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Structured Signals

We are increasingly confronted with very large data sets where we
need to extract some signal-of-interest

I machine learning, image processing, wireless comunications, signal
processing, statistics, etc.

I sensor networks, social networks, massive MIMO, DNA microarrays,
etc.

On the face of it, this could lead to the curse of dimensionality

Fortunately, in many applications, the signal of interest lives in a
manifold of much lower dimension than that of the original ambient
space

In this setting, it is important to have signal recovery algorithms that
are computationally efficient and that need not access the entire data
directly (hence compressed recovery)
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Non-Smooth Convex Optimization

Non-smooth convex optimization has emerged as a tractable method
to deal with structured signal recovery methods

Given the observations, y ∈ Rm, we want to obtain some structured
signal, x ∈ Rn

I a convex loss function L(x , y) (could be a log-likelihood function, e.g.)
I a (non-smooth) convex structure-inducing regularizer f (x)

The generic problem is

min
x
L(x , y) + λf (x) or min

L(x ,y)≤c1

f (X ) or min
f (x)≤c2

L(x , y)
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Non-Smooth Convex Optimization

min
x
L(x , y) + λf (x) or min

L(x ,y)≤c1

f (X ) or min
f (x)≤c2

L(x , y)

Algorithmic issues:
I scalable
I distributed
I etc.

Analysis issues:
I can the true signal be recovered? (if so, when?)
I if not, what is the quality of the recovered signal? (e.g.,

mean-square-error? probability of error?)
I how does the convex approach compare to one with no computational

constraints?
I how to choose the regularizer λ ≥ 0? (or the constraint bounds c1 and

c2?)
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Example: Noisy Compressed Sensing

Consider a “desired” signal x ∈ Rn, which is k-sparse, i.e., has only k < n
(often k � n) non-zero entries. Suppose we make m noisy measurements
of x using the m × n measurement matrix A to obtain

y = Ax + z .

How many measurements m do we need to find a good estimate of x? .

Suppose each set of m columns of A are linearly independent. Then,
if m > k , we can always find the best k-sparse solution to

min
x
‖y − Ax‖2

2 ,

via exhaustive search of

(
n
k

)
such least-squares problems
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Example: Noisy Compressed Sensing

Thus, the information-theoretic problem is perhaps not so
challenging/interesting.

The computational problem, however, is:

Can we do this more efficiently? And for what values of m?

What about problems (such as low rank matrix recovery) where it is
not possible to enumerate all structured signals?
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LASSO

The LASSO algorithm was introduced by Tibshirani in 1996:

x̂ = arg min
x

1

2
‖y − Ax‖2

2 + λ‖x‖1,

where λ ≥ 0 is a regularization parameter.

Questions:

How to choose λ?

What is the performance of the algorithm? For example, what is
E‖x − x̂‖2?
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Generalized LASSO

The generalized LASSO algorithm can be used to enforce other types of
structures

x̂ = arg min
x

1

2
‖y − Ax‖2

2 + λf (x),

where f (·) is a convex regularizer.

f (·) = ‖ · ‖1 encourages sparsity

f (·) = ‖ · ‖? encourages low rankness:

X̂ = arg min
X

1

2
‖y − A · vec(X )‖2 + λ‖X‖?

f (·) = ‖ · ‖1,2 (the mixed `1/`2 norm) encourages block-sparsity

‖x‖1,2 =
∑
b

‖xb‖2.

f (·) = ‖ · ‖∞ encourages constant-amplitude signals (BPSK, e.g.)

etc.
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More General (Machine Learning) Problems

min
x
L(x) + λf (x),

where L(·) is the so-called loss function and f (·) is the regularizer.

For example,

If the noise is Gaussian:

x̂ = arg min
x
‖y − Ax‖2 + λf (x),

If the noise is sparse:

x̂ = arg min
x
‖y − Ax‖1 + λf (x),

If the noise is bounded:

x̂ = arg min
x
‖y − Ax‖∞ + λf (x),
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The Squared Error of Generalized LASSO

x̂ = arg min
x
‖y − Ax‖2 + λf (x)

The LASSO algorithm has been extensively studied

However, most performance bounds are rather loose

Can we compute E‖x − x̂‖2? Can we determine the optimal λ?

Turns out we can.....
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Example

X0 ∈ Rn×n is rank r . Observe, y = A · vec(X0) + z, solve the Matrix
LASSO,

min
X
{‖y − A · vec(X)‖2 + λ‖X‖?}

0 1 2 3 4 5 6 7 8 9 10
2

4

6

8

10

12
Low rank matrix

λ

ℓ 2
p
en

a
li
ze

d
er

ro
r

 

 

Analytic curve

Simulation

Figure: n = 45, r = 6, measurements m = 0.6n2.
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Recovering BPSK Signals

Consider
y = As + v ,

where

y =

 y1
...
ym

 , s =

 s1
...
sn

 , A =

 a11 . . . a1n
...

. . .
...

am1 . . . amn

 , v =

 v1
...
vm



Asume BPSK signalling, i.e., si ∈ {±1}. Furthermore, assume that A has
iid N(0, 1) entries and that v has iid N(0, σ2) entries. For a given SNR,
σ2 = n

SNR. The ML decoder is:

ŝ = arg min
si∈{±1}

‖y − As‖2.
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Box Relaxation

A natural convex relaxation is:

ŝ = arg min
si∈[−1,1]

‖y − As‖2.

One can follow this by hard decision thresholding.

This method is quite popular and referred to as box relaxation. But what
is the BER?
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Where did this all come from....?
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Slepian’s Comparison Lemma (1962)

Let Xi and Yi be two Gaussian processes with the same mean µi and
variance σ2

i , such that ∀ i , i ′

E (Xi − µi )(Xi ′ − µi ′) ≥ E (Yi − µi )(Yi ′ − µi ′)
Then

Prob

(
max

i
Xi ≥ c

)
?
≷ Prob

(
max

i
Yi ≥ c

)

Babak Hassibi (Caltech) CAM 2016 August 23, 2016 17 / 70



Slepian’s Comparison Lemma (1962)

Let Xi and Yi be two Gaussian processes with the same mean µi and
variance σ2

i , such that ∀ i , i ′

E (Xi − µi )(Xi ′ − µi ′) ≥ E (Yi − µi )(Yi ′ − µi ′)
Then

Prob

(
max

i
Xi ≥ c

)
?
≷ Prob

(
max

i
Yi ≥ c

)

Babak Hassibi (Caltech) CAM 2016 August 23, 2016 17 / 70



Slepian’s Comparison Lemma (1962)

Let Xi and Yi be two Gaussian processes with the same mean µi and
variance σ2

i , such that ∀ i , i ′

E (Xi − µi )(Xi ′ − µi ′) ≥ E (Yi − µi )(Yi ′ − µi ′)
Then

Prob

(
max

i
Xi ≥ c

)
?
≷ Prob

(
max

i
Yi ≥ c

)
Babak Hassibi (Caltech) CAM 2016 August 23, 2016 17 / 70



Slepian’s Comparison Lemma (1962)

Let Xi and Yi be two Gaussian processes with the same mean µi and
variance σ2

i , such that ∀ i , i ′

E (Xi − µi )(Xi ′ − µi ′) ≥ E (Yi − µi )(Yi ′ − µi ′)
Then

Prob

(
max

i
Xi ≥ c

)
≤ Prob

(
max

i
Yi ≥ c

)
Babak Hassibi (Caltech) CAM 2016 August 23, 2016 18 / 70



Slepian’s Comparison Lemma (1962)

proof not too difficult, but not trivial, either

lemma not generally true for non-Gaussian processes
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Maximum Singular Value of a Gaussian Matrix

What is this good for?

Let A ∈ Rm×n be a matrix with iid N(0, 1) entries and consider its
maximum singular value:

σmax(A) = ‖A‖ = max
‖u‖=1

max
‖v‖=1

uTAv .

Define the two Gaussian processes

Xuv = uTAv + γ and Yuv = uTg + vTh,

where γ ∈ R, g ∈ Rm and h ∈ Rn have iid N(0, 1) entries. Then it is not
hard to see that both processes have zero mean and variance 2.
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Maximum Singular Value of a Gaussian Matrix

Xuv = uTAv + γ and Yuv = uTg + vTh,

Now,

EXuvXu′v ′−EYuvYu′v ′ = uTu′vT v ′+1−uTu′−vT v ′ = (1−uTu′)(1−vT v ′) ≥ 0.

Therefore from Slepian’s lemma:

Prob

(
max
‖u‖=1

max
‖v‖=1

uTAv + γ ≥ c

)
︸ ︷︷ ︸

=Prob(‖A‖+γ≥c)≥ 1
2
Prob(‖A‖≥c)

≤ Prob

(
max
‖u‖=1

max
‖v‖=1

uTg + vTh ≥ c

)
︸ ︷︷ ︸

Prob(‖g‖+‖h‖≥c)

.

Since ‖g‖+ ‖h‖ concentrates around
√
m +

√
n, this implies that the

probability that ‖A‖ (significantly) exceeds
√
m +

√
n is very small.
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Minimum Singular Value of a Gaussian Matrix

Let A ∈ Rm×n (m ≤ n) be a matrix with iid N(0, 1) entries and consider
its minimum singular value:

σmin(A) = min
‖u‖=1

max
‖v‖=1

uTAv .

Slepian’s lemma does not apply.

It took 24 years for there to be progress...

Babak Hassibi (Caltech) CAM 2016 August 23, 2016 22 / 70



Minimum Singular Value of a Gaussian Matrix

Let A ∈ Rm×n (m ≤ n) be a matrix with iid N(0, 1) entries and consider
its minimum singular value:

σmin(A) = min
‖u‖=1

max
‖v‖=1

uTAv .

Slepian’s lemma does not apply.

It took 24 years for there to be progress...

Babak Hassibi (Caltech) CAM 2016 August 23, 2016 22 / 70



Minimum Singular Value of a Gaussian Matrix

Let A ∈ Rm×n (m ≤ n) be a matrix with iid N(0, 1) entries and consider
its minimum singular value:

σmin(A) = min
‖u‖=1

max
‖v‖=1

uTAv .

Slepian’s lemma does not apply.

It took 24 years for there to be progress...

Babak Hassibi (Caltech) CAM 2016 August 23, 2016 22 / 70



Gordon’s Comparison Lemma (1988)

Let Xij and Yij be two Gaussian processes with the same mean µij and
variance σ2

ij , such that ∀ i , j , i ′, j ′

1 E (Xij − µij)(Xij ′ − µij ′) ≤ E (Yij − µij)(Yij ′ − µij ′)
2 E (Xij − µij)(Xi ′j ′ − µi ′j ′) ≥ E (Yij − µij)(Yi ′j ′ − µi ′j ′)

Then

Prob

(
min
i

max
j

Xij ≤ c

)
?
≷ Prob

(
min
i

max
j

Yij ≤ c

)
Babak Hassibi (Caltech) CAM 2016 August 23, 2016 23 / 70



Gordon’s Comparison Lemma (1988)

Let Xij and Yij be two Gaussian processes with the same mean µij and
variance σ2

ij , such that ∀ i , j , i ′, j ′

1 E (Xij − µij)(Xij ′ − µij ′) ≤ E (Yij − µij)(Yij ′ − µij ′)
2 E (Xij − µij)(Xi ′j ′ − µi ′j ′) ≥ E (Yij − µij)(Yi ′j ′ − µi ′j ′)

Then

Prob

(
min
i

max
j

Xij ≤ c

)
≤ Prob

(
min
i

max
j

Yij ≤ c

)
Babak Hassibi (Caltech) CAM 2016 August 23, 2016 24 / 70



Gordon’s Lemma (1988)

Let G ∈ Rm×n, γ ∈ R, g ∈ Rm and h ∈ Rn have iid N(0, 1) entries, let Sx
and Sy by compact sets, and ψ(x , y) a continuous function.

Define:

Φ(G , γ) = min
x∈Sx

max
y∈Sy

yTGx + γ‖x‖ · ‖y‖+ ψ(x , y),

and
φ(g , h) = min

x∈Sx
max
y∈Sy

‖x‖gT y + ‖y‖hT x + ψ(x , y).

Then it holds that:

Prob(Φ(G , γ) ≤ c) ≤ Prob(φ(g , h) ≤ c).

If c is a high probability lower bound on φ(·, ·), same is true of Φ(·, ·)
Basis for “escape through mesh” and “Gaussian width”

Can be used to show that σmin(A) behaves as
√
n −
√
m
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A Stronger Version of Gordon’s Lemma (TOH 2015){
Φ(G ) = minx∈Sx maxy∈Sy yTGx + ψ(x , y) (PO)

φ(g , h) = minx∈Sx maxy∈Sy ‖x‖gT y + ‖y‖hT x + ψ(x , y) (AO)

Theorem
1 Prob(Φ(G ) ≤ c) ≤ 2Prob(φ(g , h) ≤ c).

2 If Sx and Sy are convex sets, at least one of which is compact, and
ψ(x , y) is a convex-concave function, then

Prob (|Φ(G )− c | ≥ ε) ≤ 2Prob (|φ(g , h)− c | ≥ ε) .

3 If, in addition, the optimization over x in (PO) is strongly convex,

Prob(x̂Φ ∈ S) ≤ 4Prob(x̂φ ∈ S), ∀S .

4 Under the above assumptions, x̂Φ and x̂φ asymptotically have the
same empirical distribution.
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Remarks

In 3 take
S = {x , |‖x‖ − c | ≥ ε}.

Then 3 shows that if ‖x̂φ‖ concentrates to c , ‖x̂Φ‖ concentrates to
the same value.

4 can be used to evaluate the probability-of-error of the PO by
analyzing the AO.
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analyzing the AO.
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Analysis of the BER for Box Relaxation

Wlog, assume that the all -1 vector was transmitted:

y = −A1 + v .

Therefore

min
si∈[−1,1]

‖y − As‖2 = min
si∈[−1,1]

‖v − A(s + 1︸ ︷︷ ︸
t

)‖2 = min
ti∈[0,2]

‖v − At‖2.

Note that BER = Prob(ti ≥ 1). Writing this as a PO:

min
ti∈[0,2]

max
‖u‖2≤1

uT (v − At) = min
ti∈[0,2]

max
‖u‖2≤1

uT
[
−A v

σ

] [ t
σ

]
,

the AO is

min
ti∈[0,2]

max
‖u‖2≤1

√
‖t‖2 + σ2uTg + ‖u‖(tTh + σγ).
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Analysis of the AO

min
ti∈[0,2]

max
‖u‖2≤1

√
‖t‖2 + σ2uTg + ‖u‖(tTh + σγ).

Optimizing over u is straightforward

min
ti∈[0,2]

√
‖t‖2 + σ2 ‖g‖︸︷︷︸

≈
√
m

+tTh.

Using
√
x = minβ>0

βx
2 + 1

2β , we obtain

min
ti∈[0,2],β>0

β

2
(‖t‖2 + σ2)m +

1

2β
+ tTh.

= min
β>0

βmn

2SNR
+

1

2β
+

n∑
i=1

min
ti∈[0,2]

(
βmt2

i

2
+ hi ti

)
.
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Analysis of the AO

min
β>0

βmn

2SNR
+

1

2β
+

n∑
i=1

min
ti∈[0,2]

(
βmt2

i

2
+ hi ti

)
.

The optimization over t is now separable and straightforward:

min
β>0

βmn

2SNR
+

1

2β
+

n∑
i=1


0 if hi ≥ 0 (t̂i = 0)

− h2
i

2βm if −2βm ≤ hi ≤ 0 (t̂i = − hi
βm )

2βm + 2hi if hi ≤ −2βm (t̂i = −2)

The summation concentrates to:

min
β>0

βmn

2SNR
+

1

2β
+n

(
−
∫ 0

−2βm

h2

2βm
p(h)dh +

∫ −2βm

−∞
(2βm + 2h)p(h)dh

)
.
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Analysis of the AO

Redefining βm to β, after some algebra, we get

β̂ = arg min
β>0

β

2SNR
+

1

2β

(
1− n

2m

)
+

n

2βm

∫ ∞
2β

(h − 2β)2p(h)dh.

Recall

BER = Prob(t̂i ≥ 1) = Prob(−hi

β̂
≥ 1) = Prob(−hi ≥ β̂).

So that

BER =

∫ ∞
β̂

e−h
2/2

√
2π

dh = Q(β̂).
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Figure: n = 512, m = 358: Probability-of-error as a function of SNR
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Some Remarks

At high SNR, the value of β̂ in the argument of the Q-function is large
and therefore the intergral term in

β̂ = arg min
β>0

β

2SNR
+

1

2β

(
1− n

2m

)
+

n

2βm

∫ ∞
2β

(h − 2β)2p(h)dh.

can be ignored to obtain:

β̂ = arg min
β>0

β

2SNR
+

1

2β

(
1− n

2m

)
.

This is a quadratic equation for β̂ that can be straightforwardly solved to
obtain:

BER = Q

(√(
m

n
− 1

2

)
SNR

)
.
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Some Remarks

The matched filter bound (MFB) assumes that all symbols 2, . . . , n have
been correctly decoded and looks at the probability of error of the first
symbol.

It can be straightforwardly computed as

MFB = Q

(√
m

n
SNR

)
.

Thus, the box relaxation comes within log
m
n

m
n
− 1

2

db of the MFB. For square

systems (m = n) this is 3 db.

In the AO, the events of making errors in each of the symbols were
independent

Therefor in the PO, for any fixed k symbols, the error events are also
independent

This fact has far-reaching consequences for algorithms that can be
applied to the output of the box relaxation
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Least-Squares

Suppose we are confronted with the noisy measurements:

y = Ax + z ,

where A ∈ Rm×n is the measurement matrix with iid N(0, 1) entries,
y ∈ Rm is the measurement vector, x0 ∈ Rn is the unknown desired
signal, and z ∈ Rn is the unknown noise vector with iid N(0, σ2) entries.

In the general case, to be meaningful, we require that

m ≥ n.

A popular method for recovering x , is the least-squares criterion

min
x
‖y − Ax‖2.

Let us analyze this using the stronger version of Gordon’s lemma.
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Least-Squares

To this end, define the estimation error w = x0 − x , so that
y − Ax = Aw + z .

Thus,

min
x
‖y − Ax‖2 = min

w
‖Aw + z‖2

= min
w

max
‖u‖≤1

uT (Aw + z) = min
w

max
‖u‖≤1

uT
[
A 1

σ z
] [ w

σ

]
.

This satisfies all the conditions of the lemma. The simpler optimization is
therefore:

min
w

max
‖u‖≤1

√
‖w‖2 + σ2gTu + ‖u‖

[
hTw hσ

] [ w
σ

]
,

where g = Rm, hw = Rn and hσ ∈ R have iid N(0, 1) entries.
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Least-Squares

min
w

max
‖u‖≤1

√
‖w‖2 + σ2gTu + ‖u‖

[
hTw hσ

] [ w
σ

]
,

The maximization over u is straightforward:

min
w

√
‖w‖2 + σ2‖g‖+ hTww + hσσ.

Fixing the norm of ‖w‖ = α, minimizing over the direction of w is
straightforward:

min
α≥0

=
√
α2 + σ2‖g‖ − α‖hw‖+ hσσ.

Differentiating over α gives the solution:

α2

σ2
=

‖hw‖2

‖g‖2 − ‖hw‖2
→ n

m − n
.
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Least-Squares

Thus, in summary:
E‖x̂ − x0‖2

σ2
→ n

m − n
.

Of course, in the least-squares case, we need not use all this machinery
since the solutions are famously given by:

x̂ =
(
ATA

)−1
AT y and E‖x0 − x̂‖2

2 = σ2trace
(
ATA

)−1
.

When A has iid N(0, 1) entries, ATA is a Wishart matrix whose
asymptotic eigendistribution is well known, from which we obtain

E‖x − x̂‖2
2

σ2
→ n

m − n
.
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Back to the Squared Error of Generalized LASSO

However, for generalized LASSO, we do not have closed form solutions
and the machinery becomes very useful:

x̂ = arg min
x
‖y − Ax‖2 + λf (x)

Using the same argument as before, we obtain the (AO):

min
w

max
‖u‖≤1

√
‖w‖2 + σ2gTu + ‖u‖

[
hTw hσ

] [ w
σ

]
+ λf (x0 − w).

Or:

min
w

√
‖w‖2 + σ2‖g‖+ hTww + hσσ + λf (x0 − w).
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Squared Error of Generalized LASSO σ → 0

min
w

√
‖w‖2 + σ2‖g‖+ hTww + hσσ + λf (x0 − w).

While this can be analyzed in full generality, it is instructive to focus on the
low noise, σ → 0, case.

Here ‖w‖ will be small and we may therefore write

f (x0 − w) & f (x0) + sup
s∈∂f (x0)

sT (−w),

where ∂f (x0) is the subgradient of f (·) evaluated at x0, and defined as

∂f (x0) =
{
s|f (x + x0) ≥ f (x0) + sT x ,∀x

}
.
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Subgradients

The subgradient of a convex function is a convex set.

In most cases of
interest subgradients are easy to compute. Here are some examples:

f (x) = ‖x‖1 and x0 =

[
ξ
0

]
:

∂f (x0) =

{[
sign(ξ)

s

]
, ‖s‖∞ ≤ 1

}
.

f (X ) = ‖X‖? and X0 = U

[
Σ 0
0 0

]
V ∗:

∂f (x0) =

{
U

[
I 0
0 D

]
V ∗, |di | ≤ 1

}
.

f (x) = ‖x‖∞ and x0 =

[
1
−1

]
:

∂f (x0) =

{[
s
−t

]
, s ≥ 0, t ≥ 0, ‖s‖1 + ‖t‖1 ≤ 1

}
.
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Squared Error of Generalized LASSO σ → 0

Returning back to the (AO):

min
w

√
‖w‖2 + σ2‖g‖+ hTww + hσσ + λ sup

s∈∂f (x0)
sT (−w),

or

min
w

√
‖w‖2 + σ2‖g‖+ sup

s∈λ∂f (x0)
(hw − s)Tw .

As before, fixing the norm ‖w‖ = α, optimization over the direction of w
is straightforward:

min
α≥0

√
α2 + σ2‖g‖+ sup

s∈λ∂f (x0)
−α‖hw − s‖.

Or:
min
α≥0

√
α2 + σ2‖g‖ − α inf

s∈λ∂f (x0)
‖hw − s‖︸ ︷︷ ︸

dist(hw ,λ∂f (x0))

.
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Squared Error of Generalized LASSO σ → 0

min
α≥0

√
α2 + σ2‖g‖ − αdist(hw , λ∂f (x0)).

This looks exactly like what we had for least-squares:
minα≥0

√
α2 + σ2‖g‖ − α‖hw‖. Differentiating over α yields:

lim
σ→0

α2

σ2
=

dist2(hw , λ∂f (x0))

m − dist2(hw , λ∂f (x0))
.
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Main Result: The Squared Error of Generalized LASSO

Generate an n-dimensional vector h with iid N(0, 1) entries and define:

Df (x0, λ) = Edist2 (h, λ∂f (x0)) .

∂f(x0)

λ∂f(x0)

cone(∂f(x0))

h

Π(h,λ∂f(x0))

Proj(h,λ∂f(x0))

0

It turns out that dist2(hw , λ∂f (x0)) concentrates to Df (x0, λ), and that:

lim
σ→0

‖x0 − x̂‖2

σ2
→ Df (x0, λ)

m − Df (x0, λ)
.
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Main Result

lim
σ→0

‖x0 − x̂‖2

σ2
→ Df (x0, λ)

m − Df (x0, λ)
.

Note that, compared to the normalized mean-square error of standard
least-squares, n

m−n , the ambient dimension n has been replaced by
Df (x0, λ).

The value of λ that minimizes the mean-square error is given by

λ∗ = arg min
λ≥0

Df (x0, λ).

It is easy to see that

Df (x0, λ
∗) = Edist2 (h, cone(∂f (x0)))

∆
= ω2.
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Main Result

ω2 = Edist2 (h, cone(∂f (x0)))

The quantity ω2 is the squared Gaussian width of the cone of the
subgradient and has been referred to as the statistical dimension by
Tropp et al.

Thus, for the optimum choice of λ:

lim
σ→0

‖x0 − x̂‖2

‖z‖2
→ ω2

m − ω2
.

The quantity ω2 determines the minimum number of measurements
required to recover a k-sparse signal using (appropriate) convex
optimization. (The so-called recovery thresholds.)
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Statistical Dimension

The quantity Df (x0, λ) is easy to numerically compute and ω2 can
often be computed in closed form.

For n-dimensional k-sparse signals and f (x) = ‖x‖1:

ω2 = 2k log
2n

k
, lim

σ→0

‖x0 − x̂‖2

‖z‖2
→

2k log 2n
k

m − 2k log 2n
k

For n × n rank r matrices and f (X ) = ‖X‖?:

ω2 = 3r(2n − r) , lim
σ→0

‖x0 − x̂‖2

‖z‖2
→ 3r(2n − r)

m − 3r(2n − r)

For BPSK signals and f (x) = ‖x‖∞:

ω2 =
n

2
, lim

σ→0

‖x0 − x̂‖2

‖z‖2
→ n/2

m − n/2
=

n

2m − n
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Example

X0 ∈ Rn×n is rank r . Observe, y = A · vec(X0) + z, solve the Matrix
LASSO,

min
X
{‖y − A · vec(X )‖2 + λ‖X‖?}

0 1 2 3 4 5 6 7 8 9 10
2

4

6

8

10

12
Low rank matrix

λ

ℓ 2
p
en

a
li
ze

d
er

ro
r

 

 

Analytic curve

Simulation

Figure: n = 45, r = 6, measurements m = 0.6n2.
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Phase Transitions for Convex Relaxation - Some History

In the `1 case the subgradient cone is polyhedral and Donoho and
Tanner (2005) computed the Grassman angle to obtain the minimum
number of measurements required to recover a k-sparse signal

I very cumbersome calculations, required considering exponentially many
inner and outer angles, etc.

Extended to robustness and weighted `1 by Xu-H in 2007 (even more
cumbersome)

Donoho-Tanner approach hard to extend (Recht-Xu-H (2008)
attempted this for nuclear norm—only obtained bounds since
subgradient cone is non-polyhedral)

New framework developed by Rudelson and Vershynin (2006) and,
especially, Stojnic in 2009 (using escape-through-mesh and Gaussian
widths)

I rederived results for sparse vectors; new results for block-sparse vectors
I much simpler derivation
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Phase Transitions for Convex Relaxation - Some History

Stojnic’s new approach:

Allowed the development of a general framework
(Chandrasekaran-Parrilo-Willsky, 2010)

I exact calculation for nuclear norm (Oymak-H, 2010)

Deconvolution (McCoy-Tropp, 2012)

Tightness of Gaussian widths Stojnic, 2013 (for `1),
Amelunxen-Lotz-McCoy-Tropp, 2013 (for the general case)

Replica-based analysis:

Guo, Baron and Shamai (2009), Kabashima, Wadayama, Tanaka
(2009), Rangan, Fletecher, Goyal (2012), Vehkapera, Kabashima,
Chatterjee (2013), Wen, Zhang, Wong, Chen (2014)
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What About the Noisy Case?

Noisy case for l1 LASSO first studied by Bayati, Montanari and
Donoho (2012) using approximate message passing

A new approach developed by Stojnic (2013)

Our approach is inspired by Stojnic (2013)
I subsumes all earlier (noiseless and noisy results)
I allows for much, much more (as we have seen and shall further see)
I is the most natural way to study the problem
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Tuning the Regularizer λ

The optimal value of λ is given by

λ∗ = arg min
λ≥0

Df (x0, λ),

which requires knowledge of the sparsity of x0, say.

This is usually not
available.
Question: How to tune λ?
Answer: Here is one possibility that uses the fact that
φ(g , h) ≈ σ

√
m − Df (x0, λ):

1 Choose a λ and solve the l1 LASSO.
2 Find the numerical value of the optimal cost, C , say.
3 Find the sparsity k such that

|C − σ
√
m − Df (x0, λ)|,

is minimized.
4 For this value of k find the optimal λ∗.
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Estimating the Sparsity: n = 520, m = 280
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Tuning λ: n = 520, m = 280
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Improvement in NSE: n = 520, m = 280
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Generalizations
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Finite σ and General Loss Functions

In the general case, the problem to study is:

x̂ = arg min
x
L(y − Ax) + λf (x).

To turn this into a PO it is useful to rewrite L(·) and f (·) in terms of their
Fenchel duals

L(y − Ax) = max
u

uT (y − Ax)− L∗(u) and f (x) = max
v

vT x − f ∗(v),

to obtain

min
x

max
u,v

uT (y − Ax)− L∗(u) + λvT x − λf ∗(v).

It turns out that the geometric quantities that show up in the analysis of
the AO are the expected Moreau envelopes.
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NSE for Finite σ: n = 500, m = 150, k = 20
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Another Example: Least-Absolute Deviations (LAD)

We can do other loss functions.

For example,

x̂ = arg min
x
‖y − Ax‖1 + λ‖x‖1,

which attempts to find a sparse signal in sparse noise and which is called
least absolute deviations (LAD).
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Squared Error vs Number of Measurements
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Universality

Our results assumed an iid Gaussian A.

Is this necessary?

Simulations suggest that any iid distribution with the same second
order statistics works.

We have been able to prove this for quadratic loss functions (OTTH
2015). The value

min
x
‖y − Ax‖2 + λf (x),

concentrates for any A with iid zero-mean unit variance entries.

Have yet to prove this for other loss functions and for the general
(PO)
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NSE for iid Bernouli(1
2): n = 500, m = 150, k = 20
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Other Matrix Ensembles - Haar

Can we give results for non iid random matrix ensembles?

An important class of random matrices are isotropically random
unitary matrices, i.e., matrices Q ∈ Rm×n (m < n), such that

QQT = Im, P(ΘQΩ) = P(Q),

for all orthogonall Θ and Ω.

For such random matrices, we have shown that the two optimization
problems:

Φ(Q, z) = minw ‖σz − Qw‖+ λf (w) (PO)
φ(g , h) = minw ,l maxβ≥0 ‖σv − w − l‖+ β(‖l‖ · ‖g‖ − hT l) + λf (w) (AO)

where z , v , h and g have iid N(0, 1) entries, have the same optimal
costs and statistically the same optimal minimizer.
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Isotropically Random Unitary Matrices

Using the above result, we have been able to show that

lim
σ→0

‖x0 − x̂‖2

‖z‖2
→ Df (x0, λ)

m − Df (x0, λ)
· n − Df (x0, λ)

n
.

Since n−Df (x0,λ)
n < 1, this is strictly better than the Gaussian case.
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NSE for Isotropically Unitary Matrix: n = 520, k = 20
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Nonlinear Measurements

Suppose we make nonlinear observations of the form

y = g(Ax0 + v),

for some nonlinear function g(·).

For example, one-bit quantization
corresponds to:

y = sign(Ax0 + v).

What happens if we apply generalized LASSO to such nonlinear
measurements:

min
x
‖y − Ax‖2 + λf (x)?

This seems like a very naive thing to do. However, it was suggested by
Brillinger for standard least-squares in the 1980’s and very recently by Plan
and Vershynin.
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Nonlinear Measurements

Theorem (TAH 2015): The MSE of generalized LASSO for nonlinear
measurements of the form y = g(Ax0 + v) is asymptotically the same as
the MSE of generalized LASSO for measurements of the form
y = µAx0 + σv , where:

µ = Eγg(γ) and σ2 = Eg2(γ)− µ2 for γ ∼ N(0, 1).

Therefore all the analysis we have done for generalized LASSO with
linear measurements applies also to the nonlinear case.

For 1-bit quantization we have:

µ =

√
2

π
and σ2 = 1− 2

π

We can show that, for q-bit quantization, the optimal quantizer is the
celebrated LLoyd-Max quantizer.
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One-Bit Quantization
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Figure: n = 768, k = 115, m = 920 > n and m = 576 < n. The measurements
were y = sign(Ax0 + .3v) with the vi iid N(0, 1).
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Summary and Conclusion

Developed a general theory for the analysis of convex-based structured
signal recovery problems for iid Gaussian measurement matrices

I subsumes all known results (phase transtions, thresholds, etc.) and
generates many new ones

Theory builds on a strengthening of a lemma of Gordon (whose origin
is one of Slepian)

I study an (AO) rather than the (PO)

Allows for optimal tuning of regularizer parameters

Can consider various loss functions and regularizers

Results appear to be universal (proven for quadratic losses and
general regularizers)

Theory generalized to isotropically random unitary matrices

Extends to nonlinear measurements

Generalization to quadratic Gaussian measurements would be very
useful (for phase retrieval, graphical LASSO, etc.)
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