistic constraint
if there exists a sequence of QSHTs {S,}nen such that (7) hold
and (instead of(8)),

lim sup max} Pni(Th > n) <e. (9)

n—oo i€{01 16 /42




Sequential Quantum Hypothesis Testing: Problem Set-Up

Error Exponent Regions
o Ag is the closure of the set of all achievable error exponent
pairs under the expectation constraint using adaptive
strategies.
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o Ap(e) is the closure of the set of all e-achievable error
exponent pairs under the probabilistic constraint using
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@ Rg is the closure of the set of achievable error exponent pairs
under the expectation constraint using non-adaptive
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Sequential Quantum Hypothesis Testing: Literature Review

@ Slussarenko et al. (2017, PRL) first applied sequential

strategy to discriminate two quantum states.
e Martinez-Vargas et al. (2021, PRL) proposed the problem of
sequential quantum hypothesis testing and showed the

following.
e For vanishing error probabilities o and (3,
1+ 0(1) 1
Eo[Tl= 5755 o8 2.
D(Ppo.ml|Por.m) = 13
1+ 0(1) 1
Ei[T]=———"—log—
D(Ppy,mll Pps,m) o
e For vanishing error probabilities « and S,
1+ 0(1) 1
Eo[T] > 7 log .
712 Doalien) 8 3
1 1 1
E[T] > 1to(d) 1
D(p1llpo) = o
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Main Results for Adaptive Strategies

Let po and p1 be two quantum states with full support. Then for
any 0 <e <1,

A . Ro < Da(p1lipo)
.AP(E) = AE = {(Ro, Rl) . Rl < DM(POHPl) } (10)

Comparison with the result in Martinez-Vargas et al. (2021, PRL)

For vanishing error probabilities v and £,

_ l+o) | 1
Eolll= Dam(pillpo) = B
_ l+o) 1
EilT]= Dm(pollp1) ey
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Main Results for Adaptive Strategies

Figure: Multiple copies

20/42



Main Results for Adaptive Strategies

Figure: Multiple copies
Consider the binary quantum hypothesis test,
Ho) < p® = o5 H ! = o (11)
Define the achievable regions of the error exponent pairs Ag) and
Ag)(e). Similar to Theorems 3, we have

(12)
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Main Results for Non-Adaptive Strategies: Ultimate

Quantum Limit

Hiai and Petz, 1991
Let pp and p; be two quantum states with full support. Then

/ /
- Du(p? 18"
m ————
|—00 /

= D(p1l|po)- (13)

We now characterize the ultimate quantum limit of achievable
error exponent pairs using sequential adaptive testing strategies.

Theorem 4

Let po and p1 be two quantum states with full support. Then for
any 0 <e <1,

a0 a0 . Ro < D(p1lp0)
A = U AP0 = { (R r)s 220 L q1g
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Quantum Hypothesis Testing: Known Results

lim l log 1 Chernoff exponent
n—o0 N n Tradeoff given by sequential tests
D(pollp1)

Tradeoff given by Hoeffding

C
(,00,/?1) ’ 1 | 1
C(po, p1) D(p1llpo)

Figure: Schematic of the optimal trade-off between the exponential decay
rates for the error of the first and second kind
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Main Results for Non-Adaptive Strategies

Let po and p1 be two quantum states with full support. Then for
any0<e <1,
Rg = Rp(e) = Conv(C), (15)
where
Ro < D(P m||P m)
C= { Ro, Rl &= (s ] 16
Uu Ri < D(PpumlPoum) J* 1
and X runs over all finite sets and My is the set of POVMs with
support X.
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Main Results for Non-Adaptive Strategies

Corollary 6
Let po and p1 be two quantum states with full support and let
1
Ro < 7D(Ppl,m||P0,m)
U U {(Ro.R): 1 (17)
meM 0 Ry 7D(Ppo7mHP1,m)
Then for any 0 < € < 1, we have
RY = RY(e) = Conv(c), (18)
and
PNy PNy
U =URPe). (19)
I=1 I=1
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Numerical Example

Let po = ro[to) (o] + (1 = ro)5 and p1 = r1 [v1) (1| + (1 — )3,
where [1;) = cos 410) + (—1)'sin2 1), 0< @ <m and0<r; <1,
|0) = (1,0)T, |1) = (0,1) T, / is the 2 x 2 identity matrix. For pg
and p; with parameters (ro, r1,6), we define the sum rate of error
exponent pairs as follows:

f(ro, r1,0) := Dam(p1llpo) + Dat(pollp1) (20)
and

g(ro,r,0) :=sup sup D(PPO,mHPth) + D(PphmHPpo,m)- (21)
X meMy
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Numerical Example

Let [d?] = {1,2,...,d?} and let
M& ={me ./\/l[dz] m(x) is of rank one for all x € [d?]}.

Let po and p1 be two quantum states with full support. Then
Conv(C) = Conv(C(D) (22)

where

(1) _ . R0<D( 1m||'Dpo, )
c@="U {(R°’R1)' Ri< D(PromlPoe) |-

mEM[dZ]
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Numerical Example

Comparison of f and g
3.5 : : \

£(0.98,0.98, 6)
25

Sum of Error Exponents

Figure: Maxima of the sum rate of error exponent pairs with adaptive or
non-adaptive measurement strategies for 1 = r» = 0.98 and 6 € (0, 7).
The gap is most pronounced for large values of 6.
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Numerical Example

Comparison of Adaptive and Non-Adaptive Regions

D(pollp1)

Adaptive Strategies

06 Non-Adaptive Strategies

Da(p1llpo)

Figure: Achievable regions of error exponent pairs with adaptive or
non-adaptive measurement strategies for when

(r1,r,0) = (0.98,0.98,1.57). Note that the region for adaptive strategies
is the entire rectangle including the region for non-adaptive strategies.
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Numerical Example

10 . . . SNA
‘ s coL
S . s « FNA

8 10 12 14 16 18 #ofSampIes

Figure: Error probabilities for different tests when
(r,r,0)=(0.9,0.9, 7).
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Proof of Achievability Part Theorem 3

Main Idea: Construct an appropriate sequence of SQPRTSs.

Let X ={1,2,...,d}. Let m§ = {m§(x)}xex and

m; = {mj(x)}xex be the projective-valued measurements that
achieve the suprema in the definitions of Da(pol|p1) and
Dai(p1]lpo), respectively. Recall that

Z; = log Tr [poM;(X;)] — log Tr [p1M;(X;)] and S, = 321, Z;.

Adaptive Strategies
For k > 1, the adaptive strategies are defined as follows

( *‘ k—1 k—l) % ifhk=1 and (24)
ma | X ,m — . :
Px{mg| X 1 1 ifk>2and Sk_1 >0,
1 .
ol k—1 k—1 3 |fk: 1
kL m _ 25
pr(mi|xg 1) {1 if k>2and S,_1 <0. (%) 0/42
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Proof of Achievability Part Theorem 3

For any fixed 0 < 7 < min{Da(p1l/p0), Drm(pollp1)}, let
An = n(Dm(pallpo) —7) and By := n(Da(pollpr) — 7). (26)
Let T, =inf{k >1:5c & (—Ap, By)} and that

0 Sk 2 Bn
dak(X{SME) =41 S < —A, (27)

*  otherwise.

We will show that this sequence of SQPRTs
Sy = (X, {pk, dnk}32 1, T,,) with parameters A, and B, achieves

(Dam(pallpo)s Daa(pollp1))-
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Proof of Achievability Part Theorem 3

Bounds on the Error Probabilities

ap =Po(dr, =1)
= Eo[x(s;, <—A.]

= E1[esT"X{STn§—A,,}]
< e A,

Similarly, 8, < e Bn,
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Proof of Achievability Part Theorem 3

Verification of the Expectation Constraints for the Tests S,

Let T, = inf{k : Sy > B,}. Then T, < T, and

57&" < S'f',,fl +Z, < B,+ C.

EO[Tn] < E0[7A—n]
_ —Eo[S#, — TaDa(pollp1)] + Eo[S7,]

Da(pollp1)
_EO[S'f'n — TaDnm(pollp1)] + B+ C
- Dam(pollp1)
C1+Bn+C_ nt—C —C

n— .
~ Dum(pollpr) Dn(pollp1)
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Proof of Converse Part of Theorem 3

The following lemma provides lower bounds on the error
probabilities for a general SQHT (X, {pi, di} 324, T).

Lemma 8

For any SQHT (X, {Pi, di} 324, T) with adaptive strategies such
that

max E;[T] < oo, (28)

the following inequalities hold,

log; EO[T]D/;./l(_p()ale) ] (29)
yl < Eo[T1Dam(pollp1) +
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Proof of Converse Part of Theorem 3

Let {S,}92; be a sequence of SQHTs with adaptive strategies
such that a, — 0 and 8, — 0 and the sequence { T} ; satisfies
the expectation constraint (8). Then from (29) and (30) in
Lemma 8, we have that

11 Eno[Th]D 1
limsup = log — < limsup n0[ Tl Dm(pollp1) +

n—oo N n n—00 n(]- - an)

< Dm(pollp1)-
(31)

and

1 1 E,1[Ta]D 1
limsup — log — < limsup n,1[Tn] Dm(p1llpo) +

<D .
msup - log ~ < limsu o — B) < Dam(p1llpo)

(32)

Conclusion: any achievable error exponent pair (Rp, R1) is such
that Ry < Daq(p1llpo) and Ry < Daq(pollp1)-
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Proof of Converse Part of Theorem 3

Proof of Lemma 8

o Let P; be the probability measure on (€2, F) when the
underlying state is p;.

@ Let F1 be the sub-o-algebra generated by T and let P; v be
the restriction of P; to the o-algebra Fr.

Then

dP
exp(ST) = dP(l):: and Eo[ST] = D(PO,T”PLT)'

We define a stochastic kernel V' with input alphabet Q (with
elements w) and output alphabet {0,1} as follows:

1 ifdr(w)=0
V(Olw) := {0 =il (33)
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Proof of Converse Part of Theorem 3

Let D(a||b) = alog 2 + (1 — a) log =2 for any 0 < a,b < 1.

Proof of Lemma 8

Using the data processing inequality to the classical relative
entropy when (IP)OJ,IPLT) is processed via the stochastic kernel V/,
we obtain,

D(a||1 — ﬁ) = D(Po(d'r = ].)”Pl(d'r = 1))
< D(Po,7|P1,7) = Eo[ST], (34)

which implies that

1 D(ozHl—ﬁ)+1 Eo[S7]+1
log 1-o - l-«a (35)

Q
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Proof of Converse Part of Theorem 3

Proof of Lemma 8

Key Fact: {Sx — kDa(pollp1)}32, is a supermartingale.
Applying Optional Stopping Theorem to the supermartingale
{Sk — kDa(pol|p1)}22.; and the stopping time T, we obtain

Eo[ST — TDam(pollp1)] < Eo[S1 — Dam(pollp1)] < 0. (36)
Combining (35) and (36), we obtain

1 _ Eo[ST]+1 _ Eo[T]Dm(pollpr) +1

log = < 7
8 8- 1—-a — 11—« (37)
Similarly, we have that
1  Eo[T]D 1
log = < 0[ ] M(pOle)+ . (38)

o 1-p
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Proof of Converse Part of Theorem 4

For any 0 < A, < I,,, we have that
Trlpg " Aal — v Trlpf"Anl < Trlpg ™ {pg" = 75"}

Note that

Po(Tp> k) =1—Po(Ty < n)

k
1" (Po(To = j.dn = 0) + Po(Ty = j, dn = 1)).
j=1

Let &y and Sy be the type-l and type-Il error probabilities of the
test: Hp is true if and only if { T, < k,d, = 0} holds.
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Proof of Converse Part of Theorem 4

Then we have that 3¢ < /3, and

i = Po(To > k) + ZPO(T =j,dn=1)

Bk :Z'DO(Tn :j7 dn :0)'

Jj=1
Hence

k
Po(Tn > k) =du— Y _ Po(Tn=4j,dn=1) >y —
j=1

> 1 — vk — Trlp§*{p§* = np?" Y] —
= Trlpg {6 < apT N —vnbn — n. (39)
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Proof of Converse Part of Theorem 4

Let
1

1
kn = ————log— and n = ekn(D(PO||ﬂ1)+71) 40
D(pollp1) + 7 &3, v (40)

with 71 > 7 > 0. Then we have that

n> Eo[T,,] > Po(T,, > k,,)k,,

> (Tr[pf* {p&% < 7,02 }] — VB — tn)kn

oot 1 1

~ (1 — /Br?(po\lp1)+r —a, log —. 41
( )D(POHPI) +7 7 Bn (41)
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Thanks for Your Attention!



