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Abstract—Let H be the Cartesian product of a family of finite abelian
groups. Via a polynomial approach, we give sufficient conditions for a par-
tition of H induced by weighted poset metric to be reflexive, which also
become necessary for some special scenarios. Moreover, by examining the
roots of the Krawtchouk polynomials, we give sufficient conditions for a par-
tition of H induced by combinatorial metric to be non-reflexive, and then
give several examples of non-reflexive partitions.

When H is a vector space over a finite field F, we consider the property
of admitting MacWilliams identity (PAMI) and the MacWilliams extension
property (MEP) for partitions of H. More specifically, under some invari-
ance assumptions, we show that two partitions of H admit MacWilliams
identity if and only if they are mutually dual and reflexive, and any par-
tition of H satisfying MEP is in fact an orbit partition induced by some
subgroup of Aut F(H), which is necessarily reflexive. Furthermore, we show
that the aforementioned non-reflexive partitions induced by combinatorial
metric do not satisfy MEP, which further enables us to disprove a conjecture
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proposed by Pinheiro, Machado and Firer in [39].

1 Introduction

MacWilliams identities based on partitions of finite abelian groups have
been established by Zinoviev and Ericson in [45], by Gluesing-Luerssen in
[18], and by Gluesing-Luerssen and Ravagnani in [21]. These identities pro-
vide a general framework for recovering known or deriving new MacWilliams
identities in more explicit forms. There are also many closely related i-
dentities such as MacWilliams identities based on association schemes and
numerical weights; see Delsarte [10] and Ravagnani [40], respectively.

The notion of reflexive partition has been introduced by Gluesing-Luerssen
in [18]. Roughly speaking, reflexive partitions are ones which coincide with
their bi-duals, and alternatively, they can be characterized in terms of as-
sociation schemes (see [10, 11, 46]). Reflexive partitions arise naturally
from various weights and metrics in coding theory such as poset metric (see
[5, 22, 35]), rank metric (see [17, 21]) and homogeneous weight (see [19]).
We refer the reader to [18, 19, 21, 40, 44, 45, 46] for more results and exam-
ples. A MacWilliams identity based on a reflexive partition is invertible, and
the inverse is essentially the MacWilliams identity based on the dual parti-
tion. As stated in [18, Section 2], reflexive partitions provide a symmetric
situation and form the most appealing case.

In this paper, we study partitions induced by weighted poset metric and
combinatorial metric, and examine when such partitions are reflexive or non-
reflexive. Moreover, we study the relations among reflexivity, the property
of admitting MacWilliams identity (PAMI) and the MacWilliams extension
property (MEP), three widely explored properties in coding theory.

The notion of weighted poset metric has been introduced by Hyun, Kim
and Park in [23], where the authors have classified all the weighted posets
and directed graphs that admit the extended Hamming code H̃3 to be a
2-perfect code, and relevant results for more general H̃k, k > 3, have also
been established. A weighted poset metric is determined by a poset and a
weight function, both defined on the coordinate set (see [23] or Section 2.2
for more details). Weighted poset metric boils down to poset metric (see
[5, 22, 35]) if the weight function is identically 1, and to weighted Hamming
metric (see [2]) if the poset is an anti-chain. As has been stated in [23,
Section 1], weighted poset metric can be viewed as an algebraic version
of directed graph metric introduced by Etzion, Firer and Machado in [13].
More recently in [29], Machado and Firer have proposed and studied labeled-
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poset-block metric, which, in our terminology, is also a weighted poset metric
(see Section 2.2). Weighted poset metric can be useful to model some specific
kind of channels for which the error probability depends on a codeword
position, i.e., the distribution of errors is nonuniform, and can also be useful
to perform bitwise or messagewise unequal error protection (see the abstract
of [2] and [13, Section I, Paragraph 6]).

The notion of combinatorial metric has been introduced by Gabidulin
in [15, 16]. A combinatorial metric is determined by a covering of the co-
ordinate set (see Section 2.3 for more details). If the covering consists of
singletons, then combinatorial metric boils down to Hamming metric. Sev-
eral subclasses of combinatorial metric have been studied in the literature,
such as block metric (see [14]), b-burst metric (see [4]) and translational met-
ric (see [33]). In [3], Bossert and Sidorenko have derived a Singleton-type
bound for combinatorial metric. In [39], Pinheiro, Machado and Firer have
studied PAMI, the group of isometries and MEP for combinatorial metric.
They have also proposed a conjecture in [39, Section 5] on MEP, which we
will disprove in this paper. Our approach towards the conjecture is based
on non-reflexive partitions induced by combinatorial metric and the relation
between reflexivity and MEP.

PAMI has been first introduced by Kim and Oh in [24], where the authors
have proved that being hierarchical is a necessary and sufficient condition
for a poset to admit MacWilliams identity. The original property has since
been extended and generalized to poset-block metric by Pinheiro and Firer
in [38], to combinatorial metric by Pinheiro, Machado and Firer in [39], to
directed graph metric by Etzion, Machado and Firer in [13], and to labeled-
poset-block metric by Machado and Firer in [29]. In [8], Choi, Hyun, Kim
and Oh have proposed and studied MacWilliams-type equivalence relations,
which, roughly speaking, are defined as equivalence relations which admit
MacWilliams identities, where such relations are defined on the ideal lattice
of a given poset on the coordinate set.

MEP has become a topic of interest in coding theory since MacWilliams
proved in [30] that a Hamming weight preserving map between two linear
codes can be extended to the whole ambient space (see [6] for a different
proof). Such a property has been extended, generalized and discussed ex-
tensively in the literature: with respect to other weights and metrics; with
respect to codes over ring and module alphabets; and with respect to par-
titions of finite modules; see, among many others, [1], [12], [13], [17], [20],
[21], [28], [29], [39], [42] and [43].

The remainder of the paper is organized as follows. In Section 2, we
present some definitions, notations and basic facts on partitions of finite
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abelian groups, weighted poset metric and combinatorial metric. Here we
note that the conjecture proposed in [39] is stated in Section 2.3 as Con-
jecture 2.1. In Section 3, for a partition induced by weighted poset metric,
we give sufficient conditions for two codewords to belong to the same mem-
ber of its dual partition, and give a sufficient condition for its reflexivity.
By relating each codeword with a polynomial, we show that such sufficien-
t conditions are also necessary if the poset is hierarchical and the weight
function is integer-valued. In Section 4, we consider partitions induced by
combinatorial metric. After giving a sufficient yet not necessary condition
for reflexivity in Section 4.1, we turn to a particular subclass of partitions
related to Conjecture 2.1 in Section 4.2. Adopting the polynomial approach
given in Section 3, we characterize the dual partitions of such partitions in
terms of the classical Krawtchouk polynomials. Then, using the properties
of Krawtchouk polynomials, especially those of their roots, we give sufficient
conditions for non-reflexivity of such partitions, and derive several examples
of non-reflexive partitions. In Section 5, we consider F-invariant partitions
of a finite vector space over a finite field F, and study the relations among
reflexivity, PAMI and MEP. More precisely, we prove that MEP is stronger
than reflexivity, and reflexivity is equivalent to PAMI. Finally, as an appli-
cation of these results, we show that the non-reflexive partitions given in
Section 4.2 do not satisfy MEP, which further provides counter-examples to
Conjecture 2.1.

In Figure 1 “Relationships among all the results”, we present the rela-
tionships among all the propositions and theorems established in the paper.

2 Preliminaries

Throughout the remainder of the paper, we let Z, Z+, R, R+ and C
denote the set of all the integers, positive integers, real numbers, positive
real numbers and complex numbers, respectively. Furthermore, we let N =
Z+ ∪ {0}, C∗ = C− {0}. For any a, b ∈ Z, we use [a, b] to denote the set of
all the integers between a and b, i.e., [a, b] = {i ∈ Z | a 6 i 6 b}.

Let E be a finite set. A covering of E is a collection of its subsets whose
union is E, and a partition of E is a covering of E whose members are
nonempty and disjoint. Consider a partition Γ of E. For any u, v ∈ E, we
write u ∼Γ v if u and v belong to the same member of Γ. For any D ⊆ E, the
Γ-distribution of D is defined as the sequence (|D∩B| | B ∈ Γ), and for any
D,L ⊆ E, we write D ≈Γ L if D and L have the same Γ-distribution. For
two partitions Γ,Ψ of E, we say that Γ is finer than Ψ, if for any u, v ∈ E,

4



Proposition 3.1

Theorem 3.1

Proposition 3.3 Theorem 3.2 Theorem 4.1

Proposition 3.2 Proposition 4.1

Proposition 4.2

Proposition 4.3

Theorem 4.2 Theorem 5.3

Theorem 2.1 Theorem 5.1 Theorem 5.2

Figure 1: Relationships among all the results

u ∼Γ v implies u ∼Ψ v. One can verify that Γ is finer than Ψ if and only if
any member of Γ is contained in some member of Ψ.

2.1 Partitions of finite abelian groups

Let G and H be finite abelian groups, and let f : G × H −→ C∗ be
a pairing, i.e., for any a, c ∈ G and b, d ∈ H, it holds that f(ac, b) =
f(a, b)f(c, b), f(a, bd) = f(a, b)f(a, d) (see [34, Definition 11.7]). For any
additive codes (i.e., subgroups) C 6 G and D 6 H, define the codes C‡ 6 H
and ‡D 6 G as

C‡ , {b ∈ H | f(a, b) = 1 for all a ∈ C}, (2.1)

‡D , {a ∈ G | f(a, b) = 1 for all b ∈ D}. (2.2)

In this paper, we always consider the case that f is non-degenerate, i.e., G‡ =
{1H}, ‡H = {1G} (see [34, Definition 11.7]). Note that the non-degenerate
condition implies that G ∼= H as groups, and conversely, G ∼= H implies the
existence of such a non-degenerate pairing (see [34, Lemma 11.8]).

For a partition Γ of H, the left dual partition of Γ with respect to f ,
denoted by l(Γ), is the partition of G such that for any a, c ∈ G, a ∼l(Γ) c
if and only if ∑

b∈B
f(a, b) =

∑
b∈B

f(c, b) for all B ∈ Γ. (2.3)
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For a partition Λ of G, the right dual partition of Λ with respect to f , denoted
by r(Λ), is the partition of H such that for any b, d ∈ H, b ∼r(Λ) d if and
only if ∑

a∈A
f(a, b) =

∑
a∈A

f(a, d) for all A ∈ Λ. (2.4)

Equations (2.3) and (2.4) are closely related to the notion of dual partition
and bi-dual partition proposed in [18]. Indeed, by [34, Lemma 11.8], τ :
G −→ Hom (H,C∗) defined as τ(a)(b) = f(a, b) for all b ∈ H is a group
isomorphism, and consequently, for a partition Γ of H, we have

{τ [A] | A ∈ l(Γ)} = Γ̂, r(l(Γ)) =
̂̂
Γ,

where Γ̂ and
̂̂
Γ are the dual partition and the bi-dual partition of Γ proposed

in [18, Definition 2.1], respectively (cf. [1, Proposition 4.4], [7, Section 2.1],
[19, Proposition 2.4]).

The following definition follows [18, Definition 2.1] and [46, Definition
2].

Definition 2.1. Let Γ be a partition of H, and let Λ be a partition of G.
If Λ is finer than l(Γ), then the left generalized Krawtchouk matrix of (Λ,Γ)
with respect to f , denoted by ρ : Λ× Γ −→ C, is defined as

ρ(A,B) =
∑
b∈B

f(a, b) for any chosen a ∈ A. (2.5)

If Γ is finer than r(Λ), then the right generalized Krawtchouk matrix of
(Λ,Γ) with respect to f , denoted by ε : Λ× Γ −→ C, is defined as

ε(A,B) =
∑
c∈A

f(c, d) for any chosen d ∈ B. (2.6)

(Λ,Γ) is said to be mutually dual with respect to f if both Λ is finer than

l(Γ) and Γ is finer than r(Λ). Finally, Γ is said to be reflexive if Γ =
̂̂
Γ.

The following lemma is a consequence of [18, Theorem 2.4].

Lemma 2.1. Let Γ be a partition of H, and let Λ be a partition of G. Then,
we have {1G} ∈ l(Γ), |Γ| 6 |l(Γ)|, r(l(Γ)) is finer than Γ. Moreover, it holds
true that Γ is reflexive ⇐⇒ Γ = r(l(Γ)) ⇐⇒ |Γ| = |l(Γ)|. In addition, the
following four statements are equivalent to each other:
(1) (Λ,Γ) is mutually dual with respect to f ;
(2) Γ is Fourier-reflexive and Λ = l(Γ);
(3) Λ is Fourier-reflexive and Γ = r(Λ);
(4) |Λ| 6 |Γ| and Λ is finer than l(Γ).
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For partitions Γ of H and Λ of G such that Λ is finer than l(Γ), let
ρ : Λ × Γ −→ C be the left generalized Krawtchouk matrix of (Λ,Γ) with
respect to f . It has been proven in [18, Theorem 2.7] that for an additive
code C 6 G, the Λ-distribution of C determines the Γ-distribution of C‡ via
the following MacWilliams identity

∀ B ∈ Γ : |C||C‡ ∩B| =
∑
A∈Λ

|C ∩A| · ρ(A,B). (2.7)

Consequently, we have

C1 ≈Λ C2 =⇒ C1
‡ ≈Γ C2

‡ for any C1, C2 6 G. (2.8)

The following theorem can be viewed as a partial converse of the fact
that “Λ is finer than l(Γ) implies (2.8)”.

Theorem 2.1. Let S be a collection of non-identity subgroups of G with the
same cardinality, and let ∆ be a partition of G such that {1G} ∈ ∆, and for
any A ∈ ∆ with A 6= {1G}, there exists C ∈ S such that C −{1G} ⊆ A. Let
Γ be a partition of H such that ∆ is finer than l(Γ), and let Λ be a partition
of G such that {1G} ∈ Λ, ∆ is finer than Λ. Further assume that for any
C,M ∈ S, we have C ≈Λ M =⇒ C‡ ≈Γ M

‡. Then, Λ is finer than l(Γ).

Proof. Letting W ∈ Λ and a, c ∈ W , we will show that a ∼l(Γ) c, which
immediately yields the desired result. Let U, V ∈ ∆ such that a ∈ U , c ∈ V .
Since ∆ is finer than Λ, we have U ⊆ W , V ⊆ W . If W = {1G}, then a =
c = 1G, as desired. Therefore we assume in the following that W 6= {1G}. By
{1G} ∈ Λ, we have 1G 6∈W , which further implies that U 6= {1G}, V 6= {1G}.
Hence we can choose C,M ∈ S such that C − {1G} ⊆ U , M − {1G} ⊆ V .
Here we note that |C| = |M | > 2. It is straightforward to verify that
C ∩W = C −{1G}, M ∩W = M −{1G}, |C ∩{1G}| = |M ∩{1G}| = 1, and
for any A ∈ Λ such that A 6= W , A 6= {1G}, it holds that C∩A = M∩A = ∅.
Therefore we have C ≈Λ M , and hence C‡ ≈Γ M ‡. Consider an arbitrary
B ∈ Γ. Noticing that ∆ is finer than l(Γ), we apply (2.7) to C 6 G and
M 6 G to deduce that

|C||C‡ ∩B| = |B|+ (|C| − 1)

(∑
b∈B

f(a, b)

)
,

|M ||M ‡ ∩B| = |B|+ (|M | − 1)

(∑
b∈B

f(c, b)

)
.
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Since C‡ ≈Γ M ‡, B ∈ Γ, we have |C‡ ∩ B| = |M ‡ ∩ B|, which, along with
|C| = |M | > 2, immediately implies that

∑
b∈B f(a, b) =

∑
b∈B f(c, b). It

then follows from the arbitrariness of B that a ∼l(Γ) c, as desired.

Remark 2.1. Theorem 2.1 is largely inspired by [8, Corollary 3.2 and The-
orem 3.3], and will be used in Section 5 to establish the equivalence between
reflexivity and PAMI for F-invariant partitions.

2.2 Weighted poset metric

Throughout this subsection, we let Ω be a nonempty finite set, and let
P = (Ω,4P) be a poset. A subset B ⊆ Ω is said to be an ideal of P if for
any v ∈ B and u ∈ Ω, u 4P v implies that u ∈ B. The set of all the ideals
of P is denoted by I(P). For B ⊆ Ω, we let maxP(B) (resp., minP(B))
denote the set of all the maximal (resp., minimal) elements of B, and let
〈B〉P denote the ideal {u ∈ Ω | ∃ v ∈ B s.t. u 4P v}. In addition, B is
said to be a chain in P if for any u, v ∈ B, either u 4P v or v 4P u holds,
and B is said to be an anti-chain in P if for any u, v ∈ B, u 4P v implies
u = v. For any u ∈ Ω, we let len P(u) denote the largest cardinality of a
chain in P containing u as its greatest element. The set of all the order
automorphisms of P will be denoted by Aut (P). The dual poset of P is
defined as P = (Ω,4P), where

u 4P v ⇐⇒ v 4P u for all (u, v) ∈ Ω× Ω.

The following definition will be used frequently in our discussion.

Definition 2.2. (1) P is said to be hierarchical if for any u, v ∈ Ω such
that len P(u) + 1 6 len P(v), it holds that u 4P v.
(2) For ω : Ω −→ R+, we say that (P, ω) satisfies the unique decomposition
property (UDP) if for any I, J ∈ I(P) such that

∑
i∈I ω(i) =

∑
j∈J ω(j),

there exists λ ∈ Aut (P) such that J = λ[I] and ω(i) = ω(λ(i)) for all i ∈ Ω.

The following lemma is an immediate consequence of Definition 2.2 and
the fact that I(P) = {Ω− I | I ∈ I(P)} (see [22, Lemma 1.2]).

Lemma 2.2. Let ω : Ω −→ R+. Then, (P, ω) satisfies UDP if and only if
(P, ω) satisfies UDP.

Now we let (Hi | i ∈ Ω) be a family of finite abelian groups, and let
H ,

∏
i∈ΩHi. For any codeword β ∈ H, we let

supp (β) , {i ∈ Ω | βi 6= 1Hi}. (2.9)
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Consider ω : Ω −→ R+. For any β ∈ H, the (P, ω)-weight of β is defined as

wt (P,ω)(β) ,
∑

i∈〈supp (β)〉P

ω(i). (2.10)

It has been proven in [23, Lemma I.2] that d(P,ω) : H×H −→ R defined as

d(P,ω)(α, β) = wt (P,ω)(α
−1β)

induces a metric on H, which is henceforth referred to as weighted poset
metric. We note that if H is a vector space over a finite field and the
weight function is integer-valued, then weighted poset metric coincides with
labeled-poset-block metric proposed in [29, Section III].

Finally, we introduce partitions induced by weighted poset metric.

Notation 2.1. For ω : Ω −→ R+, we let Q(H,P, ω) denote the partition of
H such that for any β, θ ∈ H,

β ∼Q(H,P,ω) θ ⇐⇒ d(P,ω)(1H, β) = d(P,ω)(1H, θ)⇐⇒ wt (P,ω)(β) = wt (P,ω)(θ).

2.3 Combinatorial metric

Throughout this subsection, we let Ω be a nonempty finite set. For a
covering T of Ω, define ωT : 2Ω −→ N as

∀ A ⊆ Ω : ωT (A) = min{|S| | S ⊆ T,A ⊆
⋃
I∈S I}. (2.11)

For any r ∈ N, we let P(r,Ω) denote the set of all the subsets of Ω with
cardinality r, i.e.,

P(r,Ω) = {A ⊆ Ω | |A| = r}. (2.12)

We collect some basic facts in the following lemma.

Lemma 2.3. (1) Let T be a covering of Ω, and let R denote the set of all
the maximal elements of (T,⊆). Then, R is a covering of Ω, (R,⊆) is an
anti-chain, and it holds that ωT = ωR.
(2) Let T and R be coverings of Ω such that both (T,⊆) and (R,⊆) are anti-
chains. Further assume that for any A ⊆ Ω, ωT (A) = 1 ⇐⇒ ωR(A) = 1.
Then, it holds that T = R.
(3) Let k ∈ [1, |Ω|]. Then, P(k,Ω) is a covering of Ω, (P(k,Ω),⊆) is an

anti-chain, and for any A ⊆ Ω, it holds that ωP(k,Ω)(A) =
⌈
|A|
k

⌉
.
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Proof. We note that (1) and (2) have been stated in [39, Propositions 1 and
2]. Since all the proofs are straightforward, the details are omitted.

Now we let (Hi | i ∈ Ω) be a family of finite abelian groups, and let
H ,

∏
i∈ΩHi. Consider a covering T of Ω. For any codeword β ∈ H, the

T -weight of β is defined as

wt T (β) = ωT (supp (β)) = min{|S| | S ⊆ T, supp (β) ⊆
⋃
I∈S I}. (2.13)

It has been proven in [15] that dT : H×H −→ N defined as

dT (α, β) = wt T (α−1β)

induces a metric on H, which is henceforth referred to as the T -combinatorial
metric. Based on (1) of Lemma 2.3, one can assume that (T,⊆) is an anti-
chain without loss of generality. As a special case, for any k ∈ [1, |Ω|], by
(3) of Lemma 2.3 and (2.13), we have

∀ β ∈ H : wt P(k,Ω)(β) =

⌈
|supp (β)|

k

⌉
. (2.14)

We remark that P(1,Ω)-combinatorial metric is exactly Hamming metric.
Now we introduce partitions induced by combinatorial metric.

Notation 2.2. For a covering T of Ω, we let CO(H, T ) denote the partition
of H such that for any β, θ ∈ H,

β ∼CO(H,T ) θ ⇐⇒ dT (1H, β) = dT (1H, θ)⇐⇒ wt T (β) = wt T (θ).

Now we recall some relevant results by Pinheiro, Machado and Firer in
[39] on MEP for combinatorial metric. Throughout the rest of this subsec-
tion, we set Hi = F2 for all i ∈ Ω, and so

H = FΩ
2 ,

where F2 denotes the binary field. For a covering T of Ω where (T,⊆) is an
anti-chain, we say that the T -combinatorial metric satisfies MEP, if for any
additive code C 6 H and f ∈ Hom (C,H) such that wt T (α) = wt T (f(α))
for all α ∈ C, there exists ϕ ∈ Aut (H) such that ϕ |C= f and

wt T (α) = wt T (ϕ(α)) for all α ∈ H.

We note that MEP will be defined more generally from a partition perspec-
tive in Section 5 (see Definition 5.1).
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Now let T be a covering of Ω such that (T,⊆) is an anti-chain, and let ∼
be an equivalence relation on T defined as follows: for any A,B ∈ T , A ∼ B
if and only if there exists s ∈ Z+ and C1, . . . , Cs ∈ T such that C1 = A,
Cs = B, and Ci ∩ Ci+1 6= ∅ for all i ∈ [1, s − 1]. Following [39, Definition
7], every equivalence class of (T,∼) is referred to as a connected component
of T . Moreover, T is said to be connected if T has exactly one connected
component (which is necessarily T itself), and T is said to be disconnected
if T is not connected.

When T is disconnected, a necessary and sufficient condition for the T -
combinatorial metric to satisfy MEP has been established in the following
theorem.

Theorem 2.2. ([39, Theorem 3]) If T is disconnected, then the T -combinatorial
metric satisfies MEP if and only if either T = P(1,Ω) or T = {A,Ω − A}
for some A ⊆ Ω with |A| = |Ω|/2.

When T is connected, a necessary condition for the T -combinatorial
metric to satisfy MEP has been established in the following theorem.

Theorem 2.3. ([39, Theorem 4]) If T is connected and the T -combinatorial
metric satisfies MEP, then T = P(k,Ω) for some k ∈ [2, |Ω|].

By Theorems 2.2 and 2.3, to complete the characterization of the com-
binatorial metrics over FΩ

2 that satisfy MEP, it suffices to examine the case
that the covering T is equal to P(k,Ω) for some k ∈ [2, |Ω|]. Indeed, it
has been conjectured in [39] that the converse of Theorem 2.3 also holds.
More precisely, we state the following conjecture proposed in [39] using our
notation.

Conjecture 2.1. If T is connected, then the T -combinatorial metric satis-
fies MEP if and only if T = P(k,Ω) for some k ∈ [2, |Ω|].

Note that the “only if” part of Conjecture 2.1 follows from Theorem
2.3. We will prove in Section 5 that the “if” part of Conjecture 2.1 does
not hold in general, i.e., the converse of Theorem 2.3 is not always true.
Indeed, we will show that for a fixed k > 3, if |Ω| is sufficiently large,
then the P(k,Ω)-combinatorial metric does not satisfy MEP (see Theorem
5.3). Our approach is based on non-reflexivity of CO(H,P(k,Ω)) and the
relation between reflexivity and MEP, as detailed in Section 4.2 and Section
5, respectively.
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3 Partitions induced by weighted poset metric

Throughout this and the next section, we let Ω be a nonempty finite
set, and let (Gi | i ∈ Ω) and (Hi | i ∈ Ω) be two families of finite abelian
groups such that Gi ∼= Hi and |Hi| , hi for all i ∈ Ω. Write

G ,
∏
i∈Ω

Gi, H ,
∏
i∈Ω

Hi.

For any i ∈ Ω, let πi : Gi × Hi −→ C∗ be a non-degenerate pairing. We
define the non-degenerate pairing f : G×H −→ C∗ as

∀ (α, β) ∈ G×H : f(α, β) =
∏
i∈Ω

πi(αi, βi). (3.1)

For any partition Γ of H, we let l(Γ) denote the left dual partition of Γ with
respect to f , as defined in (2.3). For any partition ∆ of G, we let r(∆)
denote the right dual partition of ∆ with respect to f , as defined in (2.4).

Throughout this section, we fix a poset P = (Ω,4P). For any D, I ⊆ Ω,
define ϕ(D, I) ∈ Z and ψ(D, I) ∈ Z as follows:

ϕ(D, I) =

{
(−1)|I∩D|

(∏
i∈I−maxP(I) hi

)(∏
i∈maxP(I)−D(hi − 1)

)
, I ∩D ⊆ maxP(I);

0, I ∩D 6⊆ maxP(I),

ψ(D, I) =

{
(−1)|I∩D|

(∏
i∈D−minP(D) hi

)(∏
i∈minP(D)−I(hi − 1)

)
, I ∩D ⊆ minP(D);

0, I ∩D 6⊆ minP(D).

We also fix ω : Ω −→ R+, and define $ : 2Ω −→ R as $(I) =
∑

i∈I ω(i).
Moreover, we write Λ = l(Q(H,P, ω)), Θ = r(Q(G,P, ω)).

3.1 A sufficient condition for Q(H,P, ω) to be reflexive

We begin by computing the left generalized Krawtchouk matrix of
(Λ,Q(H,P, ω)) with respect to f . By [44, Proposition II.1], for any α ∈ G
and I ∈ I(P), we have∑

(β∈H,〈supp (β)〉P=I)

f(α, β) = ϕ(〈supp (α)〉P, I). (3.2)

Hence by (2.10), for any α ∈ G and b ∈ R, it holds that∑
(β∈H,wt (P,ω)(β)=b)

f(α, β) =
∑

(I∈I(P),$(I)=b)

ϕ(〈supp (α)〉P, I). (3.3)

12



The right generalized Krawtchouk matrix of (Q(G,P, ω),Θ) with respect
to f can be computed in a parallel fashion. More precisely, for any θ ∈ H
and D ∈ I(P), we have∑

(γ∈G,〈supp (γ)〉P=D)

f(γ, θ) = ψ(D, 〈supp (θ)〉P). (3.4)

Hence for any θ ∈ H and b ∈ R, it holds that∑
(γ∈G,wt (P,ω)(γ)=b)

f(γ, θ) =
∑

(D∈I(P),$(D)=b)

ψ(D, 〈supp (θ)〉P). (3.5)

Using (3.3) and (3.5), we give the following sufficient conditions for two
codewords to belong to the same member of Λ or Θ.

Proposition 3.1. Let λ ∈ Aut (P) such that hi = hλ(i), ω(i) = ω(λ(i)) for
all i ∈ Ω. Then, we have:
(1) For α, γ ∈ G with 〈supp (γ)〉P = λ[〈supp (α)〉P], it holds that α ∼Λ γ;
(2) For β, θ ∈ H with 〈supp (θ)〉P = λ[〈supp (β)〉P], it holds that β ∼Θ θ.

Proof. We only prove (1) since the proof of (2) is similar. LetD = 〈supp (α)〉P.
Then, we have 〈supp (γ)〉P = λ[D]. With the assumptions that λ ∈ Aut (P)
and hi = hλ(i) for all i ∈ Ω, one verifies that for any I ⊆ Ω, it holds that
ϕ(D, I) = ϕ(λ[D], λ[I]). Consider an arbitrary b ∈ R. With the assump-
tions that λ ∈ Aut (P) and ω(i) = ω(λ(i)) for all i ∈ Ω, one verifies that for
any I ∈ I(P) with $(I) = b, it holds that λ[I] ∈ I(P), $(λ[I]) = b. Now
by (3.3), we have∑

(β∈H,wt (P,ω)(β)=b)

f(γ, β) =
∑

(I∈I(P),$(I)=b)

ϕ(λ[D], I)

=
∑

(I∈I(P),$(I)=b)

ϕ(λ[D], λ[I])

=
∑

(I∈I(P),$(I)=b)

ϕ(D, I)

=
∑

(β∈H,wt (P,ω)(β)=b)

f(α, β),

which immediately implies the desired result.

Now we prove the main result of this subsection.
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Theorem 3.1. Assume that (P, ω) satisfies UDP, and for any u, v ∈ Ω such
that len P(u) = len P(v) and ω(u) = ω(v), it holds that hu = hv. Then, we
have Λ = Q(G,P, ω), Θ = Q(H,P, ω), and both Q(G,P, ω) and Q(H,P, ω)
are reflexive.

Proof. First, consider α, γ ∈ G with wt (P,ω)(α) = wt (P,ω)(γ). By (2.10), we

have $(〈supp (α)〉P) = $(〈supp (γ)〉P). Since (P, ω) satisfies UDP, by Lem-
ma 2.2, we can choose λ ∈ Aut (P) such that 〈supp (γ)〉P = λ[〈supp (α)〉P]
and ω(i) = ω(λ(i)) for all i ∈ Ω. For any i ∈ Ω, it follows from the fact
λ ∈ Aut (P) that len P(i) = len P(λ(i)), which, along with ω(i) = ω(λ(i)),
implies that hi = hλ(i). By Proposition 3.1, we have α ∼Λ γ. It follows

that Q(G,P, ω) is finer than Λ. A similar discussion leads to the fact that
Q(H,P, ω) is finer than Θ. Therefore (Q(G,P, ω),Q(H,P, ω)) is mutually
dual with respect to f , which, along with Lemma 2.1, immediately implies
the desired result.

3.2 The case that P is hierarchical

Throughout this subsection, we assume that ω is integer-valued, i.e.,

ω(i) ∈ Z+ for all i ∈ Ω. (3.6)

We also letm be the largest cardinality of a chain in P, and for any j ∈ [1,m],
let Wj , {u ∈ Ω | len P(u) = j}. Moreover, for any D ⊆ Ω, we let σ(D)
denote the largest integer r ∈ [1,m] such that D ⊆

⋃m
j=rWj .

As a generalization of [44, Notation II.1], we can relate each α ∈ G
with a polynomial F (ω, α) defined as

F (ω, α) ,
$(Ω)∑
l=0

∑
(β∈H,wt (P,ω)(β)=l)

f(α, β)xl. (3.7)

By the definition of Λ, we have

∀ α, γ ∈ G : α ∼Λ γ ⇐⇒ F (ω, α) = F (ω, γ). (3.8)

In addition, we can derive a more explicit form of F (ω, α), as detailed in
the following proposition.

Proposition 3.2. (1) Let α ∈ G, and write D = 〈supp (α)〉P, X = (Ω −
D) ∪minP(D). Then, we have

F (ω, α) =
∑

(I∈I(P),I⊆X)

(−1)|I∩D|

 ∏
i∈I−maxP(I)

hi

 ∏
i∈maxP(I)−D

(hi − 1)

x$(I).
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In addition, if hi > 2 for all i ∈ Ω, then deg(F (ω, α)) = $(X).
(2) Suppose that P is hierarchical. Let α ∈ G, and write D = 〈supp (α)〉P,
r = σ(D). Then, we have

F (ω, α) =

 ∏
i∈(

⋃r−1
j=1 Wj)

hi · xω(i)

( ∏
i∈Wr∩D

(
1− xω(i)

))( ∏
i∈Wr−D

(
(hi − 1)xω(i) + 1

))

+

r−1∑
t=1

 ∏
i∈(

⋃t−1
j=1 Wj)

hi · xω(i)

(∏
i∈Wt

(
(hi − 1)xω(i) + 1

))

−
r∑

t=2

 ∏
i∈(

⋃t−1
j=1 Wj)

hi · xω(i)

 .

In addition, if hi > 2 for all i ∈ Ω, then deg(F (ω, α)) = $(
⋃r
j=1Wj).

Proof. (1) For any I ∈ I(P), it is observed that

I ∩D ⊆ maxP(I)⇐⇒ I ⊆ X.

With this observation, the first part is a direct consequence of (3.3) and
(3.7). Then, the second part follows from the first part and the fact that
X ∈ I(P), as desired.
(2) Define g : {(t, V ) | t ∈ [1,m], V ⊆Wt, V 6= ∅} −→ 2Ω as

g(t, V ) =

t−1⋃
j=1

Wj

 ∪ V.
From P is hierarchical, we infer that g is injective and the range of g is
equal to I(P) − {∅}. Moreover, for any t ∈ [1,m], V ⊆ Wt, V 6= ∅, we
have maxP(g(t, V )) = V . The fact that P is hierarchical, together with
σ(D) = r, implies that minP(D) = Wr ∩D, (Ω−D)∪minP(D) =

⋃r
j=1Wj .

By (1), we have

F (ω, α)− 1 =

r∑
t=1

∑
(V⊆Wt,V 6=∅)

(−1)|V ∩D|

 ∏
i∈(

⋃t−1
j=1 Wj)

hi

( ∏
i∈V−D

(hi − 1)

)
x$((

⋃t−1
j=1 Wj)∪V )

=

r∑
t=1

 ∏
i∈(

⋃t−1
j=1 Wj)

hi · xω(i)


 ∑

(V⊆Wt,V 6=∅)

(−1)|V ∩D|

( ∏
i∈V−D

(hi − 1)

)
x$(V )



=

r∑
t=1

 ∏
i∈(

⋃t−1
j=1 Wj)

hi · xω(i)

(( ∏
i∈Wt∩D

(
1− xω(i)

))( ∏
i∈Wt−D

(
(hi − 1)xω(i) + 1

))
− 1

)
.
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Since for any t ∈ [1, r− 1], it holds true that Wt ∩D = ∅, Wt−D = Wt, the
first part immediately follows from the above computation. Moreover, the
second part immediately follows from (1), as desired.

We are in a position to derive a necessary and sufficient condition for two
codewords of G to belong to the same member of Λ when P is hierarchical.

Proposition 3.3. Assume that hi > 2 for all i ∈ Ω and P is hierarchical.
Let α, γ ∈ G, and write D = 〈supp (α)〉P, B = 〈supp (γ)〉P. Then, α ∼Λ γ
if and only if there exists λ ∈ Aut (P) such that D = λ[B] and hi = hλ(i),
ω(i) = ω(λ(i)) for all i ∈ Ω.

Proof. Since the “if” part follows from Proposition 3.1, it remains to estab-
lish the “only if” part. Suppose that α ∼Λ γ, and write r = σ(D), s = σ(B).
By (3.8), we have F (ω, α) = F (ω, γ). From Proposition 3.2, we deduce that
$(
⋃r
j=1Wj) = deg(F (ω, α)) = deg(F (ω, γ)) = $(

⋃s
j=1Wj), which implies

that r = s. This, together with Proposition 3.2, implies that( ∏
i∈Wr∩D

(xω(i) − 1)

)( ∏
i∈Wr−D

(xω(i) + (hi − 1)−1)

)
=

( ∏
i∈Wr∩B

(xω(i) − 1)

)( ∏
i∈Wr−B

(xω(i) + (hi − 1)−1)

)
.

By Proposition A.1, which we state and prove in Appendix A, we can choose
a bijection ε : Wr ∩ B −→ Wr ∩D such that hi = hε(i), ω(i) = ω(ε(i)) for
all i ∈ Wr ∩ B. Now we can further choose a permutation ε1 of Wr such
that ε1 |Wr∩B= ε and hi = hε1(i), ω(i) = ω(ε1(i)) for all i ∈ Wr. Define
λ : Ω −→ Ω as λ |Wr= ε1 and λ |Ω−Wr= id Ω−Wr . Since P is hierarchical,
it is straightforward to verify that λ ∈ Aut (P), λ[B] = D, and hi = hλ(i),
ω(i) = ω(λ(i)) for all i ∈ Ω, as desired.

Now we give necessary and sufficient conditions for Q(H,P, ω) to be
reflexive when P is hierarchical. The following is the main result of this
subsection.

Theorem 3.2. Assume that hi > 2 for all i ∈ Ω and P is hierarchical.
Then, Λ is finer than Q(G,P, ω). Moreover, the following four statements
are equivalent to each other:
(1) (P, ω) satisfies UDP, and for any u, v ∈ Ω such that len P(u) = len P(v)
and ω(u) = ω(v), it holds that hu = hv;
(2) (Q(G,P, ω),Q(H,P, ω)) is mutually dual with respect to f ;
(3) Q(H,P, ω) is reflexive;
(4) Λ = Q(G,P, ω).
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Proof. First of all, it follows from Proposition 3.3 that Λ is finer than
Q(G,P, ω). Since I(P) = {Ω − I | I ∈ I(P)} and hi > 2 for all i ∈ Ω, we
have |Q(G,P, ω)| = |Q(H,P, ω)|. Now (1) =⇒ (2) follows from Theorem
3.1, and (2) =⇒ (3) follows from Lemma 2.1. Suppose that Q(H,P, ω) is
reflexive. Then, by Lemma 2.1, we have |Λ| = |Q(H,P, ω)| = |Q(G,P, ω)|,
which, along with the fact that Λ is finer than Q(G,P, ω), implies that
Λ = Q(G,P, ω), which further establishes (3) =⇒ (4). Therefore it remains
to prove (4) =⇒ (1).

(4) =⇒ (1) First, we let D,B ∈ I(P) with $(D) = $(B). Since hi > 2 for
all i ∈ Ω, we can choose α, γ ∈ G such that 〈supp (α)〉P = D, 〈supp (γ)〉P =
B. From $(D) = $(B), we infer that wt (P,ω)(α) = wt (P,ω)(γ), which

further implies that α ∼Λ γ. By Proposition 3.3, we can choose λ ∈ Aut (P)
such that D = λ[B] and hi = hλ(i), ω(i) = ω(λ(i)) for all i ∈ Ω. It follows
from Lemma 2.2 that (P, ω) satisfies UDP. Next, we let u, v ∈ Ω such that
len P(u) = len P(v) and ω(u) = ω(v). Consider B1 = 〈{u}〉P, D1 = 〈{v}〉P.
Since P is hierarchical, it is straightforward to verify that B1, D1 ∈ I(P),
$(B1) = $(D1). Hence we can choose µ ∈ Aut (P) such that D1 = µ[B1]
and hi = hµ(i) for all i ∈ Ω. Since µ ∈ Aut (P), we have v = µ(u), which
further implies that hu = hv, as desired.

Remark 3.1. If ω is the constant 1 map, then Theorem 3.2 recovers [18,
Theorem 5.5] and part of [18, Theorem 5.4].

4 Partitions induced by combinatorial metric

Throughout this section, for a covering T of Ω, we define ωT : 2Ω −→ N
as in (2.11), and for any α ∈ G, β ∈ H, we let wt T (α) , ωT (supp (α)),
wt T (β) , ωT (supp (β)), as in (2.13). For any polynomial g ∈ C[x], we let
g[i] denote the coefficient of xi in g.

4.1 Sufficient yet not necessary conditions for reflexivity

In this subsection, we prove the following theorem.

Theorem 4.1. Assume that hi > 2 for all i ∈ Ω. Let T be a covering of Ω
such that (T,⊆) is an anti-chain. Then, the following three statements are
equivalent to each other:
(1) CO(G, T ) is finer than l(CO(H, T ));
(2) CO(G, T ) = l(CO(H, T ));
(3) T is a partition of Ω, and

∏
i∈U hi =

∏
j∈V hj for all U, V ∈ T .
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Proof. First of all, since hi > 2 for all i ∈ Ω, we have

|CO(G, T )| = |CO(H, T )| = |{ωT (A) | A ⊆ Ω}|,

which, along with Lemma 2.1, implies that (1)⇐⇒ (2). Next, suppose that
(2) holds true, and we will show that T is a partition of Ω. By way of
contradiction, we suppose that T is not a partition of Ω. Since (T,⊆) is
an anti-chain, we have ∅ 6∈ T . Hence we can choose A,B ∈ T such that
A ∩B 6= ∅, B * A. Therefore we can further choose u ∈ B −A, v ∈ A ∩B.
Apparently, we have ωT ({u}) = ωT ({u, v}) = 1. Since hi > 2 for all i ∈
Ω, we can choose α, γ ∈ G such that supp (α) = {u}, supp (γ) = {u, v}.
Applying (3.2) to the anti-chain (Ω,=), we have

a ,
∑

(β∈H,wt T (β)61)

f(α, β) =
∑

(I⊆Ω,ωT (I)61)

(−1)|I∩{u}|

 ∏
i∈I−{u}

(hi − 1)

 ,

b ,
∑

(β∈H,wt T (β)61)

f(γ, β) =
∑

(I⊆Ω,ωT (I)61)

(−1)|I∩{u,v}|

 ∏
i∈I−{u,v}

(hi − 1)

 .

By wt T (α) = wt T (γ) = 1 and (2), we have α ∼l(CO(H,T )) γ, which further
implies that a = b. On the other hand, some straightforward computation
yields that

a− b =

 ∑
(J⊆Ω−{u,v},ωT (J∪{v})61,ωT (J∪{u,v})>2)

∏
i∈J

(hi − 1)

hv. (4.1)

Noticing that u 6∈ A, we have A − {v} ⊆ Ω − {u, v}. Since v ∈ A, A ∈ T ,
we have (A − {v}) ∪ {v} = A, ωT (A) = 1. Again by v ∈ A, we have
(A − {v}) ∪ {u, v} = A ∪ {u}. If ωT (A ∪ {u}) 6 1, then we can choose
C ∈ T such that A∪{u} ⊆ C, which, along with u 6∈ A, further implies that
A $ C, which is impossible since A,C ∈ T , (T,⊆) is an anti-chain. It then
follows that ωT (A ∪ {u}) > 2. By the above discussion and hi > 2 for all
i ∈ Ω, (4.1) immediately implies that a− b > 1, a contradiction to a = b, as
desired. Therefore we have shown that T is a partition of Ω.

Now we prove (2)⇐⇒ (3). By the discussion in the previous paragraph,
we assume that T is a partition of Ω. Now let

G1 ,
∏
A∈T

(∏
i∈A

Gi

)
, H1 ,

∏
A∈T

(∏
i∈A

Hi

)
.
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For any A ∈ T , let ςA : (
∏
i∈AGi) × (

∏
i∈AHi) −→ C∗ denote the non-

degenerate pairing defined as

ςA(γ, θ) =
∏
i∈A

πi(γi, θi).

Now let f1 : G1 ×H1 −→ C∗ denote the non-degenerate pairing defined as

f1(λ, µ) =
∏
A∈T

ςA(λA, µA),

and let ω̃ denote the constant 1 map defined on T . Since T is a par-
tition of Ω, some straightforward computation implies that CO(G, T ) =
l(CO(H, T )) holds true if and only if Q(G1, (T,=), ω̃) is the left dual par-
tition of Q(H1, (T,=), ω̃) with respect to f1. For any A ∈ T , by A 6= ∅
and hi > 2 for all i ∈ Ω, we have |

∏
i∈AHi| =

∏
i∈A hi > 2. It follows

from an application of Theorem 3.2 to G1, H1, f1 and ((T,=), ω̃) that
Q(G1, (T,=), ω̃) is the left dual partition of Q(H1, (T,=), ω̃) with respect
to f1 if and only if

∏
i∈U hi =

∏
j∈V hj for all U, V ∈ T , which completes

the proof of (2)⇐⇒ (3).

We remark that by Lemma 2.1, each of (1)–(3) of Theorem 4.1 is a
sufficient condition for CO(H, T ) to be reflexive. We will show in Section
4.2 that such sufficient conditions are not necessary.

4.2 Non-reflexive partitions of the form CO(H,P(k,Ω))

Throughout this subsection, we fix q ∈ Z+ with q > 2.
From now on, we will focus on P(k,Ω)-combinatorial metric, where k ∈

[1, |Ω|]. In addition, we will always consider the case that all the Hi’s have
order q. Such an additional assumption will enable us to relate the partitions
with the well known Krawtchouk polynomials, which we first recall in the
following definition (see, e.g., [9, 25, 32]).

Definition 4.1. For any (n, k) ∈ N×N, define the Krawtchouk polynomial
KU(n,k) as

KU(n,k) =
(−1)k

k!

k∑
t=0

(
k

t

)
(q − 1)k−t

(
t−1∏
i=0

(x− i)

)(
k−t−1∏
i=0

(x− n+ i)

)
.

We collect all the properties of the Krawtchouk polynomials that we
need in the following lemma.
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Lemma 4.1. (1) Let (n, k) ∈ N × N. Then, we have deg(KU(n,k)) = k.
Moreover, for any s ∈ [0, n], it holds that

KU(n,k)(s) =

k∑
t=0

(−1)t(q−1)k−t
(
s

t

)(
n− s
k − t

)
= ((1−x)s(1+(q−1)x)n−s)[k].

(2) Let n ∈ Z+, k ∈ N. Then, for any s ∈ [1, n], it holds that

k∑
l=0

KU(n,l)(s) = KU(n−1,k)(s− 1).

(3) Suppose that q = 2. Let (n, k) ∈ N × N. Then, for any s ∈ [0, n], it
holds that

KU(n,k)(n− s) = (−1)kKU(n,k)(s).

(4) Let n ∈ Z+, k ∈ [1, n]. Then, KU(n,k) has k distinct roots in R, all of

which lie between 0 and n. Moreover, KU
′

(n,k) has k− 1 distinct roots in R,
all of which lie between the smallest root and the largest root of KU(n,k).
(5) Fix k ∈ Z+. For any n ∈ N with n > k, let u(n) denote the smallest
root of KU(n,k). Then, the sequence (u(n)/n | n ∈ N, n > k) converges to
(q − 1)/q.

Proof. We note that (1)–(3) and the first part of (4) are well known and can
be found in [9, 25], and the second part of (4) follows from the first part of
(4) and the fact that deg(KU(n,k)) = k. Hence it remains to establish (5).

Fix k ∈ Z+, and let T = {λ = (λ0, . . . , λk−1) ∈ Rk |
∑k−1

i=0 λi
2 = 1}. For any

n ∈ N with n > k, define

c(n) , max

{
(q − 2)

(
k−1∑
i=0

iλi
2

)
+ 2
√
q − 1

(
k−2∑
i=0

λiλi+1

√
(i+ 1)(n− i)

)
| λ ∈ T

}
.

By [25, Theorem 6.1], for any n ∈ N with n > k, we have

u(n)

n
=
q − 1

q
−
c(n)

qn
,

and moreover, some straightforward computation yields that

−2(k−1)
√

(q − 1)(k − 1)n 6 c(n) 6 (q−2)(k−1)+2(k−1)
√

(q − 1)(k − 1)n.

It follows that the sequence (c(n)/qn | n ∈ N, n > k) converges to 0, which
immediately implies the desired result.
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Next, we characterize l(CO(H,P(k,Ω))) in terms of the Krawtchouk
polynomials, and give some sufficient conditions for CO(H,P(k,Ω)) to be
non-reflexive in terms of the Krawtchouk polynomials, especially in terms
of their roots.

Proposition 4.1. Suppose that hi = q for all i ∈ Ω. Fix k ∈ [1, |Ω|], and
let Λ = l(CO(H,P(k,Ω))). Then, the following five statements hold true:

(1) |CO(H,P(k,Ω))| = d |Ω|k e + 1, |Λ| > d |Ω|k e + 1, {1G} ∈ Λ. Moreover,

CO(H,P(k,Ω)) is non-reflexive if and only if |Λ| > |Ω|
k + 2;

(2) Let α, γ ∈ G − {1G}, and let t = |supp (α)|, r = |supp (γ)|. Then,
α ∼Λ γ if and only if for any s ∈ [1, |Ω| − 1] with k | s, it holds that

KU(|Ω|−1,s)(t− 1) = KU(|Ω|−1,s)(r − 1);

(3) Let s ∈ [1, |Ω| − 1] such that k | s. Then, it holds that

|Λ| > |{KU(|Ω|−1,s)(j) | j ∈ [0, |Ω| − 1]}|+ 1.

Assume in addition that

|{KU(|Ω|−1,s)(j) | j ∈ [0, |Ω| − 1]}| − 1 >
|Ω|
k
.

Then, CO(H,P(k,Ω)) is non-reflexive;
(4) Let s ∈ [1, |Ω| − 1] such that k | s, and let u denote the smallest root of
KU(|Ω|−1,s). Assume in addition that

buc > |Ω|
k
.

Then, CO(H,P(k,Ω)) is non-reflexive;
(5) Suppose that |Ω| > 3. Let s ∈ [2, |Ω| − 1] such that k | s, and let w
denote the smallest root of KU

′

(|Ω|−1,s). Assume in addition that

bwc > |Ω|
k
.

Then, CO(H,P(k,Ω)) is non-reflexive.

Proof. (1) By (2.14) and the fact that hi > 2 for all i ∈ Ω, we have

|CO(H,P(k,Ω))| =
∣∣∣∣{⌈ |supp (β)|

k

⌉
| β ∈ H

}∣∣∣∣ =
∣∣∣{⌈ s

k

⌉
| s ∈ [0, |Ω|]

}∣∣∣
=

∣∣∣∣[0,⌈ |Ω|k
⌉

]

∣∣∣∣ =

⌈
|Ω|
k

⌉
+ 1,
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which, together with Lemma 2.1, can be used to complete the proof of (1).
(2) Applying Proposition 3.2 to the anti-chain (Ω,=) and the constant 1
map, we have

|Ω|∑
l=0

∑
(β∈H,|supp (β)|=l)

f(α, β)xl = (1− x)t(1 + (q − 1)x)|Ω|−t,

which, along with (1) of Lemma 4.1, implies that for any l ∈ N,∑
(β∈H,|supp (β)|=l)

f(α, β) = ((1−x)t(1+(q−1)x)|Ω|−t)[l] = KU(|Ω|,l)(t). (4.2)

For an arbitrary b ∈ N, (2.14) implies that

∀ β ∈ H : wt P(k,Ω)(β) 6 b⇐⇒ |supp (β)| 6 bk,

which, in combination with (4.2) and (2) of Lemma 4.1, further implies that∑
(β∈H,wtP(k,Ω)(β)6b)

f(α, β) =
∑

(β∈H,|supp (β)|6bk)

f(α, β)

=

bk∑
l=0

∑
(β∈H,|supp (β)|=l)

f(α, β)

=
bk∑
l=0

KU(|Ω|,l)(t) = KU(|Ω|−1,bk)(t− 1).

A parallel argument for γ leads to the fact that

∀ b ∈ N :
∑

(β∈H,wtP(k,Ω)(β)6b)

f(γ, β) = KU(|Ω|−1,bk)(r − 1).

From the above discussion and the definition of Λ, we deduce that

α ∼Λ γ ⇐⇒ (∀ b ∈ N : KU(|Ω|−1,bk)(t− 1) = KU(|Ω|−1,bk)(r − 1)).

By (1) of Lemma 4.1, we have KU(|Ω|−1,0)(t− 1) = KU(|Ω|−1,0)(r − 1) = 1
and KU(|Ω|−1,s)(t− 1) = KU(|Ω|−1,s)(r − 1) = 0 for all s ∈ N with s > |Ω|,
which immediately implies the desired result.
(3) The first part follows from (2) and the fact that {1G} ∈ Λ, and the
second part follows from (1) and the first part, as desired.
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(4) By (4) of Lemma 4.1, we have

|{KU(|Ω|−1,s)(j) | j ∈ [0, |Ω| − 1]}| > buc+ 1,

which, together with (3), immediately implies the desired result.
(5) By (4) of Lemma 4.1, we have

|{KU(|Ω|−1,s)(j) | j ∈ [0, |Ω| − 1]}| > bwc+ 1,

and hence the desired result again follows from (3).

As a first application of Proposition 4.1, we show that the sufficient
conditions for reflexivity given in Theorem 4.1 are not necessary.

Proposition 4.2. Suppose that hi = q = 2 for all i ∈ Ω. Then, the following
two statements hold:
(1) Assume that |Ω| > 2, and let Λ = l(CO(H,P(|Ω| − 1,Ω))). Then, for
any α, γ ∈ G− {1G}, it holds that

α ∼Λ γ ⇐⇒ |supp (α)| ≡ |supp (γ)| (mod 2).

Moreover, CO(H,P(|Ω| − 1,Ω)) is reflexive;
(2) Assume that |Ω| > 2, and let Λ = l(CO(H,P(2,Ω))). Then, for any
α, γ ∈ G, it holds that

α ∼Λ γ ⇐⇒ (|supp (α)| = |supp (γ)| or |supp (α)|+ |supp (γ)| = |Ω|+ 1).

Moreover, CO(H,P(2,Ω)) is reflexive.

Proof. (1) Let α, γ ∈ G − {1G}, and let t = |supp (α)|, r = |supp (γ)|. By
(2) of Proposition 4.1 and (1) of Lemma 4.1, we have

α ∼Λ γ ⇐⇒ KU(|Ω|−1,|Ω|−1)(t− 1) = KU(|Ω|−1,|Ω|−1)(r − 1)

⇐⇒ (−1)t−1 = (−1)r−1

⇐⇒ t ≡ r (mod 2),

as desired. It then follows from (1) of Proposition 4.1 that

|CO(H,P(|Ω| − 1,Ω))| = |Λ| = 3,

which implies that CO(H,P(|Ω| − 1,Ω)) is reflexive, as desired.
(2) Let ∆ denote the partition of G such that for any α, γ ∈ G, α ∼∆ γ if

and only if either |supp (α)| = |supp (γ)| or |supp (α)|+ |supp (γ)| = |Ω|+ 1
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holds true. Let α, γ ∈ G such that α ∼∆ γ, and let t = |supp (α)|, r =
|supp (γ)|. We will show that α ∼Λ γ. If t = r, then α ∼Λ γ follows from (2)
of Proposition 4.1. Hence we assume in the following that t + r = |Ω| + 1.
By (3) of Lemma 4.1, we have

KU(|Ω|−1,s)(t− 1) = KU(|Ω|−1,s)(r − 1) for all s ∈ [1, |Ω| − 1] with 2 | s,

which, along with (2) of Proposition 4.1, implies that α ∼Λ γ, as desired. It
then follows that ∆ is finer than Λ. Also noticing that

|∆| = |CO(H,P(2,Ω))| =
⌈
|Ω|
2

⌉
+ 1,

from Lemma 2.1, we deduce that Λ = ∆ and CO(H,P(2,Ω)) is reflexive, as
desired.

Remark 4.1. If |Ω| > 3, then neither P(|Ω|−1,Ω) nor P(2,Ω) is a partition
of Ω. Hence Proposition 4.2 gives sufficient conditions for reflexivity which
are not covered by those presented in Theorem 4.1.

Now we give some criterions for non-reflexivity of CO(H,P(k,Ω)).

Proposition 4.3. Suppose that hi = q for all i ∈ Ω. Then, the following
four statements hold:
(1) Assume that q > 3, |Ω| > 3. Fix k ∈ [2, |Ω| − 1] such that

|Ω| ≡ 1 (mod k),

and let Λ = l(CO(H,P(k,Ω))). Then, for any α, γ ∈ G, it holds that

α ∼Λ γ ⇐⇒ |supp (α)| = |supp (γ)|.

Consequently, CO(H,P(k,Ω)) is non-reflexive;
(2) If q > 3, |Ω| > 4, then CO(H,P(|Ω| − 2,Ω)) is non-reflexive;

(3) Assume that q = 2, |Ω| > 5. Then, for any k ∈ [d |Ω|2 e, |Ω| − 2],
CO(H,P(k,Ω)) is non-reflexive;

(4) Assume that q = 2, |Ω| > 7. Then, for any k ∈ [d |Ω|5 e, |Ω| − 2] such that
2 - k, CO(H,P(k,Ω)) is non-reflexive.

Proof. (1) Let α, γ ∈ G, and let t = |supp (α)|, r = |supp (γ)|. By (2)
of Proposition 4.1, t = r implies α ∼Λ γ. Now we suppose that α ∼Λ γ.
If 1G ∈ {α, γ}, then by {1G} ∈ Λ, we have α = γ = 1G, and hence
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t = r = 0. Therefore we assume in the following that α 6= 1G, γ 6= 1G. By
|Ω| ≡ 1 (mod k) and (2) of Proposition 4.1, we have

KU(|Ω|−1,|Ω|−1)(t− 1) = KU(|Ω|−1,|Ω|−1)(r − 1),

which, along with (1) of Lemma 4.1, implies that

(−1)t−1(q − 1)|Ω|−t = (−1)r−1(q − 1)|Ω|−r.

Since q > 3, we have |Ω|− t = |Ω|−r, and hence t = r, as desired. It follows
that Λ is the partition induced by Hamming weight, which, together with
|Ω| > 3, k > 2, implies that

|Λ| = |Ω|+ 1 >
|Ω|
k

+ 2.

Now the non-reflexivity of CO(H,P(k,Ω)) immediately follows from (1) of
Proposition 4.1.

(2) Let n = |Ω|. Since q > 3, n > 4, one can check that KU(n−1,n−2)

takes different values on 0, n− 2, n− 1, which further implies that

|{KU(n−1,n−2)(j) | j ∈ [0, n− 1]}| − 1 > 2 >
n

n− 2
.

It then follows from (3) of Proposition 4.1 that CO(H,P(n− 2,Ω)) is non-
reflexive, as desired.

(3) and (4) Let n = |Ω|. Suppose that n > 5, and fix k ∈ [3, n − 2]. It
follows from (1) of Lemma 4.1 and some straightforward computation that

KU(n−1,k)(0) =

(
n− 1

k

)
, a, KU(n−1,k)(1) =

(
n− 2

k

)
−
(
n− 2

k − 1

)
, b,

KU(n−1,k)(2) =

(
n− 3

k

)
− 2

(
n− 3

k − 1

)
+

(
n− 3

k − 2

)
, c,

KU(n−1,k)(3) =

(
n− 4

k

)
− 3

(
n− 4

k − 1

)
+ 3

(
n− 4

k − 2

)
−
(
n− 4

k − 3

)
, d.

It is straightforward to verify the following facts:

a > |b|, a > |c|, a > |d|, (b = c⇐⇒ n = 2k), (b = d⇐⇒ n = 2k+ 1). (4.3)

From (4.3), we infer that |{a, b, c, d}| > 3. If k ∈ [dn2 e, n− 2], then we have

|{KU(n−1,k)(j) | j ∈ [0, n− 1]}| − 1 > 2 >
n

k
,
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which, along with (3) of Proposition 4.1, implies that CO(H,P(k,Ω)) is
non-reflexive, which further establishes (3). Hence it remains to prove (4).
From now on, we assume that n > 7, k ∈ [dn5 e, n− 2], 2 - k. It follows from
(3) of Lemma 4.1 that KU(n−1,k)(n − 1) = −a, KU(n−1,k)(n − 2) = −b,
KU(n−1,k)(n− 3) = −c, KU(n−1,k)(n− 4) = −d. From (4.3), we infer that
|{±a, b, c, d}| > 4. Hence if k > n/3, then we have

|{KU(n−1,k)(j) | j ∈ [0, n− 1]}| − 1 > 3 >
n

k
,

and (4) follows from (3) of Proposition 4.1. Therefore we assume in the
following that k 6 (n− 1)/3. By straightforward computation, we have

b+ c = 2

(
n− 3

k

)
− 2

(
n− 3

k − 1

)
, b− c = 2

(
n− 3

k − 1

)
− 2

(
n− 3

k − 2

)
.

Since n > 7, we have k 6 (n − 1)/3 6 (n − 3)/2. It then follows that
b+ c > 0, b− c > 0, and hence b > ±c. The above discussion yields that

a > b > ±c > −b > −a. (4.4)

From (4.4), we infer that |{±a,±b,±c}| > 5. Hence if k > n/4, then we
have

|{KU(n−1,k)(j) | j ∈ [0, n− 1]}| − 1 > 4 >
n

k
,

and (4) follows from (3) of Proposition 4.1. Therefore we further assume in
the following that k 6 (n− 1)/4. Then, some straightforward computation
yields that c 6= 0, which, along with (4.4), implies that |{±a,±b,±c}| = 6.
It then follows from k > n/5 that

|{KU(n−1,k)(j) | j ∈ [0, n− 1]}| − 1 > 5 >
n

k
,

and hence an application of (3) of Proposition 4.1 completes the proof.

The following theorem is the main result of this subsection.

Theorem 4.2. Let X be a finite abelian group with |X| = q. Then, the
following four statements hold:
(1) Fix k ∈ Z+ such that k > 2, (k, q) 6= (2, 2). Then, there exists
m ∈ Z+ such that for any n ∈ Z+ with n > m, n > k + 1, the partition
CO(Xn,P(k, [1, n])) is non-reflexive;
(2) If q > 3, then for any n ∈ Z+ with n > 3, CO(Xn,P(2, [1, n])) is
non-reflexive;
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(3) Let n ∈ Z+ such that one of the following three conditions holds:
3.1) 3 | n and

n >
9(q − 1) +

√
48q4 − 144q3 + 189q2 − 162q + 81

2(2q − 3)2
+ 3;

3.2) n ≡ 1 (mod 3), n > 4, q > 3;
3.3) n ≡ 2 (mod 3) and

n >
4q2 + 3q − 9 +

√
48q4 − 72q3 + 9q2 − 54q + 81

2(2q − 3)2
+ 3.

Then, it holds that n > 4 and CO(Xn,P(3, [1, n])) is non-reflexive;
(4) If q = 2, then for any n ∈ Z+ with n > 5, CO(Xn,P(3, [1, n])) is
non-reflexive.

Proof. (1) For any n ∈ N with n > k, let u(n) denote the smallest root of
KU(n,k). By (5) of Lemma 4.1, the sequence (bu(n−1)c/n | n ∈ N, n > k+1)
converges to (q − 1)/q. Since k, q > 2, (k, q) 6= (2, 2), we have

q − 1

q
>

1

k
.

Hence we can choose m ∈ Z+ such that for any n ∈ Z+ with n > m,
n > k + 1, it holds that bu(n−1)c > n/k. Now for any n ∈ Z+ such that
n > m, n > k + 1, an application of (4) of Proposition 4.1 to [1, n] and Xn

leads to the non-reflexivity of CO(Xn,P(k, [1, n])), which further establishes
(1).

(2) Suppose that q > 3, and fix n ∈ Z+ with n > 3. It follows from some
straightforward computation that the only root of KU

′

(n−1,2) is equal to

q − 1

q
n− 3

2
+

2

q
, v.

If 2 - n, then (2) follows from (1) of Proposition 4.3; if 2 | n, n > 5, then
along with q > 3, one can readily verify that bvc > n/2, and hence (2)
follows from (5) of Proposition 4.1; and if n = 4, then by q > 3 and (2)
of Proposition 4.3, the partition CO(X4,P(2, [1, 4])) is non-reflexive, which
completes the proof of (2).

(3) Apparently, we have n > 4. Let w denote the smallest root of
KU

′

(n−1,3). Some straightforward computation yields that

w =
q − 1

q
n− 2 +

3

q
−

√
(q − 1)(n− 3) + 1

3q
2

q
. (4.5)
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If either 3.1) or 3.3) holds true, then from (4.5) and some straightforward
computation, we have bwc > n/3, and (3) follows from (5) of Proposition
4.1; and if 3.2) holds true, then (3) follows from (1) of Proposition 4.3, as
desired.

(4) Suppose that q = 2. Let n ∈ Z+ with n > 5, and let w denote
the smallest root of KU

′

(n−1,3). If n ∈ {5, 6}, then (4) follows from (3) of

Proposition 4.3; if n ∈ [7, 15], then (4) follows from (4) of Proposition 4.3;
if n > 16, n 6≡ 1 (mod 3), then we note that n satisfies either 3.1) or 3.3),
and hence (4) follows from (3); if n > 20, n ≡ 1 (mod 3), then by (4.5), we
have bwc > n/3, and hence (4) follows from (5) of Proposition 4.1; and if
n ∈ {16, 19}, then some straightforward computation yields that

|{KU(15,3)(j) | j ∈ [0, 6]}| = 7, |{KU(18,3)(j) | j ∈ [0, 7]}| = 8,

and hence an application of (3) of Proposition 4.1 completes the proof.

Remark 4.2. In Section 5, we will use Proposition 4.3 and Theorem 4.2 to
provide counter-examples to Conjecture 2.1 (see Theorem 5.3).

5 Reflexivity, PAMI and MEP

Throughout this section, we let F be a finite field, Ω be a nonempty
finite set, and (ki | i ∈ Ω) be a family of positive integers. We consider the
F-vector space

H ,
∏
i∈Ω

Fki .

Define the inner product 〈 , 〉 : H×H −→ F as

〈α, β〉 =
∑
i∈Ω

ki∑
t=1

αi,t · βi,t,

where for α ∈ H and i ∈ Ω, αi,t denote the t-th entry of αi ∈ Fki . For any
linear code (i.e., F-subspace) C ⊆ H, we let

C⊥ , {β ∈ H | 〈α, β〉 = 0 for all α ∈ C}

denote the dual code of C.
We also fix a non-trivial additive character χ of F, and define the non-

degenerate pairing f : H×H −→ C∗ as

f(α, β) = χ (〈α, β〉) .
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It is well known that for any linear code C ⊆ H, we have

C⊥ = {β ∈ H | f(α, β) = 1 for all α ∈ C}. (5.1)

For a partition ∆ of H, we let l(∆) denote the left dual partition of ∆ with
respect to f , and let inv (∆) denote the following subgroup of Aut F(H):

inv (∆) = {σ ∈ Aut F(H) | β ∼∆ σ(β) for all β ∈ H}. (5.2)

For a subgroup K 6 Aut F(H), we let orb (K) denote the orbit partition of
K acting on H, i.e., for any α, β ∈ H, α ∼orb (K) β if and only if there exists
σ ∈ K with β = σ(α).

Definition 5.1. (1) Let Γ and Λ be partitions of H. We say that (Λ,Γ)
admits MacWilliams identity if for any linear codes C1, C2 ⊆ H such that
C1 ≈Λ C2, it holds that C1

⊥ ≈Γ C2
⊥.

(2) Let ∆ be a partition of H. We say that ∆ satisfies the MacWilliams ex-
tension property (MEP) if for any linear code C ⊆ H and g ∈ Hom F(C,H)
such that g is injective and α ∼∆ g(α) for all α ∈ C, there exists ϕ ∈ inv (∆)
with ϕ |C= g.
(3) A partition ∆ of H is said to be F-invariant if for any B ∈ ∆ and
c ∈ F− {0}, it holds that B = {c · β | β ∈ B}.

We first examine the relations between reflexivity and PAMI. The fol-
lowing lemma is an immediate consequence of Lemma 2.1, (2.8) and (5.1).

Lemma 5.1. Let Γ and Λ be partitions of H such that Λ is finer than
l(Γ). Then, we have {0} ∈ Λ and (Λ,Γ) admits MacWilliams identity.
Furthermore, for a reflexive partition ∆ of H, we have {0} ∈ ∆, and both
(l(∆),∆) and (∆, l(∆)) admit MacWilliams identity.

Now we improve Lemma 5.1 for F-invariant partitions. We begin with
some basic properties. By [21, Remark 1.4], for an F-invariant partition Θ
of H, l(Θ) is again F-invariant and is independent of the choice of the non-
trivial additive character χ, and the left generalized Krawtchouk matrix of
(l(Θ),Θ) is independent of the choice of χ as well.

The following is our first main result of this section.

Theorem 5.1. Let Γ and Λ be F-invariant partitions of H. Then, the
following three statements are equivalent to each other:
(1) Λ is finer than l(Γ);
(2) {0} ∈ Λ, and (Λ,Γ) admits MacWilliams identity;
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(3) {0} ∈ Λ, and for any 1-dimensional linear codes C1, C2 ⊆ H such that
C1 ≈Λ C2, it holds that C1

⊥ ≈Γ C2
⊥.

Assume in addition that |Λ| 6 |Γ|. Then, (2) holds true if and only if Γ is
reflexive and Λ = l(Γ), if and only if (Λ,Γ) is mutually dual with respect to
f .

Proof. We note that (1) =⇒ (2) follows from Lemma 5.1 and (2) =⇒ (3)
is trivial. Now we prove (3) =⇒ (1) with the help of Theorem 2.1. Let S
denote the set of all the 1-dimensional linear codes, and let

∆ = {C − {0} | C ∈ S} ∪ {{0}}.

Apparently, S is a collection of non-identity subgroups of H with the same
cardinality, ∆ is a partition of H containing {0}, and for any A ∈ ∆ with
A 6= {0}, there exists C ∈ S such that C − {0} = A. Since Γ is F-invariant,
l(Γ) is again F-invariant and hence ∆ is finer than l(Γ). Moreover, it follows
from Λ is F-invariant that ∆ is finer than Λ. Now we apply Theorem 2.1 and
(5.1) and reach the fact that Λ is finer than l(Γ), which further establishes
(3) =⇒ (1). Finally, if |Λ| 6 |Γ|, then the rest is a direct consequence of
Lemma 2.1 and the proven part (1)⇐⇒ (2).

Now we apply Theorem 5.1 to MacWilliams-type equivalence relations
proposed in [8] as well as partitions induced by weighted poset metric and
combinatorial metric, as detailed in the following three examples.

Example 5.1. (Characterizing MacWilliams-type equivalence relations) Fix
a poset P = (Ω,4P), and consider an equivalence relation E on I(P). Let
Γ denote the partition of H such that for any β, θ ∈ H,

β ∼Γ θ ⇐⇒ (〈supp (β)〉P, 〈supp (θ)〉P) ∈ E,

and let Λ denote the partition of H such that for any α, γ ∈ H,

α ∼Λ γ ⇐⇒ (Ω− 〈supp (α)〉P,Ω− 〈supp (γ)〉P) ∈ E.

Since Γ and Λ are F-invariant partitions with |Λ| = |Γ|, Theorem 5.1 implies
that (Λ,Γ) is mutually dual with respect to f if and only if (Λ,Γ) admits
MacWilliams identity and {Ω} is an equivalence class of E, which recovers
(i) ⇐⇒ (ii) of [8, Theorem 3.3]. In addition, the general MacWilliams
identity (2.7) along with (5.1) recovers (ii) ⇐⇒ (iii) of [8, Theorem 3.3].
In [8], E is referred to as a MacWilliams-type equivalence relation if (Λ,Γ)
admits MacWilliams identity.
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Example 5.2. Let P = (Ω,4P) be a poset, and fix ω : Ω −→ R+. Since
Q(H,P, ω) and Q(H,P, ω) are F-invariant partitions which have the same
cardinality and contain {0}, Theorem 5.1 implies that (Q(H,P, ω),Q(H,P, ω))
admits MacWilliams identity if and only if Q(H,P, ω) = l(Q(H,P, ω)).
Further assume that P is hierarchical and ω is integer-valued. Then, by
Theorem 3.2, (Q(H,P, ω),Q(H,P, ω)) admits MacWilliams identity if and
only if Q(H,P, ω) is reflexive, if and only if (P, ω) satisfies UDP, and for
any u, v ∈ Ω such that len P(u) = len P(v) and ω(u) = ω(v), it holds that
ku = kv. The latter equivalence has also been established in [29, Theorem 7]
for labeled-poset-block metric by using different methods.

Example 5.3. Let T be a covering of Ω such that (T,⊆) is an anti-chain.
Since CO(H, T ) is an F-invariant partition containing {0}, Theorems 4.1
and 5.1 imply that the following three statements are equivalent to each other:
(1) (CO(H, T ), CO(H, T )) admits MacWilliams identity;
(2) CO(H, T ) = l(CO(H, T ));
(3) T is a partition of Ω, and

∑
i∈U ki =

∑
j∈V kj for all U, V ∈ T .

In addition, (1)⇐⇒ (3) recovers [39, Theorem 1] if ki = 1 for all i ∈ Ω.

Now we summarize the relations among reflexivity, PAMI and MEP in
the following theorem.

Theorem 5.2. Let Γ be an F-invariant partition of H such that {0} ∈ Γ,
and consider the following five statements:
(1) Γ satisfies MEP;
(2) Γ = orb (inv (Γ));
(3) Γ is reflexive;
(4) (Γ, l(Γ)) admits MacWilliams identity;
(5) There exists an F-invariant partition Λ of H such that {0} ∈ Λ and both
(Λ,Γ) and (Γ,Λ) admit MacWilliams identity.
Then, it holds true that (1) =⇒ (2), (2) =⇒ (3) and (3)⇐⇒ (4)⇐⇒ (5).

Proof. We begin by noting that {0} ∈ l(Γ) and l(Γ) is F-invariant. Now
(2) =⇒ (3) follows from [18, Theorem 2.6] and (3) =⇒ ((4) ∧ (5)) follows
from Lemma 5.1. Next, we prove (4) =⇒ (3) and (5) =⇒ (3). If (4) holds
true, then Theorem 5.1 implies that Γ is finer than l(l(Γ)), which, along with
Lemma 2.1, further implies that Γ is reflexive, as desired. If (5) holds true,
then Theorem 5.1 implies that (Λ,Γ) is mutually dual with respect to f ,
which, along with Lemma 2.1, further implies that Γ is reflexive, as desired.
Hence it remains to establish (1) =⇒ (2). From now on, we assume that Γ
satisfies MEP. By definition, it can be readily verified that orb (inv (Γ)) is
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finer than Γ. Next, we will show that Γ is finer than orb (inv (Γ)), which
immediately implies that Γ = orb (inv (Γ)). Indeed, consider α, β ∈ H with
α ∼Γ β. If α = 0, then by {0} ∈ Γ, we have β = α = 0, and hence
α ∼orb (inv (Γ)) β. Therefore in what follows, we assume that α 6= 0. Then,
by {0} ∈ Γ, we have β 6= 0. Define g ∈ Hom F(F · α,H) as

g(α) = β.

Apparently, g is injective. Moreover, it follows from Γ is F-invariant that
γ ∼Γ g(γ) for all γ ∈ F · α. Since Γ satisfies MEP, we can choose ϕ ∈
inv (Γ) such that ϕ |F·α= g. It then follows that ϕ(α) = g(α) = β, which
immediately implies that α ∼orb (inv (Γ)) β, as desired. By now, we have
shown that Γ = orb (inv (Γ)), which further establishes (2).

Remark 5.1. In Theorem 5.2, (2) =⇒ (1) does not hold in general. We
refer the reader to [1, Example 2.9], [17, Example 1.12] and [21, Section
8] for counter-examples arising from partitions of matrix spaces and rank
metric codes.

Now we are in a position to disprove Conjecture 2.1. The following
theorem immediately follows from Proposition 4.3, Theorem 4.2 and The-
orem 5.2, where we collect all the counter-examples to Conjecture 2.1 that
we have obtained.

Theorem 5.3. Fix k ∈ Z+, k > 2, and consider the set

Q , {n ∈ Z+ | n > k + 1, CO(Fn,P(k, [1, n])) satisfies MEP}.

Then, it holds that:
(1) If (k, |F|) 6= (2, 2), then Q is finite;
(2) If |F| = 2, k = 3, then Q ⊆ {4};
(3) If |F| = 2, k > 3, then Q ∩ [k + 2, 2k] = ∅;
(4) If |F| = 2, 2 - k, then Q ∩ [max{k + 2, 7}, 5k] = ∅;
(5) If |F| > 3, k = 2, then Q = ∅;
(6) If |F| > 3, then k + 2 6∈ Q, Q ∩ {ak + 1 | a ∈ Z+} = ∅.

We remark that (1)–(4) of Theorem 5.3 disprove Conjecture 2.1. More
specifically, it follows from (1) of Theorem 5.3 that for any given k > 3, there
are only finitely many n > k + 1 such that the P(k, [1, n])-combinatorial
metric over Fn satisfies MEP. However, we have not found an explicit way
to determine all such n’s; moreover, Theorem 5.3 does not consider MEP
for the P(2, [1, n])-combinatorial metric over Fn2 . So, Theorem 5.3 leaves
open the question of finding all the combinatorial metrics that
satisfy MEP.
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6 Conclusion

We have given sufficient conditions for a partition induced by weighted
poset metric to be reflexive, which also becomes necessary when the poset
is hierarchical and the weight function is integer-valued. With the help of
the Krawtchouk polynomials, we have given various sufficient conditions for
a partition induced by combinatorial metric to be reflexive or non-reflexive,
and have given several classes of reflexive or non-reflexive partitions induced
by combinatorial metric. In particular, with some additional assumptions,
we have shown that for a fixed k > 2 and any sufficiently large n, the par-
tition induced by the P(k, [1, n])-combinatorial metric is non-reflexive. We
have also studied the relations among reflexivity, PAMI and MEP, and have
shown that for F-invariant partitions of a finite vector space over a finite field
F, MEP implies reflexivity, and reflexivity is equivalent to PAMI. Finally,
we have disproved a conjecture proposed by Pinheiro, Machado and Firer in
[39] (Conjecture 2.1) by showing that for a fixed k > 3 and any sufficient-
ly large n, the P(k, [1, n])-combinatorial metric does not satisfy MEP. On
the other hand, it remains open to classify all the combinatorial
metrics that satisfy MEP.

Appendix

A Proof of Proposition A.1

In this appendix, we prove the following Proposition A.1, which has
been used in the proof of Proposition 3.3.

Proposition A.1. (1) Let I, J be finite sets, (ni | i ∈ I), (mj | j ∈ J) be
two families of positive integers, and (ai | i ∈ I), (bj | j ∈ J) be two families
of positive real numbers. Assume that one of the following two equations
holds: ∏

i∈I
(xni + ai) =

∏
j∈J

(xmj + bj); (A.1)

(∏
i∈I

(xni − ai)

)∏
j∈J

(xmj + bj)

 =

(∏
i∈I

(xni + ai)

)∏
j∈J

(xmj − bj)

 . (A.2)

Then, there exists a bijection σ : I −→ J such that for any i ∈ I, ni = mσ(i),
ai = bσ(i).
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(2) Let Y be a finite set, (ni | i ∈ Y ) be a family of positive integers, and
(ai | i ∈ Y ) be a family of positive real numbers. Fix C,D ⊆ Y such that(∏
i∈D

(xni − 1)

)( ∏
i∈Y−D

(xni + ai)

)
=

(∏
i∈C

(xni − 1)

)( ∏
i∈Y−C

(xni + ai)

)
.

Then, there exists a bijection σ : C −→ D such that for any i ∈ C, ni =
nσ(i), ai = aσ(i).

Proof. (1) Without loss of generality, we assume that there exists γ ∈ I
such that for any i ∈ I and j ∈ J , nγ > ni, nγ > mj . Let λ ∈ C be a
2nγ-th primitive root, and set c = (aγ)1/nγ . Then, cλ is a root of xnγ + aγ .
For any i ∈ I, the facts that nγ > ni and ai > 0 imply that cλ is not a
root of xni − ai. Therefore either (A.1) or (A.2) implies that there exists
θ ∈ J such that cλ is a root of xmθ + bθ. By nγ > mθ and bθ > 0, we have
mθ = nγ , bθ = aγ . We then deduce that either (A.1) or (A.2) remains valid
if we replace I and J by I − {γ} and J − {θ}, respectively. Applying an
induction argument to I − {γ} and J − {θ}, and noticing that nγ = mθ,
aγ = bθ, we conclude that there exists a bijection σ : I −→ J such that
ni = mσ(i), ai = bσ(i) for all i ∈ I, as desired.
(2) Since for any i, j ∈ Y with ai 6= 1, gcd(xni + ai, x

nj ± 1) = 1, we have
the following two equations:(∏
i∈D

(xni − 1)

) ∏
(i∈C,ai=1)

(xni + 1)

 =

(∏
i∈C

(xni − 1)

) ∏
(i∈D,ai=1)

(xni + 1)

 ,

(A.3)∏
(i∈C,ai 6=1)

(xni + ai) =
∏

(i∈D,ai 6=1)

(xni + ai). (A.4)

By (1) and (A.4), we can choose a bijection τ from {i ∈ C | ai 6= 1} to
{i ∈ D | ai 6= 1} such that ni = nτ(i), ai = aτ(i) for all i ∈ C with ai 6= 1. It
follows that ∏

(i∈C,ai 6=1)

(xni − 1) =
∏

(i∈D,ai 6=1)

(xni − 1),

which, together with (A.3), further implies that ∏
(i∈D,ai=1)

(xni − 1)

 ∏
(i∈C,ai=1)

(xni + 1)

 =

 ∏
(i∈C,ai=1)

(xni − 1)

 ∏
(i∈D,ai=1)

(xni + 1)

 .
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By (1), we can choose a bijection η from {i ∈ C | ai = 1} to {i ∈ D | ai = 1}
such that ni = nη(i) for all i ∈ C with ai = 1. Define ε : C −→ D as
ε |{i∈C|ai 6=1}= τ and ε |{i∈C|ai=1}= η. It follows that ε : C −→ D is a
bijection such that ni = nε(i), ai = aε(i) for all i ∈ C, as desired.
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