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A Region Decomposition Approach to

Sum-Networks with Three Sources
Wentu Song, Kai Cai, Guangyue Han, Chau Yuen, Rongquan Feng and Kui Cai

Abstract

In this paper, we investigate the solvability of a sum-network with 3 sources and n terminals, or simply, a 3s/nt
sum-network. More speci�cally, employing the region decomposition approach proposed in [9], we give necessary
and suf�cient conditions for the solvability of a so-called �terminal-separable� 3s/nt sum-network, which naturally
yield suf�cient conditions for that of a general 3s/nt sum-network. Based on this, we further give necessary and
suf�cient conditions for the solvability of a 3s/3t sum-network in terms of some forbidden structures, which we show
can be determined using an O(|E|) time algorithm, and thereby improving upon a previous algorithm [6] with time
complexity O(|E|3).
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I. INTRODUCTION

A k-source n-terminal (ks/nt) sum-network is a �nite, directed and acyclic graph G with

k sources {s1, · · · , sk} and n terminals {t1, · · · , tn} where, at any time slot, each source si
generates a message Xi from a �nite �eld F and each terminal is tasked to compute the sum∑k

i=1 Xi using a linear network coding scheme [1]-[2]. As is typical in the literature, we assume

that all sources generate independent messages and that each link in the network is free of errors

and delays and can only carry one message for each use.

The aforementioned problem of communicating the sum over a network, which falls into

the category of distributed function computation [18]-[20], has attracted increasing attention in

recent years due to its potential applications in parallel processing, distributed data analysis and

sensor networks [21]-[23]. More speci�cally, the sum-network problem has been investigated

from several aspects including solvability [3]-[6], encoding �elds [11]-[13], code constructions

and capacity bounds [14]-[17].

The major concern of the present paper is to characterize the solvability of a ks/nt sum-

network in terms of its topology, that is to say, to identify the network topology under which the

desired sum can be successfully reconstructed by all terminals. In this direction, a �rst paper by

A. Ramamoorthy [3] showed that a ks/2t or 2s/nt sum-network is solvable if and only if each

terminal is reachable from all sources. Following this work, in [4]-[5], the authors considered

a 3s/3t sum-network and showed that if each source-terminal pair is connected by two edge-

disjoint paths, then the sum-network is solvable. To date, the best known result is a list of

necessary and suf�cient conditions for the solvability of a 3s/3t sum-network from Shenvi and

Dey [6], which can be stated in terms of a collection of six �connection conditions� and have

led to an O(|E|3) time algorithm.

The hardness of the above-mentioned problem can somehow be explained by a result in [7],

where the authors established the equivalence between the solvability of a sum-network to that

of the corresponding multiple-unicast network, and furthermore the problem of �nding common

Wentu Song, Chau Yuen and Kui Cai are with Singapore University of Technology and Design, Singapore (e-mails: {wentu song, yuenchau,
cai kui}@sutd.edu.sg).
Kai Cai and Guangyue Han are with Department of Mathematics, The University of Hong Kong. (e-mails: {kcai,ghan}@hku.hk).
Rongquan Feng is with the LMAM, School of Mathematical Sciences, Peking University, China (e-mail: fengrq@math.pku.edu.cn).



2

roots of a given set of polynomials. It is well-known that the latter two problems are extremely

hard, which suggests the intricacy of the ks/nt sum-network solvability problem for generic

k, n.
In this paper, employing the region decomposition approach proposed in [9], we give

necessary and suf�cient conditions (see Theorem 5.12) for the solvability of a class of so-called

3s/nt �terminal-separable� sum-networks (see De�nition 4.4), which naturally lead to suf�cient

conditions for that of a general 3s/nt sum-network. Based on this, we further give necessary

and suf�cient conditions for the solvability of a 3s/3t sum-network in terms of some forbidden

structures (see Theorem 6.1), which we show can be determined using an O(|E|) time algorithm,

and thereby improving upon a previous algorithm [6] with time complexity O(|E|3).
The region decomposition approach used in this paper is rooted in [8]. Roughly speaking, the

idea of this approach is that instead of the original network, one can consider the corresponding

simpler �region network�, which can be generated in O(|E|) time and has the same solvability

as the original network. This method has been successfully applied to some dif�cult multiple

source network coding problems [9]-[10].

It has been noted before that in this paper the topology of an unsolvable 3s/3t sum-network

will be characterized in terms of forbidden structures. Network topology characterization via

forbidden structures has a long history and can be arguably traced back to Kuratowski's

Theorem [24], which asserts that a graph is planar if and only if it does not contain a subgraph

homeomorphic to the complete graph K5 or the complete bipartite graph K3,3. A widespread

adoption of this approach has been seen in graph theory, which notably includes the celebrated

Graph Structure Theorem [25]. It is not surprising that the essence of this approach has been

found applicable in the theory of network coding; for example, a similar characterization has

been used to determine the solvability of a single rate 2-pair network [26].

The rest of the paper is organized as follows. We will introduce our notations and network

model in Section II and recall the region decomposition approach in Section III. In Section IV,

we will introduce the notion of terminal-separable sum-network, whose solvability will be

characterized in Section V. Then, characterizations of solvable 3s/3t sum-networks using

the forbidden structures will be presented in Section VI. Finally, the paper is concluded in

Section VII.

II. NOTATIONS AND NETWORK MODEL

Throughout the paper, the ks/nt sum-network under consideration will be denoted by G =
(V,E), where V is the vertex set and E is the link set. For any link e = (u, v) ∈ E, u is called

the tail of e, denoted by u = tail(e); and v is called the head of e, denoted by v = head(e); and e
is said to be an incoming link of v and meanwhile an outgoing link of u. For two links e, e′ ∈ E,

we call e′ an incoming link of e (or equivalently, e an outgoing link of e′) if tail(e) = head(e′).
For any e ∈ E, we will denote by In(e) the set of all incoming links of e.
For ease of presentation, our analysis is actually done on an augmented version of the original

network G, which, other than all the vertices and links in G, also includes a newly added link

(ŝi, si), henceforth termed as the i-th source link, to each si, and a newly added link (tj, t̂j),
henceforth termed as the j-th terminal link, from each terminal j; see Fig. 2 (a) for an example.

Evidently the original network communication problem on G naturally translates to one on its

augmented version where the original message Xi is generated at the i-th source link, and the

desirable message
∑k

i=1 Xi is needed at each terminal link. For this reason, with a slight abuse

of notation, we will still use G to denote its augmented version throughout the paper. Here

we remark that a source link in G has no incoming links, i.e., In(e) = ∅ for any source link
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e; moreover, w.l.o.g., we assume each non-source link e in G has at least one incoming link,

namely, In(e) ̸= ∅.
Let Fk denote the k-dimensional vector space over the �nite �eld F. For any subset A ⊆ Fk,

let ⟨A⟩ denote the subspace of Fk spanned by A. For any i ∈ [k] , {1, 2, · · · , k}, let αi denote

the vector from Fk whose i-th component is 1 and other components are all 0. And let

ᾱ ,
k∑

i=1

αi = (1, 1, · · · , 1). (1)

Under a linear network coding scheme, the message Me transmitted along any link e is a

linear combination of the messages Xi, taking the form of Me =
∑k

i=1 ciXi where ci ∈ F
and (c1, c2, . . . , ck) ̸= 0, the zero vector in Fk; in particular, Me = Xi if e is the i-th source

link. We will use the coef�cient vector de = (c1, c2, · · · , ck), the global encoding vector on e,
to represent the message Me. Under this representation, a linear network code C on G is a

collection of vectors {de ∈ Fk; e ∈ V } such that 1) de = αi if e is the i-th source link; and 2)

de ∈ ⟨de′ ; e′ ∈ In(e)⟩ if e is a non-source link. We say that the linear network code C solves

G, or equivalently, C is a solution to G, if de = ᾱ for any terminal link e, and we say that G
is solvable if there is a linear network code with respect to some �nite �eld F solving G, and

unsolvable otherwise.

Throughout the paper, we will assume the following (since otherwise G is obviously

unsolvable):

Assumption 2.1: For any source si and any sink tj , there exists a directed path from si to tj .

III. THE REGION DECOMPOSITION APPROACH

This section recalls the region decomposition approach �rst proposed in [9]. Here, we remark

that although we only examine ks/nt sum-networks, the approach actually applies to any general

directed acyclic network.

A. Basic Region Decomposition and Basic Region Graph

Consider Algorithm 1 as in Fig. 1 applied to G, which yields a collection of non-empty subsets

of E, termed as the basic region decomposition of G and denoted by D = {R1, R2, · · · , RK}.
As elaborated in [9], D satis�es the following properties:

(1) D={R1, R2, · · ·, RK} is a partition of E, that is, R1, R2, · · ·, RK are pairwise disjoint and∪K
j=1Rj=E (each Rj will be referred to as a region of G);

(2) For each Rj ∈ D, there exists a link ej ∈ Rj such that In(e) ⊆ Rj for any e ∈ Rj\{ej} (ej
will be referred to as the leader of Rj , denoted by ej = lead(Rj));

Some remarks about the above decomposition are in order. It follows from the acyclicity of

G that the links in G can be labelled as e1, e2, e3, · · · , e|E| such that 1) for each i ∈ [k], ei is
the i-th source link; and 2) if ej is an incoming link of eℓ, then j < ℓ. The output of Algorithm

1 is determined by G and thereby the basic region decomposition uniquely exists. Moreover, it

can be easily seen that each region has a unique leader and Algorithm 1 runs in time O(|E|)
since it only makes |In(ej)| comparisons for each ej , j ≥ k + 1.
Obviously a region R of G can contain at most one source link, which is necessarily the

leader of R. A subtle point is that in general a region may contain more than one terminal links.

Since, as elaborated below, all links in the same region will �share� a common message under a

linear network coding scheme, we assume that in this paper any region in G can only contain at

most one terminal link. A region is called a source region if it contains a source link, a terminal
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Algorithm 1: Region Decomposing (G = (V,E))

j ← from 1 to k

Rj = {ej};
K = k;

j = k + 1;

while j ≤ |E| do
if there is a k ∈ {1, · · · ,K} such that In(ej) ⊆ Rk then

Rk = Rk ∪ {ej};
else

K = K + 1;

RK = {ej};
end if

j = j + 1;

end while

Return D = {R1, · · · , RK};

Fig. 1. The algorithm for computing the basic region decomposition, where the links are labelled as e1, e2, e3, · · · , e|E| such that 1) for each

i ∈ [k], ei is the i-th source link; and 2) if ej is an incoming link of eℓ, then j < ℓ.

region if a terminal link. Therefore, under the above-mentioned assumption, there are exactly k
source regions and exactly n terminal regions of G.

We now de�ne the basic region graph of G, a fundamental notion in this paper.

De�nition 3.1 (Basic Region Graph [9]): Let D = {R1, R2, · · · , RK} be the basic region

decomposition of G. The basic region graph of G, denoted by RG(D), is a directed, simple

graph with vertex set D and link set ED, where and ED is the set of all ordered pairs (Rj, Rℓ)
such that Rj ∩ In(lead(Rℓ)) ̸= ∅. We say Rj is a parent of Rℓ (or, Rℓ is a child of Rj), if

(Rj, Rℓ) ∈ ED. For each region Rℓ ∈ D, we use In(Rℓ) to denote the set of all the parents of

Rℓ.

For the sake of convenience, from now on, we use Si to denote the i-th source region, the

one that contains the i-th source link, and Tj the j-th terminal region, the one that contains the

j-th terminal link.

Example 3.2: Consider the network G in Fig. 2 (a). D = {S1, S2, S3, R1, R2, R3, T1, T2, T3}
is the basic region decomposition of G, where S1 = {1, 4, 5}, S2 = {2, 6, 7}, S3 = {3, 8, 9},
R1 = {10, 12, 13}, R2 = {11, 14, 15, 16}, R3 = {17}, T1 = {18}, T2 = {19} and T3 = {20}.
And Fig. 2(b) shows the basic region graph of G.

We note that the uniqueness of RG(D) trivially follows from that of D, and moreover, Algo-

rithm 1 actually implicitly yields the RG(D) as a by-product. These observations immediately

lead to the following theorem.

Theorem 3.3: RG(D) uniquely exists and it can be constructed in time O(|E|).
We make the following two observations of RG(D): 1) It can be easily veri�ed that RG(D)

inherits acyclicity from G; 2) |In(Rj)| ≥ 2 for any non-source region Rj ∈ D. To see this, note

that if Rj is a non-source region, then ej = lead(Rj) is a non-source link, by Algorithm 1, In(ej)
intersects with at least two regions in D. Hence, by De�nition 3.1, Rj has at least two parents,

that is, |In(Rj)| ≥ 2.

We can de�ne network code C̃ on the region graph RG(D) as a collection of vectors {dR ∈
Fk;R ∈ D} satisfying 1) dSi

= αi for any i; and 2) dR ∈ ⟨dR′ ;R′ ∈ In(R)⟩ for any non-source
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Fig 2. (a) shows the augmented version of G, where the links 1, 2, 3 are the source links, and 18, 19, 20 are the terminal links. (b) shows the
basic region graph RG(D) of G, where S1 = {1, 4, 5}, S2 = {2, 6, 7}, S3 = {3, 8, 9}, R1 = {10, 12, 13}, R2 = {11, 14, 15, 16}, R3 =
{17}, T1 = {18}, T2 = {19}, T3 = {20} and D = {S1, S2, S3, R1, R2, R3, T1, T2, T3}.

region R. We say that C̃ solves RG(D), or equivalently, C̃ is a solution to RG(D), if dTj
= ᾱ

for any j, and that RG(D) is solvable if there is a linear network code solving RG(D), and
unsolvable otherwise.

Note that given any linear network code C = {de ∈ Fk; e ∈ E} of G, it is easy to verify that

for any region R ∈ D and any e ∈ R, de ∈ ⟨dlead(R)⟩, which immediately means that, up to a

scalar multiplication, all de with e ∈ R are the same. Now, let C̃ = {dR , dlead(R)
;R ∈ D}.

It is easy to see that C̃ is a linear network code on RG(D), and if C solves G, then C̃ solves

RG(D). On the other hand, any linear network code solving RG(D) can be extended to a linear

solution of G by letting de = dR if e ∈ R, for any e ∈ E. Hence, we have the following theorem,

which is parallel to Theorem 4.5 of [9] and of central importance in our treatment.

Theorem 3.4: G is solvable if and only if RG(D) is solvable.

B. Super Region

Theorem 3.4 equates the solvability of G with that of RG(D). To determine the latter, we

need the following notion.

De�nition 3.5 (Super Region [10]): For each non-empty Θ ⊆ D, the super region of Θ,

denoted by reg(Θ), is recursively de�ned as follows: (1) Θ ⊆ reg(Θ); and (2) If R ∈ D
and In(R) ⊆ reg(Θ), then R ∈ reg(Θ). Furthermore, we de�ne reg◦(Θ) = reg(Θ) \Θ.

For example, for the region graph in Fig. 3 (a), to obtain reg(S1, S2), we �rst have

{S1, S2} ⊆ reg(S1, S2). Then, since In(R1) = {S1, S2} ⊆ reg(S1, S2), we have R1 ∈ reg(S1, S2).
Further, since In(R4) = {R1, S2} ⊆ reg(S1, S2), we have R4 ∈ reg(S1, S2). Note that

S3 /∈ reg(S1, S2) because In(S3) = ∅ * reg(S1, S2). Further, R2 /∈ reg(S1, S2) because In(R2) =
{S1, S3} * reg(S1, S2), and so on. Finally, we �nd reg(S1, S2) = {S1, S2, R1, R4}. By the same

observation, for the region graph in Fig. 3 (b), we �nd reg(R2, R4) = {R2, R4, Q1, Q3, T2}
and reg(R2, R3, R5) = {R2, R3, R5, Q2, Q4, T3}. We add a remark that it is always true that

reg(Θ) ̸= ∅ because Θ ⊆ reg(Θ), but it is possible that reg◦(Θ) = ∅.
Let RG(D) be the basic region graph where D is labelled as D = {R1, R2, R3, · · · , RN} such

that Ri = Si for i ∈ {1, 2, 3} and ℓ < ℓ′ if Rℓ is a parent of Rℓ′ . Then, Algorithm 2 given in

Fig. 4 computes reg(Θ) for any Θ ⊆ D in time O(|D|).
Let C̃ = {dR;R ∈ D} be a linear network code on RG(D). The following simple but important

lemma is the motivation for the de�nition of super region.

Lemma 3.6: For any Θ ⊆ D and R ∈ reg(Θ), dR ∈ ⟨dQ;Q ∈ Θ⟩.
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Fig 3. Two examples of region graph.

Algorithm 2: Super-Region (RG(D),Θ)

reg(Θ) = Θ;

ℓ← from 1 to N

If In(Rℓ) ⊆ reg(Θ) then

reg(Θ) = reg(Θ) ∪ {Rℓ};
Return reg(Θ);

Fig 4. An algorithm for computing a super region, where N is the number of regions in D.

IV. TERMINAL-SEPARABLE SUM-NETWORK

Throughout this section, we focus on the case k = 3, that is, G is a 3s/nt sum-network.

Let RG(D) be the basic region graph of G. As before, we use S1, S2, S3 to denote the three

source regions of G, and T1, T2, · · · , Tn to denote the n terminal regions of G. Note that it

immediately follows from Assumption 2.1 that Tℓ /∈ reg(Si, Sj) for all ℓ ∈ [n] = {1, 2, · · · , n}
and all {i, j} ⊆ {1, 2, 3}.
For any two regions R,R′ ∈ D, we say that R′ is reachable from R, denoted by R → R′,

if there exists a directed path in RG(D) from R to R′; otherwise, R′ is not reachable from R,
which will be denoted by R 9 R′. In particular, we have R → R for all R ∈ D.

De�nition 4.1: We de�ne

Π , reg(S1, S2) ∪ reg(S1, S3) ∪ reg(S2, S3).

And for each I = {i1, · · · , iℓ} ⊆ [n], we de�ne ΩI = Ωi1,··· ,iℓ as the set of all R ∈ D\Π such

that R → Tj for all j ∈ I and R 9 Tj′ for all j
′ ∈ [n] \ I .

It is possible that ΩI = ∅ for some I ⊆ [n]; moreover, for two distinct subsets I and I ′ of [n],
it is easy to see that ΩI ∩ ΩI′ = ∅.
Example 4.2: Take the region graphs in Fig. 3 as an example.

1) For the region graph in Fig. 3 (a). By De�nition 3.5, reg(S1, S2) =
{S1, S2, R1, R4}, reg(S1, S3) = {S1, S3, R2} and reg(S2, S3) = {S2, S3, R3}. So

Π = {S1, S2, S3, R1, R2, R3, R4}. Note that D\Π = {Q, T1, T2, T3}. We can further

�nd Ωi = {Ti} for i ∈ {1, 2, 3}, Ω2,3 = {Q} and Ω1,2 = Ω1,3 = Ω1,2,3 = ∅.
2) For the region graph in Fig. 3 (b), by De�nition 3.5, reg(S1, S2) = {S1, S2, R1, R4},

reg(S1, S3) = {S1, S3, R2} and reg(S2, S3) = {S2, S3, R3, R5}. So Π = {S1, S2, S3, R1,

R2, R3, R4, R5} and D\Π = {Q1, Q2, Q3, Q4, T1, T2, T3}. Furthermore, we �nd that Ω1 =
{T1}, Ω2 = {Q1, Q3, T2}, Ω3 = {Q2, Q4, T3} and Ω1,2 = Ω1,3 = Ω2,3 = Ω1,2,3 = ∅.
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Remark 4.3: From De�nition 3.5, for any {i, j, ℓ} = {1, 2, 3}, we have

reg(Si, Sj) ∩ reg(Si, Sℓ) = {Si}. (2)

Hence, reg◦(S1, S2), reg
◦(S1, S3) and reg◦(S2, S3) are mutually disjoint.

Now, we de�ne the notion of the so-called terminal-separable region graph, the main concern

of this section.
De�nition 4.4 (Terminal-Separable Region Graph): The region graph RG(D) is said to be

terminal-separable if ΩI = ∅ for all I ⊆ [n] of size |I| > 1. Furthermore, G is said to be

terminal-separable if RG(D) is terminal-separable.
Theorem 4.5: There is an algorithm running in time O(|D|) to determine whether RG(D) is

terminal-separable.
Proof: Firstly, we note that Π can be found in time O(|D|) because for all {i, j} ⊆ {1, 2, 3},

reg(Si, Sj) can be found in time O(|D|) by Algorithm 2.
Secondly, since RG(D) is acyclic, then regions in D\Π can be labelled as D\Π =

{R1, R2, · · · , RN} such that ℓ < ℓ′ if Rℓ is a parent of Rℓ′ . Then for each ℓ ∈ [n], by the

following Algorithm 3, we can label all regions R ∈ D\Π in time O(|D|) such that for each

m ∈ [n], R → Tm if and only if R is labelled with m. Hence, the time complexity for �nding

the subset ΩI for all I ⊆ [n] and determining whether RG(D) is terminal-separable is O(|D|).

Algorithm 3: Labelling (RG(D))

ℓ← from N to 1

if Rℓ = Tm for some m ∈ [n] then

Label Rℓ with m;

else if Rℓ has a child Rℓ′ such that Rℓ′ is labelled with

m then

Label Rℓ with m;

Fig 5. Labelling the regions in D\Π, where D\Π = {R1, R2, · · · , RN} such that ℓ < ℓ′ if Rℓ is a parent of Rℓ′ .

The following is a motivating example for the notion of terminal-separability.
Example 4.6: The region graph RG(D) in Fig. 3 (a) is not terminal-separable because Ω2,3 =

{Q} ̸= ∅. However, we can consider the subgraph RG(D) of RG(D), where D = D\{T2, T3}
and view T1 and Q as the terminal regions, then RG(D) is terminal separable (To see this,

note that in RG(D), Ω1,2 = ∅ with T2 set to be Q). Note that RG(D) can be solved by C̃D =
{dR;R ∈ D} with dR1 = dR2 = α1, dR3 = α2 + α3 and dT1 = dQ = α1 + α2 + α3 (Recall

that α1 = (1, 0, 0), α2 = (0, 1, 0), α3 = (0, 0, 1) denote the encoding vectors of the source

messages.). Clearly, we can extend C̃D to a linear network code solving RG(D) by letting

dT2 = dT3 = α1 + α2 + α3.
In general, we have the following theorem.
Theorem 4.7: If RG(D) is not terminal-separable, then there exists a subgraph RG(D) of

RG(D) such that RG(D) is terminal-separable with n′ < n terminal regions. Moreover, if

RG(D) is solvable then RG(D) is solvable.
Proof: Since RG(D) is not terminal-separable, there exists an I ⊆ [n] such that |I| > 1

and ΩI ̸= ∅. Let D1 = D \ {Ti; i ∈ I} and RG(D1) be the subgraph of RG(D) induced by D1

and pick an Ri1 ∈ ΩI as a terminal region of RG(D1). Then RG(D1) has n1 = n− |I|+ 1 < n
terminal regions and clearly, any linear network code solving RG(D1) can be extended to one

that solves RG(D). So, if RG(D1) is solvable, then RG(D) is solvable.
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If RG(D1) is terminal-separable, we are done. Otherwise, by a similar discussion, there exists

a subgraph RG(D2) such that RG(D2) has n2 < n1 terminal regions and if RG(D2) is solvable,
then RG(D1) is solvable, and so on. Note that any region graph with one terminal region is

terminal-separable. We can �nally �nd a sequence of subgraphs RG(Dj), j = 1, 2, · · · , t, where
1 ≤ t < n, satisfying: 1) RG(Dt) is terminal-separable; 2) For j = 1, 2, · · · , t, RG(Dj) has

nj < nj−1 terminal regions and if RG(Dj) is solvable, then RG(Dj−1) is solvable, where

D0 = D and n0 = n.
In what follows, for a terminal-separable RG(D), we use Λi to denote the set of all R ∈ Π

such that R has a child Q ∈ Ωi. As an example, for the region graph in Fig. 3 (b), we have

Λ1 = {S1, R5}, Λ2 = {R2, R4} and Λ3 = {R2, R3, R5}. Since Tℓ /∈ reg(Si, Sj) for all ℓ ∈ [n]
and all {i, j} ⊆ {1, 2, 3}, we have Λℓ * reg(Si, Sj), and hence, |Λℓ| ≥ 2.
De�nition 4.8: For a terminal-separable network G, we say a linear network code C̃Π =

{dR;R ∈ Π} solves Π, or equivalently, C̃Π is a solution to Π, if

ᾱ ∈ ⟨dR;R ∈ Λj⟩ for all j ∈ [n]. (3)

And we say Π is solvable if there exists a linear network code that solves Π, and unsolvable

otherwise.

The following theorem gives a necessary and suf�cient condition for the solvability of RG(D),
which, together with Theorem 3.4, further gives one for the solvability of a terminal-separable

network G.

Theorem 4.9: For a terminal-separable network G, RG(D) is solvable if and only if Π is

solvable.

Proof: Suppose that C̃ = {dR;R ∈ D} solves RG(D). Consider C̃Π = {dR;R ∈ Π}, the
restriction of C̃ to Π. Clearly, for each j ∈ [n] and Q ∈ Ωj , dQ ∈ ⟨dR;R ∈ Λj⟩ and in particular,

ᾱ = dTj
∈ ⟨dR;R ∈ Λj⟩, which means that C̃Π solves Π.

Conversely, suppose a linear network code C̃Π = {dR;R ∈ Π} solves Π, i.e., for each j ∈ [n],
ᾱ ∈ ⟨dR;R ∈ Λj⟩. Noticing that all Ωj's are mutually exclusive, it is easy to see that C̃Π can

be extended to each Ωj and obtain a code C̃Ωj
such that dTj

= ᾱ. Hence, the newly constructed

code C̃ = C̃Π ∪
(
∪n

j=1C̃Ωj

)
solves RG(D).

V. SOLVABILITY OF TERMINAL-SEPARABLE SUM-NETWORKS

In this section, we will give polynomial-time checkable necessary and suf�cient conditions for

the solvability of a terminal-separable 3s/nt sum-network G. By Theorem 4.9, this can be done

by considering the solvability of Π.
The following simple lemma will be frequently used in our proofs.

Lemma 5.1: Let a linear network code C̃Π = {dR ∈ F3;R ∈ Π} be a solution to Π. If, for
some j ∈ [n], Λj = {R′, R′′}, then ⟨dR′ , dR′′⟩ = ⟨ᾱ, dR′⟩ = ⟨ᾱ, dR′′⟩.

Proof: Since C̃Π solves Π, ᾱ ∈ ⟨dR′ , dR′′⟩. On the other hand though, by De�nition 4.1 and

Lemma 3.6, we have dR′ ∈ ⟨αi, αj⟩ and dR′′ ∈ ⟨αi, αk⟩, for some {i, j, k} = {1, 2, 3} and hence

ᾱ /∈ ⟨dR′⟩ and ᾱ /∈ ⟨dR′′⟩, which immediately implies the lemma.

A. Three Motivating Examples

Before stating our result and detailing the proof, we give three examples to illustrate the key

ideas.

The following example typi�es how one can construct a solution for a solvable G.
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S1 S2 S3

R1 R2

R3

R4

R5

R6 R7

R8

R9

T1 T2 T3 T4 T5 T6

(a)

β
(1)
1 β

(2)
2 β

(3)
3

β
(4)
1,2 β

(4)
1,2

β
(4)
1,3

β
(5)
2,3

β
(4)
2,3

β
(4)
1,2 β

(3)
1,2

β
(3)
3

β
(3)
3

T1 T2 T3 T4 T5 T6

(b)

Fig 6. A solvable region graph and a solution on Π: (a) is the region graph, where the subset Π is partitioned into �ve classes (subsets)
∆1 = {S1}, ∆2 = {S2}, ∆3 = {S3, R7, R8, R9}, ∆4 = {R1, R2, R3, R5, R6} and ∆5 = {R4} (In this �gure, regions in the same class
have the same color); (b) shows the solution, where each region is labelled with its encoding vector.

Example 5.2: Consider the region graph in Fig. 6 (a). It can be easily checked that

reg◦(S1, S2) = {R1, R2, R6, R7}, reg◦(S1, S3) = {R3, R8}, reg◦(S2, S3) = {R4, R5, R9} and

hence Π = {S1, S2, S3, R1, . . . , R9}. Clearly, RG(D) is terminal-separable and Ωj = {Tj} for

j = 1, · · · , 6. Moreover, Λ1 = {R2, R5}, Λ2 = {R1, R5}, Λ3 = {R7, R8}, Λ4 = {S3, R7},
Λ5 = {R3, R6}, Λ6 = {R7, R9}.
We next determine the solvability of RG(D), which, by Theorem 4.9, is equivalent to determine

whether there exists a linear network code satisfying the condition (3). To this end, we �rst show

that Π can be partitioned into �ve classes such that if C̃Π = {dR ∈ F3;R ∈ Π} is a solution to

Π, then the encoding vectors of all regions in each class is uniquely determined by the encoding

vector of a �xed region in the same class (up to a scalar multiplication).

� Note that {S3, R7} = Λ4, which, by Lemma 5.1, implies that ⟨dS3 , ᾱ⟩ = ⟨dR7 , ᾱ⟩. Similarly,

it follows from {R7, R8} = Λ3 and {R7, R9} = Λ6 that ⟨dR7 , ᾱ⟩ = ⟨dR8 , ᾱ⟩ and ⟨dR7 , ᾱ⟩ =
⟨dR9 , ᾱ⟩. So,

⟨dS3 , ᾱ⟩ = ⟨dR7 , ᾱ⟩ = ⟨dR8 , ᾱ⟩ = ⟨dR9 , ᾱ⟩,
and we obtain a class of regions {S3, R7, R8, R9}.
Now, we show that dR7 , dR8 and dR9 are uniquely determined (up to a scalar multiplication).

Note that for any linear network code solution, dS3 = α3 and hence ⟨dS3 , ᾱ⟩ = ⟨α3, ᾱ⟩.
From Fig. 6 (a), we have R7 ∈ reg◦(S1, S2), and thereby dR7 ∈ ⟨dS1 , dS2⟩ = ⟨α1, α2⟩, and

hence,

dR7 ∈ ⟨dS3 , ᾱ⟩ ∩ ⟨α1, α2⟩ = ⟨α3, ᾱ⟩ ∩ ⟨α1, α2⟩ = ⟨α1 + α2⟩.
Similarly, it follows from R8 ∈ reg◦(S1, S3) and R9 ∈ reg◦(S2, S3) that

dR8 ∈ ⟨dS3 , ᾱ⟩ ∩ ⟨α1, α3⟩ = ⟨α3, ᾱ⟩ ∩ ⟨α1, α3⟩ = ⟨α3⟩
and

dR9 ∈ ⟨dS3 , ᾱ⟩ ∩ ⟨α2, α3⟩ = ⟨α3, ᾱ⟩ ∩ ⟨α2, α3⟩ = ⟨α3⟩.
� Similarly as above, from the fact that {R1, R5} = Λ2, {R2, R5} = Λ1 and {R1, R2} ⊆

reg◦(S1, S2), we deduce that

⟨dR1 , ᾱ⟩ = ⟨dR5 , ᾱ⟩ = ⟨dR2 , ᾱ⟩
and

dR1 , dR2 ∈ ⟨dR5 , ᾱ⟩ ∩ ⟨α1, α2⟩.
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Note that ⟨dR5 , ᾱ⟩ and ⟨α1, α2⟩ are two different 2-dimensional subspaces of F3, which

immediately implies that

⟨dR1⟩ = ⟨dR2⟩ = ⟨dR5 , ᾱ⟩ ∩ ⟨α1, α2⟩.

From Fig. 6 (a), one veri�es that R6 ∈ reg(R1, R2), which implies that dR6 ∈ ⟨dR1 , dR2⟩. It then
follows that

⟨dR6⟩ = ⟨dR1⟩ = ⟨dR2⟩ = ⟨dR5 , ᾱ⟩ ∩ ⟨α1, α2⟩

and

⟨dR6 , ᾱ⟩ = ⟨dR1 , ᾱ⟩ = ⟨dR2 , ᾱ⟩ = ⟨dR5 , ᾱ⟩.

Moreover, from the fact that {R3, R6} = Λ5 and R3 ∈ reg◦(S1, S3), we deduce that

⟨dR3 , ᾱ⟩ = ⟨dR6 , ᾱ⟩ = ⟨dR1 , ᾱ⟩ = ⟨dR2 , ᾱ⟩ = ⟨dR5 , ᾱ⟩.

and

⟨dR3⟩ = ⟨dR5 , ᾱ⟩ ∩ ⟨α1, α3⟩,

obtaining another class {R1, R2, R3, R5, R6} such that the encoding vectors of all regions can

be determined by the encoding vector of a �xed region, say, e.g., R5.

� Following from the above discussions, we obtain a partition I = {∆1,∆2,∆3,∆4,∆5} of

Π, where ∆1 = {S1}, ∆2 = {S2}, ∆3 = {S3, R7, R8, R9}, ∆4 = {R1, R2, R3, R5, R6} and

∆5 = {R4} are the resulting classes such that the encoding vector of all regions in each class is

uniquely determined by the encoding vector of a �xed region in the same class (up to a scalar

multiplication). Furthermore, each class of I can be partitioned into subclasses such that all

regions in the same subclass share a same encoding vector (again, up to a scalar multiplication).

That is to say,

∆3 = [∆3]3 ∪ [∆3]1,2,

where,

[∆3]1,2 = ∆3 ∩ reg(S1, S2) = {R7},
[∆3]3 = ∆3 ∩ (reg(S1, S3) ∪ reg(S2, S3)) = {S3, R8, R9};

and

∆4 = [∆4]1,2 ∪ [∆4]1,3 ∪ [∆4]2,3,

where

[∆4]1,2 = ∆4 ∩ reg(S1, S2) = {R1, R2, R6},
[∆4]1,3 = ∆4 ∩ reg(S1, S3) = {R3},
[∆4]2,3 = ∆4 ∩ reg(S2, S3) = {R5}.

Note that, adopting the above notions, the singleton class ∆1, ∆2 and ∆5 can also be written

into the union of subclasses. That is,

∆1 = [∆1]1 ∪ [∆1]2,3,

where,

[∆1]2,3 = ∆1 ∩ reg(S2, S3) = ∅,
[∆1]1 = ∆1 ∩ (reg(S1, S2) ∪ reg(S1, S3)) = {S1};

∆2 = [∆2]2 ∪ [∆2]1,3,
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where,

[∆2]1,3 = ∆2 ∩ reg(S2, S3) = ∅,
[∆2]2 = ∆2 ∩ (reg(S1, S2) ∪ reg(S2, S3)) = {S2};

and

∆5 = [∆5]1,2 ∪ [∆5]1,3 ∪ [∆5]2,3,

where

[∆5]1,2 = ∆5 ∩ reg(S1, S2) = ∅,
[∆5]1,3 = ∆5 ∩ reg(S1, S3) = ∅,
[∆5]2,3 = ∆5 ∩ reg(S2, S3) = {R4}.

� Based on the subclasses of the partition I = {∆1,∆2,∆3,∆4,∆5}, we construct a code

C̃Π = {dR ∈ F3;R ∈ Π} as illustrated in Fig. 6 (b), where β
(1)
1 = α1, β

(2)
2 = α2, β

(3)
3 = α3,

β
(3)
1,2 = α1 + α2, β

(4)
1,2 = α1 + 3α2, β

(4)
1,3 = 2α1 + 3α3, β

(4)
2,3 = 2α2 − α3, β

(5)
2,3 = α2 − 2α3, and

F = GF (5). It is easy to check that C̃Π solves Π and hence RG(D) is solvable.

S1 S2 S3

P2 P1

P3

T1 T2 T3

(a)

S1 S2 S3

P2
P4

P1

P3

T1 T2 T3

P5

(b)

Fig 7. Two unsolvable region graphs

Each of the following two examples typi�es a reason that G fails to be solvable.

Example 5.3: Let RG(D) be the region graph as in Fig. 7 (a). It can be veri�ed that RG(D)
is terminal-separable with reg(S1, S2) = {S1, S2, P2, P3}, reg(S1, S3) = {S1, S3}, reg(S2, S3) =
{S2, S3, P1}, Ωj = {Tj} for j ∈ {1, 2, 3}, Λ1 = {S1, P1}, Λ2 = {P1, P2}, Λ3 = {S3, P3}.
We will show that RG(D) is unsolvable. Suppose, by way of contradiction, that there is a

solution C̃Π = {dR ∈ F3;R ∈ Π} to Π. Noting that {S1, P1} = Λ1 and {P1, P2} = Λ2 and

applying Lemma 5.1, we infer that

⟨dP2 , ᾱ⟩ = ⟨dP1 , ᾱ⟩ = ⟨dS1 , ᾱ⟩.

And from the fact that P2 ∈ reg(S1, S2), we further deduce

⟨dP2⟩ = ⟨dS1 , ᾱ⟩ ∩ ⟨α1, α2⟩ = ⟨dS1⟩. (4)

Moreover, we note that P3 ∈ reg(S1, P2) and thereby ⟨dP3⟩ ∈ ⟨dP2 , dS1⟩, which, together with
(4), immediately leads to

⟨dP3⟩ = ⟨dP2⟩ = ⟨dS1⟩

and

⟨dP3 , ᾱ⟩ = ⟨dP2 , ᾱ⟩ = ⟨dP1 , ᾱ⟩ = ⟨dS1 , ᾱ⟩.
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Furthermore, noting {S3, P3} = Λ3 and applying Lemma 5.1, we have

⟨dS3 , ᾱ⟩ = ⟨dP3 , ᾱ⟩ = ⟨dS1 , ᾱ⟩. (5)

So, similarly as in Example 5.2, we can partition Π into classes ∆1 = {S1, P1, P2, P3, S3} and

∆2 = {S2}.
On the other hand, from the fact that ⟨dS1 , dS3 , ᾱ⟩ = ⟨α1, α3, ᾱ⟩ has dimension 3, we infer

that

⟨dS3 , ᾱ⟩ ̸= ⟨dS1 , ᾱ⟩,
which however contradicts (5).

Example 5.4: Let RG(D) be the region graph as in Fig. 7 (b). It can be veri�ed that

RG(D) is terminal-separable with reg(S1, S2) = {S1, S2, P2, P3}, reg(S1, S3) = {S1, S3, P4, P5},
reg(S2, S3) = {S2, S3, P1}, Ωj = {Tj} for j ∈ {1, 2, 3}, Λ1 = {S1, P1}, Λ2 = {P1, P2},
Λ3 = {P3, P4, P5}.
Now, we show that RG(D) is unsolvable. Suppose, by way of contradiction, there is a solution

C̃Π = {dR ∈ F3;R ∈ Π} to Π. Starting from the fact Λ1 = {S1, P1}, Λ2 = {P1, P2} and

P3 ∈ reg(S1, P2) and going through similar arguments as in Example 5.2, we obtain a class

{S1, P1, P2, P3} such that

⟨dP3 , ᾱ⟩ = ⟨dP2 , ᾱ⟩ = ⟨dP1 , ᾱ⟩ = ⟨dS1 , ᾱ⟩.
So, parallel to Example 5.2, we can partition Π into classes ∆1 = {S1, P1, P2, P3}, ∆2 = {S2},
∆3 = {S3}, ∆4 = {P4} and ∆5 = {P5}. Note that from Fig. 7 (b), we know that

P3 ∈ [∆1]1 = ∆1 ∩ (reg(S1, S2) ∪ reg(S1, S3))

and we have

⟨dP3⟩ ∈ ⟨dS1 , ᾱ⟩ ∩ (⟨α1, α2⟩ ∪ ⟨α1, α3⟩) = ⟨α1⟩.
On the other hand, from {P4, P5} ⊆ reg(S1, S3), we deduce that dP4 , dP5 ∈ ⟨dS1 , dS3⟩ =

⟨α1, α3⟩, and hence ⟨dP3 , dP4 , dP5⟩ ⊆ ⟨α1, α3⟩. This, together with the fact that Λ3 = {P3, P4, P5},
implies that

⟨dR;R ∈ Λ3⟩ = ⟨dP3 , dP4 , dP5⟩ ⊆ ⟨α1, α3⟩,
which however contradicts the condition (3).

B. Characteristic Partition

As hinted by the three examples above, the basic idea for determining the solvability of a

terminal-separable region graph is to check whether certain partition of Π has some desired

properties. In this section, we formalize this idea in the general setting, which will lead to

necessary and suf�cient conditions for the solvability in the next subsection.

First of all, we introduce more new notations and de�nitions about partitions of Π as follows.

Let I = {∆1,∆2, . . . ,∆K} be a partition of Π, where each ∆j will be referred to as a class

of I in the sequel. For any R ∈ Π, we use [R] to denote the class that contains R. A partition is

said to be singular if [Si] = [Sj] for some distinct i, j ∈ {1, 2, 3}, and non-singular otherwise.

For ease of presentation, throughout the paper, for any aforementioned non-singular partition,

we assume that ∆1 = [S1], ∆2 = [S2] and ∆3 = [S3], as in the three previous examples.

Given a class ∆ℓ ∈ I and {j, k} ⊆ {1, 2, 3}, letting
[∆ℓ]j,k := ∆ℓ ∩ reg(Sj, Sk),

we further partition ∆ℓ into subclasses as follows:



13

• If ∆ℓ ∩ {S1, S2, S3} = ∅, then ∆ℓ can be partitioned into three disjoint subclasses

[∆ℓ]1,2, [∆ℓ]1,3 and [∆ℓ]2,3.
• If ∆ℓ = [Si] and ∆ℓ ̸= [Sj], ∆ℓ ̸= [Sk], where {i, j, k} = {1, 2, 3}, then ∆ℓ can be partitioned

into two subclasses [Si]i := [Si]i,j ∪ [Si]i,k and [Si]j,k.
• If ∆ℓ = [Si] = [Sj] for some {i, j} ⊆ {1, 2, 3}, then ∆ℓ has only one subclass, that is, itself.

Clearly, all the subclasses still form a partition, which is a re�nement of the partition I. We use

[[R]] to denote the subclass which contains region [R].
Now, we introduce an equivalent relation between two classes of a non-singular partition I,

which is a key notion of our treatment. Two classes ∆r and ∆s of I are said to be equivalent if

one of the following conditions holds: 1) There is a subclass [[R′]] of ∆r and a subclass [[R′′]]
of ∆s such that Λj ⊆ [[R′]] ∪ [[R′′]] for some j ∈ [n]; or 2) There exists {i, j} ⊆ {1, 2, 3} such

that reg([∆r]i,j) ∩ reg([∆s]i,j) ̸= ∅.
De�nition 5.5 (Characteristic Partition): Starting from the partition I0 , {[R] = {R};R ∈

Π}, Algorithm 4 in Fig. 8 repeatedly merges two equivalent classes until [Si] = [Sj] for some

distinct i, j ∈ {1, 2, 3}, or there are no equivalent classes left. The resulting partition, denoted

by Ic, is called a characteristic partition of Π.

Algorithm 4: Partitioning (Π)

L = 0;

while there are ∆r,∆s ∈ IL which are equivalent do

Let IL+1 be a contraction of IL by combining ∆r

and ∆s;

L = L+ 1;

If [Si] = [Sj ] for some {i, j} ⊆ {1, 2, 3} then
break;

Ic = IL;
Return Ic;

Fig 8. An algorithm for computing the characteristic partition

Remark 5.6: Clearly, the while-loop of Algorithm 4 has at most |I0| = |Π| rounds, which
means that, in each round, it needs a polynomial in n time to determine whether there are two

equivalent classes. And overall, Algorithm 4 can output Ic in a polynomial in {|Π|, n} time.

We also remark that if RG(D) is solvable, then Π has a unique characteristic partition, the

proof of which is omitted since it is tedious and not needed for the main result of this paper.

On the other hand though, if RG(D) is unsolvable, the characteristic partition of Π may not

be unique. For example, consider the region graph in Fig. 9. Let I1 = {[S1], [S3], [P1]} such

that [S1] = {S1, P3, P2, S2}, [S3] = {S3}, [P1] = {P1} and I2 = {[S1], [S2], [P2]} such that

[S1] = {S1, P3, P1, S3}, [S2] = {S2}, [P2] = {P2}. It can be checked that I1 and I2 are both

characteristic partitions of Π.
We have the following Lemma for the characteristic partition.

Lemma 5.7: Let C̃Π = {dR;R ∈ Π} be a solution to Π and Ic be a characteristic partition of

Π. Then, for any R ∈ Π, the following statements hold:

1) If Q,Q′ ∈ [R], then ⟨dQ′ , ᾱ⟩ = ⟨dQ, ᾱ⟩;
2) If Q,Q′ ∈ [[R]], then ⟨dQ′⟩ = ⟨dQ⟩.

Proof: First of all, we prove that for any partition I of Π and any class [R] ∈ I, if 1) holds
then 2) holds. To this end, we consider the following two cases:
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S1 S2 S3

P1 P2 P3

T1 T2 T3 T4 T5

Fig 9. An example of unsolvable region graph

(1) If [[R]] = [Si]i, then, for any Q ∈ [Si]i, by 1), ⟨dQ, ᾱ⟩ = ⟨dSi
, ᾱ⟩ = ⟨αi, ᾱ⟩, so dQ ∈ ⟨αi, ᾱ⟩.

Moreover, by the de�nition of subclass [Si]i, we have dQ ∈ ⟨αi, αj⟩ ∪ ⟨αi, αk⟩, where
{i, j, k} = {1, 2, 3}. Then, dQ ∈ ⟨αi, ᾱ⟩ ∩ (⟨αi, αj⟩ ∪ ⟨αi, αk⟩) = ⟨αi⟩.

(2) If [[R]] = [R]j,k and R ̸= Sj, Sk, then, for any Q,Q′ ∈ [R]j,k, by 1), ⟨dQ, ᾱ⟩ = ⟨dQ′ , ᾱ⟩.
Moreover, by de�nition, dQ, dQ′ ∈ ⟨αj, αk⟩. Then, ⟨dQ⟩ = ⟨dQ, ᾱ⟩ ∩ ⟨αj, αk⟩ = ⟨dQ′ , ᾱ⟩ ∩
⟨αj, αk⟩ = ⟨dQ′⟩.

So we only need to prove 1). Let I0, I1, . . . , IL = Ic be a sequence of partitions yielded by

Algorithm 4 where each Iℓ is obtained by merging two equivalent classes of Iℓ−1. Below, we

will prove, by way of induction, that 1) holds for each Iℓ.

Obviously, 1) holds for I0 since for each class [R] ∈ I0, either [[R]] = {R} or [[R]] = ∅.
Now, suppose 1) holds (and thereby so does 2) by previous discussions) for Iℓ−1, we will prove

that it also holds for Iℓ. If [R] ∈ Iℓ is also a class of Iℓ−1, then there is nothing to prove, so

suppose [R] = [R′] ∪ [R′′] for some distinct [R′], [R′′] ∈ Iℓ−1. We need deal with the following

two cases:

Case 1: There is a Λj ⊆ [[R′]]∪ [[R′′]]. For this case, note that by the induction assumption, all

the regions of [[R′]] (also [[R′′]]) share a same encoding vector, so we can assume ᾱ ∈ ⟨dR;R ∈
Λj⟩ = ⟨dP ′ , dP ′′⟩ for some P ′ ∈ Λj∩[[R′]] and P ′′ ∈ Λj∩[[R′′]], and so ⟨dP ′ , ᾱ⟩ = ⟨dP ′′ , ᾱ⟩. Again
by the induction assumption, for each W ′ ∈ [R′] and W ′′ ∈ [R′′], we have ⟨dW ′ , ᾱ⟩ = ⟨dP ′ , ᾱ⟩
and ⟨dW ′′ , ᾱ⟩ = ⟨dP ′′ , ᾱ⟩. Hence, for any Q,Q′ ∈ [R] = [R′]∪ [R′′], we have ⟨dQ′ , ᾱ⟩ = ⟨dQ, ᾱ⟩.
Case 2: There exists {i, j} ⊆ {1, 2, 3} such that reg([R′]i,j) ∩ reg([R′′]i,j) ̸= ∅. Without loss

of generality, we can assume that there exists a Q0 ∈ reg([R′]i,j) ∩ reg([R′′]i,j). By Lemma 3.6

and the induction assumption, we have dQ0 ∈ ⟨dP ′ ;P ′ ∈ reg([R′]i,j)⟩ = ⟨dP ′⟩ for any P ′ ∈
reg([R′]i,j). Similarly, dQ0 ∈ ⟨dP ′′ ;P ′′ ∈ reg([R′′]i,j)⟩ = ⟨dP ′′⟩ for any P ′′ ∈ reg([R′′]i,j). Hence,
by the induction assumption, for any Q,Q′ ∈ [R] = [R′] ∪ [R′′], ⟨dQ′ , ᾱ⟩ = ⟨dQ0 , ᾱ⟩ = ⟨dQ, ᾱ⟩.
Having dealt with the two cases above, we conclude that 1) holds for Iℓ, and thereby holds

for Ic, as desired.

C. Necessary and Suf�cient Conditions for the Solvability

First of all, we introduce the notion of regular partition as follows.

De�nition 5.8 (Regular Partition): A non-singular partition I = {∆1,∆2, . . . ,∆K} is said to

be regular if there are no equivalent classes in I and for all ℓ ∈ [n] and all {j, k} ⊆ {1, 2, 3},

Λℓ * [Sj]j ∪ [Sk]k ∪ reg(Sj, Sk).

For example, it can be veri�ed that the characteristic partition obtained in Example 5.2 is

regular, and the one obtained in Example 5.3 is not regular since it is singular and the one

obtained in Example 5.4 is not regular since Λ3 ⊆ [S1]1 ∪ reg(S1, S3).
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For i = 1, 2, 3, let Bi = {β(i)
i , β

(i)
j,k} with β

(i)
i = αi and β

(i)
j,k = αj + αk, where {j, k} =

{1, 2, 3}\{i}. The following lemma lays the foundation for our code construction.
Lemma 5.9: Let K ≥ 4. For a suf�ciently large �nite �eld F, there exist K − 3 sets, Bℓ =

{β(ℓ)
1,2, β

(ℓ)
1,3, β

(ℓ)
2,3} ⊆ F3, ℓ = 4, · · · , K, such that the following properties are satis�ed:

1) For any ℓ ∈ [K] and {i, j} ⊆ {1, 2, 3}, β(ℓ)
i,j ∈ ⟨αi, αj⟩;

2) For any ℓ ∈ [K] and {γ, γ′} ⊆ Bℓ, ᾱ ∈ ⟨γ, γ′⟩;
3) For any pair {γ, γ′} ⊆

∪K
ℓ=1 Bℓ, γ and γ′ are linearly independent;

4) For any triple {γ, γ′, γ′′} ⊆
∪K

ℓ=1 Bℓ satisfying {γ, γ′, γ′′} * ⟨αi, αj⟩ (∀{i, j} ⊆ {1, 2, 3})
and {γ, γ′, γ′′} ̸= {β(ℓ)

1,2, β
(ℓ)
1,3, β

(ℓ)
2,3} (∀ℓ ∈ {4, · · · , K}), γ, γ′ and γ′′ are linearly independent.

Proof: We prove the lemma by way of induction. First of all, it is easy to check that B1,

B2, B3 satisfy the properties 1)−4). Now, for K ≥ 4 suppose there are K−1 sets B1, · · · ,BK−1

satisfy the properties 1)−4). In the following, we construct a subset BK = {β(K)
1,2 , β

(K)
1,3 , β

(K)
2,3 }

such that B1, · · · ,BK satisfy the properties 1)−4). To do this, let ΦK−1 be the set of all pairs

{γ′, γ′′} ⊆
∪K−1

ℓ=1 Bℓ such that {γ′, γ′′} * ⟨αi, αj⟩ for all {i, j} ⊆ {1, 2, 3} and let

ΨK−1 =
∪

{γ′,γ′′}∈ΦK−1

{⟨γ′, γ′′⟩1,2, ⟨γ′, γ′′⟩1,3, ⟨γ′, γ′′⟩2,3},

where for each {i, j} ⊆ {1, 2, 3},
⟨γ′, γ′′⟩i,j = ⟨γ′, γ′′⟩ ∩ ⟨αi, αj⟩.

Since F is suf�ciently large, there exists a β(K) ∈ F3 such that β(K) /∈ ⟨ᾱ, γ⟩ for all γ ∈ ΨK−1.

Then for each {i, j} ⊆ {1, 2, 3}, choose β
(K)
i,j such that

0 ̸= β
(K)
i,j ∈ ⟨β(K), ᾱ⟩ ∩ ⟨αi, αj⟩,

and let BK = {β(K)
1,2 , β

(K)
1,3 , β

(K)
2,3 }. Then, it is easy to see that B1, · · · ,BK satisfy the properties

1)−4), which completes the proof.
Example 5.10: We give several examples to illustrate the construction in Lemma 5.9.
ForK = 4, we have Φ3 = {{α1, α2+α3}, {α2, α1+α3}, {α3, α1+α2}, {α1+α2, α1+α3}, {α1+

α2, α2+α3}, {α1+α3, α2+α3}}. Correspondingly, Ψ3 = {⟨α1⟩, ⟨α2+α3⟩}∪{⟨α2⟩, ⟨α1+α3⟩}∪
{⟨α3⟩, ⟨α1+α2⟩}∪{⟨α1+α2⟩, ⟨α1+α3⟩, ⟨α2−α3⟩}∪{⟨α1+α2⟩, ⟨α2+α3⟩, ⟨α1−α3⟩}∪{⟨α1+
α3⟩, ⟨α2 +α3⟩, ⟨α1 −α2⟩} = {⟨α1⟩, ⟨α2⟩, ⟨α3⟩, ⟨α1 +α2⟩, ⟨α1 +α3⟩, ⟨α2 +α3⟩, ⟨α1 −α2⟩, ⟨α1 −
α3⟩, ⟨α2 − α3⟩}. Then we can choose β(4) = α1 + 3α2 and β

(4)
1,2 = α1 + 3α2, β

(4)
1,3 = 2α1 + 3α3,

β
(4)
2,3 = 2α2 − α3, and furthermore, we obtain B4 = {α1 + 3α2, 2α1 + 3α3, 2α2 − α3}.
For K = 5, we have Φ4 = Φ3 ∪ {{α1 + 3α2, 2α1 + 3α3}, {α1 + 3α2, 2α2 − α3}, {2α1 +

3α3, 2α2−α3}, {α1+3α2, α3}, {α1+3α2, α1+α3}, {α1+3α2, α2+α3}, {2α1+3α3, α2}, {2α1+
3α3, α1+α2}, {2α1+3α3, α2+α3}, {2α2−α3, α1}, {2α2−α3, α1+α2}, {2α2−α3, α1+α3}}.
Correspondingly, Ψ4 = Ψ3∪{⟨α1+3α2⟩, ⟨2α1+3α3⟩, ⟨2α2−α3⟩}∪{⟨α1+3α2⟩, ⟨α3⟩}∪{⟨α1+
3α2⟩, ⟨α1+α3⟩, ⟨3α2−α3⟩}∪{⟨α1+3α2⟩, ⟨α2+α3⟩, ⟨α1−3α3⟩}∪{⟨2α1+3α3⟩, ⟨α2⟩}∪{⟨2α1+
3α3⟩, ⟨α1+α2⟩, ⟨3α3−2α2⟩}∪{⟨2α1+3α3⟩, ⟨α2+α3⟩, ⟨2α1−3α2⟩}∪{⟨2α2−α3⟩, ⟨α1⟩}∪{⟨2α2−
α3⟩, ⟨α1 + α2⟩, ⟨2α1 + α3⟩} ∪ {⟨2α2 − α3⟩, ⟨α1 + α3⟩, ⟨α1 + 2α2⟩} = Ψ3 ∪ {⟨α1 + 3α2⟩, ⟨2α1 +
3α3⟩, ⟨2α2−α3⟩, ⟨3α2−α3⟩, ⟨α1−3α3⟩, ⟨3α3−2α2⟩, ⟨2α1−3α2⟩, ⟨2α1+α3⟩, ⟨α1+2α2⟩}. Then
we can choose β(5) = 2α1 + 3α2 and β

(5)
1,2 = 2α1 + 3α2, β

(5)
1,3 = α1 + 3α3, β

(5)
2,3 = α2 − 2α3, and

furthermore, we obtain B5 = {2α1 + 3α2, α1 + 3α3, α2 − 2α3}.
In a similar fashion, we can inductively construct B6,B7, and so on.
We next state and prove a key lemma in this section, which will also be used as a basic tool

in the sequel.
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Lemma 5.11: If there exists a regular partition of Π, then we can construct a solution to Π
and hence RG(D) is solvable.

Proof: Let I = {∆1,∆2, . . . ,∆K} be a regular partition of Π, where we have chosen ∆i

to be [Si] for any i = 1, 2, 3. For i ∈ {1, 2, 3}, let

dR =

{
β
(i)
i = αi, if R ∈ [Si]i,

β
(i)
j,k = αj + αk, if R ∈ [Si]j,k,

(6)

where {j, k} = {1, 2, 3}\{i}. If 4 ≤ ℓ ≤ K, then for any {j, k} ⊆ {1, 2, 3} and any R ∈ [∆ℓ]j,k,
let

dR = β
(ℓ)
j,k ,

where {β(ℓ)
1,2, β

(ℓ)
1,3, β

(ℓ)
2,3}, ℓ = 4, · · · , K, are constructed by Lemma 5.9. We will prove that C̃Π :=

{dR;R ∈ Π} is a solution to Π in the following three steps:
1) Since I is a regular partition, I is non-singular, and so [Si] ≠ [Sj] if i ̸= j. It then follows

that dSi
= αi, i = 1, 2, 3.

2) In the following, for any R ∈ Π \ {S1, S2, S3}, we prove dR ∈ ⟨dQ;Q ∈ In(R)⟩. Firstly, it
follows from I has no equivalent classes that we have [∆ℓ]i,j = reg([∆ℓ]i,j) for each ℓ ∈ [K] and
{i, j} ⊆ {1, 2, 3} (since otherwise there would exist an R ∈ reg([∆ℓ]i,j)\[∆ℓ]i,j and therefore

[R] and [∆ℓ] are equivalent, a contradiction). Hence, we need consider the following two cases:

• In(R) ⊆ [[R]]. In this case, R and In(R) are in the same subclass. Clearly, dR ∈ ⟨dQ;Q ∈
In(R)⟩.

• There exist R′, R′′ ∈ In(R) that belong to two different subclasses. In this case, {R,R,R′′} ⊆
reg(Sj, Sk) for some {j, k} ⊆ {1, 2, 3}. Then, by 1) of Lemma 5.9, dR, dR′ , dR′′ ∈ ⟨αj, αk⟩.
By 3) of Lemma 5.9, we infer that dR′ , dR′′ are linearly independent, and thereby dR ∈
⟨dR′ , dR′′⟩ = ⟨αj, αk⟩ = ⟨dQ;Q ∈ In(R)⟩.

Based on 1) and 2), we conclude now that C̃Π is a linear network code on Π. We next show

that C̃Π is a solution to Π, for which we need to deal with the following two cases:

• Λj intersects with at least two different subclasses of some ∆ℓ ∈ I. Assume {Q′, Q′′} ⊆
Λj and Q′, Q′′ belong to different subclasses of ∆ℓ. By the construction of C̃Π, we have

{dQ′ , dQ′′} ⊆ Bℓ, so by 2) of Lemma 5.9, ᾱ ∈ ⟨dQ′ , dQ′′⟩ ⊆ ⟨dR;R ∈ Λj⟩.
• For each class ∆ℓ, Λj intersects with at most one subclass of ∆ℓ. Then Λj intersects

with at least three distinct classes because if only two classes intersect with Λj , they

would be equivalent and hence I would not be regular. Moreover, by De�nition 5.8,

Λj * [Si1 ]i1 ∪ [Si2 ]i2 ∪ reg(Si1 , Si2) for all {i1, i2} ⊆ {1, 2, 3}. So, suppose there exist

three distinct subclasses [[Q]], [[Q′]], [[Q′′]] intersect with Λj such that [[Q]]∪ [[Q′]]∪ [[Q′′]] *
[Si1 ]i1∪ [Si2 ]i2∪reg(Si1 , Si2), Then, by construction of the code and 4) of Lemma 5.9,dQ, dQ′

and dQ′′ are linearly independent, and hence ᾱ ∈ F3 = ⟨dQ, dQ′ , dQ′′⟩ ⊆ ⟨dR;R ∈ Λj⟩.
Finally, we note that the above discussions immediately lead to the conclusion that C̃Π =
{dR;R ∈ Π} is a solution to Π, as desired.
Now, we are ready to state and prove the main result of this section.
Theorem 5.12: The following statements are equivalent for a terminal-separable 3s/nt sum-

network G:

1) RG(D) is solvable.
2) Any characteristic partition of Π is regular.

3) There exists a regular partition of Π.
Proof: Note that 2) ⇒ (3) is trivial and 3) ⇒ (1) is nothing but Lemma 5.11. So in the

following we only need to prove 1) ⇒ 2).
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Suppose that RG(D) is solvable. Let C̃Π = {dR ∈ F3;R ∈ Π} is a solution to Π and let

Ic={∆1,∆2, . . . ,∆K} be a characteristic partition of Π.
First of all, we note that Ic is non-singular, that is, [Si] ̸= [Sj] for any distinct i, j ⊆ {1, 2, 3},

since otherwise we would have, by 1) of Lemma 5.7, ⟨αi, ᾱ⟩ = ⟨αj, ᾱ⟩, which is impossible

since ⟨αi, αj, ᾱ⟩ = F3. Then, by De�nition 5.5, there is no equivalent classes in Ic. Moreover,

we can have that Λℓ * [Sj]j ∪ [Sk]k∪ reg(Sj, Sk) for any ℓ ∈ [n] and any {j, k} ⊆ {1, 2, 3} since

otherwise, noticing that dR = αi for all R ∈ [Si]i (i ∈ {1, 2, 3}), we will have ᾱ ∈ ⟨αj, αk⟩, a
contradiction.
Remark 5.13: By Theorem 5.12, the regularity of characteristic partition Ic determines the

solvability of a terminal-separable 3s/nt network. By Remark 5.6, this can be done in a

polynomial in {|Π|, n} time.
As a corollary of Theorem 5.12, some suf�cient conditions for the solvability of a 3s/nt

sum-network G, which will be used in the next section, can be derived as follows.
Corollary 5.14: G is solvable if one of the following conditions hold.

1) Λj1∩ Λj2 =∅ for all {j1, j2}⊆ [n] with |Λj1|= |Λj2|=2;
2) Λj ⊆ Π\{S1, S2, S3} for all j ∈ [n];
3) There exists a subset {i1, i2} ⊆ {1, 2, 3} such that for all j ∈ [n], Λj ∩ reg◦(Si1 , Si2) ̸= ∅.

Proof: (1) Let A be the set of all j ∈ [n] such that |Λj| = 2 and let

I = {Λj; j ∈ A} ∪ {[R];R ∈ Π\(∪j∈AΛj)},
where [R] = {R} for all R ∈ Π\(∪j∈AΛj). It is easy to check by de�nition that I is regular,

hence by Lemma 5.11, RG(D) and thereby G is solvable (Fig. 10 gives such an example and

a solution).
(2) Let I = {∆1,∆2,∆3,∆4}, where ∆i = {Si}, i = 1, 2, 3, and ∆4 = Π\{S1, S2, S3}. Then

I is regular and hence G is solvable (Fig. 11 (a) gives such an example).
(3) Let {i3}={1, 2, 3}\{i1, i2} and let I={[Si1 ], [Si2 ], [Si3 ]}, where [Si1 ]={Si1}, [Si2 ]={Si2}

and [Si3 ] = Π\{Si1 , Si2}. The claimed result then follows from the fact that I is regular (see

Fig. 11 (b) for an example).

S1 S2 S3

Q1 R1 Q2

W P R2

T1 T2 T3 T4

(a)

β
(1)
1 β

(2)
2 β

(3)
3

β
(4)
1,2 β

(5)
1,3 β

(4)
2,3

β
(6)
1,2 β

(2)
1,3 β

(5)
2,3

T1 T2 T3 T4

(b)

Fig 10. A network and a solution exempli�es (1) of Corollary 5.14: (a) is a region graph with Λ1 = {S2, P},Λ2 = {W,P,R2},
Λ3 = {Q1, Q2},Λ4 = {R1, R2}. Let I = {[S1], [S2], [S3], [Q1], [R1], [W ]}, where [S1] = {S1}, [S2] = {S2, P}, [S3] = {S3},
[Q1] = {Q1, Q2}, [R1] = {R1, R2} and [W ] = {W}. (b) illustrates a solution to Π.

VI. FORBIDDEN STRUCTURES OF SOLVABLE 3-SOURCE 3-TERMINAL SUM-NETWORKS

In this section, we focus on the case k = n = 3, that is, G is a 3s/3t sum-network (not

necessarily terminal-separable). We will show that G is solvable if and only if its basic region

graph RG(D) does not contain certain forbidden structures.
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β
(1)
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2 β
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β
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β
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1 β
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β
(1)
2,3

T1 T2 T3
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Fig 11. A network and its solutions exemplify (2) and (3) of Corollary 5.14: in (a), Λℓ ⊆ Π\{S1, S2, S3} for ℓ = {1, 2, 3}; in (b),
Λℓ ∩ reg◦(S2, S3) ̸= ∅ for ℓ = 1, 2, 3.

More speci�cally, we have the following theorem.

Theorem 6.1: G is unsolvable if and only if RG(D) is terminal-separable and, by properly

labelling the regions, the following condition (FS stands for forbidden structures) holds:

(FS) There exist P1 ∈ reg◦(S2, S3) and P2 ∈ reg◦(S1, S2) such that Λi = {S1, P1}, Λj =
{P1, P2} and Λk ⊆ reg(S1, P2) ∪ reg(S1, S3), where {i, j, k} = {1, 2, 3}. (see Fig. 7 for two

typical examples satisfying the condition (FS) with i = 1, j = 2, k = 3).
By Theorem 3.3, RG(D) can be computed from G in time O(|E|). Moreover, by Theorem 4.5,

determining whether RG(D) is terminal-separable can be done in time O(|D|). Hence, Theo-
rem 6.1 suggests an O(|E|) time algorithm to determine the solvability of a 3s/3t sum-network,

which improves upon the previous O(|E|3) time complexity result in [6].

Before proving Theorem 6.1, we �rst prove the following lemma.

Lemma 6.2: If RG(D) is unsolvable, then RG(D) has three terminal regions and is terminal-

separable.

Proof: Note that the sum-network with one terminal region is always solvable. We �rst prove

that RG(D) is solvable if it has two terminal regions. If RG(D) is not terminal-separable, then

by Theorem 4.7, there exists a terminal-separable subgraph RG(D) with one terminal region,

which is clearly solvable, hence, RG(D) is solvable. If RG(D) is terminal-separable, we consider

the following cases.

• There exists i ∈ {1, 2} such that |Λi| ≥ 3 or |Λ1| = |Λ2| = 2, Λ1 ∩ Λ2 = ∅. Then, RG(D)
is solvable by 1) of Corollary 5.14.

• |Λ1| = |Λ2| = 2 and Λ1∩Λ2 ̸= ∅. In this case, we assume Λ1 = {Q1, Q2} and Λ2 = {Q1, Q3}
and have the following cases.

Case 1: Q1 = Si for some i ∈ {1, 2, 3}. Without loss of generality, assume Q1 = S1. Then,

since Λ1 * reg(S1, S2) and Λ1 * reg(S1, S3), we have Q2 ∈ reg◦(S2, S3). Similarly, we

have Q3 ∈ reg◦(S2, S3). Hence, RG(D) is solvable by 3) of Corollary 5.14.

Case 2: Q1 ∈ reg◦(Sj, Sk) for distinct {j, k} ⊆ {1, 2, 3}. Again, by 3) of Corollary 5.14,

RG(D) is solvable.

Combine the above discussions, we conclude that RG(D) is solvable if it has two terminal

regions.

Now, suppose RG(D) has three terminal regions and we prove that RG(D) is solvable if it is

not terminal-separable. By Theorem 4.7, there exists a terminal-separable subgraph RG(D) with
n′ < 3 terminal regions, which is solvable by above discussions, and hence, RG(D) is solvable,
which completes the proof.

We also need the following four lemmas, for which we will assume that RG(D) is terminal-

separable.
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Fig 12. Example of the code construction for Lemma 6.3: (a) is for {S1, S2, S3} ⊆ Λ3; (b) is for {S2, P} ⊆ Λ3.

Lemma 6.3: Suppose P1 ∈ reg◦(S1, S2) and P2, P3 ∈ reg◦(S2, S3) such that Λ1 = {P1, P2}
and Λ2 = {P1, P3}. Then, RG(D) is solvable.

Proof: If Λ3 ∩ (reg◦(S1, S2) ∪ reg◦(S2, S3)) ̸= ∅, then RG(D) satis�es the condition 3) of

Corollary 5.14, and hence is solvable. So we assume in the following that

Λ3 ⊆ Π \ (reg◦(S1, S2) ∪ reg◦(S2, S3)) = {S2} ∪ reg(S1, S3).

Note that Λ3 * reg(S1, S3). Then we have S2 ∈ Λ3. Similarly, since Λ3 * reg(S1, S2) and Λ3 *
reg(S2, S3), we deduce that either {S1, S2, S3} ⊆ Λ3 or {S2, P} ⊆ Λ3 for some P ∈ reg◦(S1, S3).
For both cases, letting I = {∆1,∆2,∆3,∆4}, where ∆1 = {S1}, ∆2 = {S2} ∪ reg◦(S1, S3),
∆3 = {S3} and ∆4 = reg◦(S1, S2) ∪ reg◦(S2, S3), we verify that I is a regular partition of Π,
and thereby RG(D) is solvable (See Fig. 12 for an example).
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Fig 13. Examples of the code construction for Lemma 6.4: (a) illustrates a code for |Λ3| ≥ 3; (b) illustrates a solution for Λ3 = {S2, P}.

S1 S2 S3

P1 P3 P2

T2 T1 T3

(a)

S2 S1 S3

P2 P1 P3

T2 T1 T3

(b)

Fig 14. Illustration of region relabelling in the proof of Lemma 6.4: (b) is obtained from (a) by interchanging the label of S1 and S2, and
relabel P1, P2 and P3 as P2, P3 and P1, respectively.
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Lemma 6.4: If P1 ∈ reg◦(S1, S2), P2 ∈ reg◦(S2, S3) and P3 ∈ reg◦(S1, S3) such that Λ1 =
{P1, P2} and Λ2 = {P1, P3}, then RG(D) is unsolvable only if the condition (FS) holds.

Proof: First of all, it holds that Λ3 ∩ {S1, S2, S3} ̸= ∅ (since otherwise, by (2) of Corollary

5.14, RG(D) would be solvable, which contradicts the assumption) and |Λ3| = 2 (since otherwise,
the partition I = {[P1]} ∪ {[R];R ∈ Π\[P1]}, where [P1] = {P1, P2, P3} and [R] = {R} for all

R ∈ Π\[P1] would be regular and hence RG(D) would be solvable, as exempli�ed in Fig. 13

(a), which contradicts the assumption). It then follows that Λ3 = {Si, P} for some i ∈ {1, 2, 3}.
Moreover, note that Λ3 * reg(Si, Sj) and Λ3 * reg(Si, Sk), where {j, k} = {1, 2, 3}\{i},
therefore P ∈ reg◦(Sj, Sk). Consequently, we only need to consider the following three cases:

Case 1: Λ3 = {S3, P} and P ∈ reg◦(S1, S2). Then RG(D) satis�es the condition (3) of

Corollary 5.14, and hence is solvable.

Case 2: Λ3={S2, P} and P ∈ reg◦(S1, S3). If P ̸=P3, then it can be veri�ed that I is regular,

where I = {[S2], [P1]}∪{[R];R ∈ Π\([S2]∪ [P1])} with [S2] = {S2, P}, [P1] = {P1, P2, P3} and

[R] = {R} for all R ∈ Π\([S2] ∪ [P1]). It then follows that RG(D) is solvable, as exempli�ed

in Fig. 13 (b). Hence, in this case, RG(D) is unsolvable only if P = P3.

Case 3: Λ3 = {S1, P} and P ∈ reg◦(S2, S3). Via a parallel argument as in Case 2, we infer

that RG(D) is unsolvable only if P = P2.

Combining the above three cases, we conclude that if RG(D) is unsolvable, then either Λ3 =
{S1, P2} or Λ3 = {S2, P3}. If Λ3 = {S2, P3}, then, upon an appropriate relabelling (see Fig.

14), the condition (FS) holds. Similarly, if Λ3 = {S1, P2}, then by interchanging the label of P1

and P2, the condition (FS) also holds.
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Fig 15. Examples of code construction for Lemma 6.5: (a) illustrates a solution for Case 1 and (b) illustrates a solution for Case 2.

Lemma 6.5: Suppose that Λ1 = {S1, P} and Λ2 = {S1, Q} where P,Q ∈ reg◦(S2, S3). Then,
RG(D) is solvable.

Proof: If P = Q, then Λ1 = Λ2 and the proof is the same as the case that RG(D) has two
terminal regions. So we assume that P ̸= Q.

If Λ3 ∩ reg◦(S2, S3) ̸= ∅, then RG(D) satis�es the condition (3) of Corollary 5.14, and hence

is solvable. So in the following, we assume

Λ3 ⊆ Π \ reg◦(S2, S3) = reg(S1, S2) ∪ reg(S1, S3).

We need to consider the following two cases:

Case 1: Λ3 ∩ (reg◦(S1, S2) ∪ reg◦(S1, S3)) ̸= ∅. Without loss of generality, assume Q1 ∈
Λ3 ∩ reg◦(S1, S2). Since Λ3 * reg(S1, S2), there exists a Q2 ∈ Λ3 ∩ reg(S1, S3)\{S1}. Let
I = {∆1,∆2,∆3}, where ∆1 = {S1}∪ reg◦(S2, S3), ∆2 = {S2} and ∆3 = {S3}∪ reg◦(S1, S2)∪
reg◦(S1, S3). Then, I is regular and hence RG(D) is solvable, as illustrated in Fig. 15 (a).

Case 2: Λ3 ∩ (reg◦(S1, S2) ∪ reg◦(S1, S3)) = ∅. Then Λ3 ⊆ {S1, S2, S3}. Note that Λ3 *
reg(Sj, Sk) for all {j, k} ⊆ {1, 2, 3}, we have that Λ3 = {S1, S2, S3}. Let I = {[S1]}∪{[R];R ∈
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Π\[S1]}, where [S1] = {S1}∪ reg◦(S2, S3) and [R] = {R} for all R ∈ Π\[S1]. Then I is regular

and hence RG(D) is solvable, as illustrated in Fig. 15 (b).

Lemma 6.6: Suppose P1 ∈ reg◦(S2, S3) and P2 ∈ reg◦(S1, S2) such that Λi = {S1, P1} and

Λj = {P1, P2}, where {i, j} ⊆ {1, 2, 3}. If RG(D) is unsolvable then the condition (FS) holds.

Proof: W.l.o.g., assume i = 1 and j = 2. If Λ3∩ reg◦(S2, S3) ̸= ∅, then RG(D) satis�es the
condition (3) of Corollary 5.14, and hence is solvable, which contradicts the assumption. So we

have

Λ3 ⊆ Π \ reg◦(S2, S3) = reg(S1, S2) ∪ reg(S1, S3). (7)

Henceforth, assuming

Λ3 * reg(S1, P2) ∪ reg(S1, S3), (8)

we will prove that RG(D) is solvable.
Firstly, since P2 ∈ reg◦(S1, S2), then reg(S1, P2) ⊆ reg(S1, S2), and by (7) and (8), there

exists a P3 ∈ Λ3 ∩ reg(S1, S2)\reg(S1, P2). Moreover, since Λ3 * reg(S1, S2), there exists a

P4 ∈ Λ3 ∩ reg(S1, S3)\{S1}. We consider the following two cases.

Case 1: |Λ3| ≥ 3. In this case, let I = {[S1]}∪{[R];R ∈ Π\[S1]}, where [S1] = reg(S1, P2)∪
{P1} and [R] = {R} for all R ∈ Π\[S1]}. It can be veri�ed that I is regular, so, by Lemma

5.11, RG(D) is solvable (An illustrative example is given in Fig. 16).

Case 2: |Λ3| = 2. In this case Λ3 = {P3, P4} and we let I = {[S1], [P3]} ∪ {[R];R ∈
Π\[S1] ∪ [P3]}, where [S1] = reg(S1, P2) ∪ {P1}, [P3] = {P3, P4} and [R] = {R} for all

R ∈ Π\[S1]∪ [P3]}. It can be veri�ed that I is regular, so, by Lemma 5.11, RG(D) is solvable
(An illustrative example is given in Fig. 17).

Finally, we conclude that if RG(D) is unsolvable, then (8) is violated, and so Λ3 ⊆ reg(S1, P2)∪
reg(S1, S3), which, in combination with the lemma assumptions, implies that the condition (FS)

holds.
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Fig 16. An example of the code construction for Case 1 of Lemma 6.6: (a) is a region graph and (b) is a solution.

We are now ready to prove Theorem 6.1. By Theorem 3.4, it suf�ces to prove that RG(D) is
unsolvable if and only if it is terminal-separable and satis�es the condition (FS).

Proof of Necessity: Suppose RG(D) is unsolvable. First of all, by Lemma 6.2, RG(D)
has three terminal regions and is terminal-separable. If for any {j1, j2} ⊆ {1, 2, 3} with |Λj1| =
|Λj2| = 2, Λj1 ∩ Λj2 = ∅, then by (1) of Corollary 5.14, RG(D) is solvable. In what follows,

w.l.o.g, we suppose there exist three regions P1, P2, P3 ∈ Π such that

Λ1 = {P1, P2} and Λ2 = {P1, P3}.
Consider the following two cases:

Case 1: {P1, P2, P3} ⊆ Π\{S1, S2, S3}.
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Fig 17. An example of the code construction for Case 2 of Lemma 6.6: (a) is the region graph and (b) is a solution.

Since Λ1 * reg(Si1 , Si2) for all {i1, i2} ⊆ {1, 2, 3}, so, w.l.o.g, we assume

P1 ∈ reg◦(S1, S2) and P2 ∈ reg◦(S2, S3).

Similarly, from Λ2 * reg(Si1 , Si2) for any {i1, i2} ⊆ {1, 2, 3} it follows that

P3 ∈ reg◦(S2, S3) or P3 ∈ reg◦(S1, S3).

If P3 ∈ reg◦(S2, S3), then by Lemma 6.3, RG(D) is solvable, which contradicts our assumption;

if P3 ∈ reg◦(S1, S3), then, by Lemma 6.4, the condition (FS) holds.

Case 2: {P1, P2, P3} ∩ {S1, S2, S3} ̸= ∅.
W.l.o.g, we assume S1 ∈ {P1, P2, P3}. Then, we declare that S1 ̸= P1, since otherwise, noting

that Λ1 = {P1, P2} and Λ2 = {P1, P3}, we would have that P2, P3 ∈ reg◦(S2, S3), which,
by Lemma 6.5, further implies that RG(D) is solvable, which contradicts our assumption. So

S1 = P2 or S1 = P3. W.l.o.g, we assume S1 = P3. Since {P1, S3} = Λ2 * reg(S1, S2) and

Λ2 * reg(S1, S3), we have P1 ∈ reg◦(S2, S3), which further indicates P2 ∈ reg◦(S1, S2) ∪
reg◦(S1, S3) ∪ {S1}. Note that P2 ̸= S1, since otherwise, by Lemma 6.5, RG(D) is solvable,

which contradicts our assumption, so P2 ∈ reg◦(S1, S2) or P2 ∈ reg◦(S1, S3). W.l.o.g, we assume

P2 ∈ reg◦(S1, S2). Then by Lemma 6.6, the condition (FS) holds.

Having dealt with all the cases, we now conclude that if RG(D) is unsolvable, then the

condition (FS) holds.

Proof of Suf�ciency: Suppose RG(D) is terminal-separable and satis�es the condition (FS).

We consider a characteristic partition Ic of RG(D). If Ic is singular, then RG(D) is unsolvable,
so we assume that Ic is non-singular. By de�nition, Ic has no equivalent classes. Note that by

condition (FS), Λi = {S1, P1},Λj = {P1, P2} and P2 ∈ reg◦(S1, S2). So {P1, P2} ⊆ [S1] and
reg(S1, P2) ⊆ [S1]1. Again by condition (FS), Λk ⊆ [S1]1 ∪ reg(S1, S3), which indicates that Ic

is not regular and consequentially we have that RG(D) is unsolvable by Theorem 5.12.

VII. CONCLUSIONS REMARKS

Employing the region decomposition approach, we have in this paper obtained necessary and

suf�cient conditions for the solvability of the so-called �terminal-separable� 3s/nt sum-networks,

based on which, we have characterized the solvability of a 3s/3t sum-network in terms of certain

forbidden structures, which can be decided by an O(|E|) time algorithm. A natural problem,

which seems to be worth exploring given the results obtained in this paper, is to examine whether

the same approach can be applied to deal with the solvability problem for more general sum-

network families.
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