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IbiadelsliteantelsM Hypercontractive Inequalities: a review

Hypercontractive inequalities: an introduction

: If you are a mathematician
e Hypercontractivity is usually discussed using the language of Markov semi-groups

e In this talk, I will use conditional expectations (snapshot rather than a
time-indexed family) to discuss hypercontractivity
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Hypercontractive inequalities: an introduction

: If you are a mathematician

e Hypercontractivity is usually discussed using the language of Markov semi-groups

e In this talk, I will use conditional expectations (snapshot rather than a
time-indexed family) to discuss hypercontractivity

Elementary result

Conditional expectation (a Markov operator) is contractive

IEXY)lp < 1 X]lp: VP> 1,

where [ X |, = E(|X[)!/7.
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IbiadelsliteantelsM Hypercontractive Inequalities: a review

Hypercontractive inequalities: an introduction

: If you are a mathematician
e Hypercontractivity is usually discussed using the language of Markov semi-groups

e In this talk, I will use conditional expectations (snapshot rather than a
time-indexed family) to discuss hypercontractivity

Elementary result

Conditional expectation (a Markov operator) is contractive
IEX)p < 1X]lp, VP =1,

where [ X |, = E(|X[)!/7.

Hypercontractivity
(X,Y) ~ pxy satisfies (p, ¢)-hypercontractivity (1 < ¢ < p) if

HE(Q(Y)|X)HP < HQ(Y)Hq Vg > 0.
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Background

Hypercontractive inequalities have been used in
e Quantum field theory
o Establish best constants in classical inequalities

e Bounds on semi-group kernels
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Background

Hypercontractive inequalities have been used in
e Quantum field theory
o Establish best constants in classical inequalities
e Bounds on semi-group kernels

@ Boolean function analysis (KKL theorem on influences)

: relation to (network) information theory
@ equivalent characterizations
e why should information-theorists care

e why this relationship may interest mathematicians
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Part I

Equivalent characterizations of hypercontractive inequalities using information
measures




Equivalent characterizations

Elementary exercises

Definition: (X,Y) ~ puxy is (p, ¢)-hypercontractive for 1 < g < p if

IE@)IX)] < llg(Y)lly Vg = 0.
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Equivalent characterizations

Elementary exercises

Definition: (X,Y) ~ puxy is (p, ¢)-hypercontractive for 1 < g < p if

IE@)IX)] < llg(Y)lly Vg = 0.

An equivalent condition: (X,Y) ~ uxy is (p, g)-hypercontractive for 1 < g < p if
and only if

E(f(X)g(Y) < I (X)lpllsMllq V.9 =0,

where p/ = p%l, the Holder conjugate.
Proof: An application of Holder’s inequality.
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Equivalent characterizations

Elementary exercises

Definition: (X,Y) ~ puxy is (p, ¢)-hypercontractive for 1 < g < p if

IE@)IX)] < llg(Y)lly Vg = 0.

An equivalent condition: (X,Y) ~ uxy is (p, g)-hypercontractive for 1 < g < p if
and only if

E(f(X)g(Y) < I (X)lpllsMllq V.9 =0,

where p/ = 1%’ the Holder conjugate.
Proof: An application of Holder’s inequality.

Tensorization property: Let (X1,Y7) ~ ply be independent of (Xo,Y2) ~ p%y,
and let (X1,Y7) and (X9, Y5) be (p, ¢)-hypercontractive.

Then ((X1, X2), (Y1,Y2)) is also (p, ¢)-hypercontractive.

L
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Equivalent characterizations

Elementary exercises continued...

Define: rp(X;Y) = % x {inf ¢ : (X,Y) is (p, ¢)-hypercontractive. }
Q@ 7,(X;Y) is decreasing in p.
@ The p — oo limit of r,(X;Y") is given by

roo(X;Y) = inf {7’ B (eE<1°gg<Y>IX>) < lg(¥)|l, Vg > o} .
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Equivalent characterizations EzRgelidderinENaniising

Elementary exercises continued...

crp(X5Y) = % x {infq : (X,Y) is (p, ¢)-hypercontractive.}
Q@ ,(X;Y) is decreasing in p.
@ The p — oo limit of r,(X;Y") is given by

Too(X;Y) = inf {'r ' E (eE(IOgg(Y)|X)> <llg¥)ll- Vg> 0} :

A (slightly) non-trivial inequality: If (X,Y") is (p, ¢)-hypercontractive then

1 2
- > XY
p—l_pm( ) )7

where p2,(X;Y) is the mazimal correlation.
° D pm(X5Y) =supy  E(f(X)g(Y)) where f, g satisfy
E(f(X)) =0=E(g(Y)) and E(f*(X)) = 1 = E(g*(Y)).

e A proof follows using perturbations from constant functions along directions

induced by the optimizers for maximal correlation. @
Frrey
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Equivalent characterizations

Ahlswede-Gécs '76
D
reo(X;Y) = sup M’
vx<ue Dx|llpx)

where vy is the (output) distribution induced by operating the same channel 11y x on
the input distribution vx.

v

: Gdcs (independently) observed and used the hypercontraction of the
Markov operator to study:

Images of a set via a channel or equivalently
Region where measure concentrates when a noise operator is applied to a set

9
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Equivalent characterizations EzRgelidderinENaniising

Equivalent characterizations

Ahlswede-Gécs '76
D
vx<ps D(vx|lpx)

where vy is the (output) distribution induced by operating the same channel 11y x on
the input distribution vx.

v

: Gdcs (independently) observed and used the hypercontraction of the
Markov operator to study:
Images of a set via a channel or equivalently
Region where measure concentrates when a noise operator is applied to a set

Anantharam-Gohari-Kamath-Nair ’13

»\4

D
Too(X;Y) = sup 7(1/1/”/“/) = sup ( 1Y)

vxeps Dvx|nx) — vo-x-v 1(U; X)
= inf {\: Kx[H(Y) = AH(X)], = Hu(Y) — AHu(X)}

: Our interest was motivated by the tensorization property (clear later) =«
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Equivalent characterizations

Entire regime, p > 1

The following conditions are equivalent:

IEGM)IX)] < llg(Y)lly ¥ g=0.

E(f(X)g(Y) < 1F (Xl lls(M)llq ¥ f,9=0.
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Equivalent characterizations

Entire regime, p > 1

The following conditions are equivalent:

o
IEGM)IX)] < llg(Y)lly ¥ g=0.

E(f(X)g(Y) < 1F (Xl lls(M)llq ¥ f,9=0.

@ Using relative entropies (Carlen — Cordero-Erasquin ’09, Nair ’14, Friedgut '15)

1 1
Z?D(VXHMX) + gD(VYHMY) < D(vxyl|pxy) Yvxy < pxy.
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Equivalent characterizations

Entire regime, p > 1

The following conditions are equivalent:

o
IEGM)IX)] < llg(Y)lly ¥ g=0.

E(f(X)g(Y) < 1F (Xl lls(M)llq ¥ f,9=0.

@ Using relative entropies (Carlen — Cordero-Erasquin ’09, Nair ’14, Friedgut '15)

1 1
Z?D(VXHMX) + gD(VYHMY) < D(vxyl|pxy) Yvxy < pxy.

@ Using mutual information and auxiliary variables (Nair '14)

1 1

@ Using convex envelopes (Nair '14)
1 1 1 1
Kxy |[SH(X)+-H(Y) = HXY)| = —=H,(X)+—H,(Y)— H,(XY).
p 1 ‘ g

HXY
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Equivalent characterizations

Some remarks on equivalence proof

Functional form = mutual information condition

Use tensorization property:

f(X™) =14, where A = {2" : (u7,2") is jointly typical}

g(Y"™) =1p, where B = {y" : (uj,y") is jointly typical}
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Equivalent characterizations

Some remarks on equivalence proof

Functional form = mutual information condition

Use tensorization property:

f(X™) =14, where A = {2" : (u7,2") is jointly typical}
g(Y"™) =1p, where B = {y" : (uj,y") is jointly typical}

Mutual information condition = relative entropy condition

A (natural) perturbation argument
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Equivalent characterizations

Some remarks on equivalence proof

Functional form = mutual information condition

Use tensorization property:
f(X™) =14, where A = {2" : (u7,2") is jointly typical}
g(Y"™) =1p, where B = {y" : (uj,y") is jointly typical}

Mutual information condition = relative entropy condition

A (natural) perturbation argument

Relative entropy condition — functional form
Let [|f (X))l = [lg(Y)llg = 1. Define vxy = Zpxy f(X)g(Y).
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Equivalent characterizations

Some remarks on equivalence proof

Functional form = mutual information condition

Use tensorization property:
f(X™) =14, where A = {2" : (u7,2") is jointly typical}
g(Y"™) =1p, where B = {y" : (uj,y") is jointly typical}

Mutual information condition = relative entropy condition

A (natural) perturbation argument

Relative entropy condition — functional form
Let [|f (X))l = [lg(Y)llg = 1. Define vxy = Zpxy f(X)g(Y).

1 1
D(vxyllnxy) — ];D(VXHNX) - §D(VY||MY)

Z Ux

11 X)P\ 1 V)
=log — + S E, (log 7MXf( ) ) + -E, (log 7,uyg( ) )
p q vy

1
< log A
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Equivalent characterizations

Brascamp-Lieb-type inequalities

Brascamp Lieb-type inequalities

(X1, .., X)) ~ pxy is said to satisfy Brascamp-Lieb type inequalities with parameters

()\1,)\2, ce ,)\m, C) with >\i >0 if

E (H fi<Xl->> <2 TLIAXDIN ¥ L)
i=1 =1
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Equivalent characterizations

Brascamp-Lieb-type inequalities

Brascamp Lieb-type inequalities

(X1, .., X)) ~ pxy is said to satisfy Brascamp-Lieb type inequalities with parameters
(/\1, )\2, ce ,)\m, C) with )\i >0 if

E (H fi<Xi>> <2 TLIAXDIN ¥ L)
i=1 =1

e Hypercontractivity is a special case of above, C' =0 and m = 2
@ These parameters satisfy tensorization property

e Strengthen Holder’s inequality
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Equivalent characterizations

Equivalent characterizations: Brascamp-Lieb type inequalities

Let X17 "7Xm ~ X X

The following conditions are equivalent:

o
([ £i(x:)) 2CHHﬁ D ¥ fiz0.
i=1

1 1
I[E( Hfz )1 X1l < QCH Ifi(X)lx ¥ fi 2 0. N =1-+.
@ Using relative entropies (Carlen — Cordero-Erasquin '09)

L,
Z x D(vx,lux,) < C+ DWwx,,. . Xpllix1, o Xm) VX1 X < X X
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Equivalent characterizations: Brascamp-Lieb type inequalities

Let Xl, ..,Xm ~ MX],..‘,Xm’

The following conditions are equivalent:

(]
Hﬁ z<fTMﬁ Dl ¥ i > 0.

1

1
HEHﬁ uuu<fHWZHAVﬁzoXZJ_E
1

@ Using relative entropies (Carlen — Cordero-Erasquin ’09)

m

> L Pxillex) < O+ Dlvx, x|, x0n) - V00X <X X

i=1 "

© When C = 0 then it is also equivalent to (earlier proof immediately extends)

(U X)) < I(U; X1y X)) Yuix,, X -

i=1 - . @

rrey
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Equivalent characterizations

Ahlswede-Gacs type limit (special case)

Interesting limit: for information theorists

Let \| — oo and, \; — oo such that r; = $7,i = 2,.

)\”

The functional characterization (Bracscamp-Lieb) reduces to

6E(Z logfz(X ‘Xl 20 H ||fZ ”7"1 sz > 0’
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I DTSIP AN (S TN (R XTSI gV AN ales EIl  Brascamp-Lieb-type inequalities

Ahlswede-Gacs type limit (special case)

: for information theorists

Let \] — oo and, \; — oo such that r; = /\, i =2,.

The functional characterization (Bracscamp-Lieb) reduces to

eh(zm log fi(X;)|X1) 2C H Hfz Hn sz > 0’

Equivalent characterization of (Carlen — Cordero-Erasquin ’09) reduces to

m

1
> —Dxillux,) < €+ Dvxllux,)  Vox, < px,.

i=2 't

Here vy, = vx, O 1 X;| X1 1€ channels from X7 to X; are preserved.

9
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I DTSIP AN (S TN (R XTSI gV AN ales EIl  Brascamp-Lieb-type inequalities

Ahlswede-Gacs type limit (special case)

: for information theorists

Let \] — oo and, \; — oo such that r; = /\, i =2,.

The functional characterization (Bracscamp-Lieb) reduces to

m

s RO < 2 T IA(K)ll Vi >0,
1=2

Equivalent characterization of (Carlen — Cordero-Erasquin ’09) reduces to

m

1
> —Dxillux,) < €+ Dvxllux,)  Vox, < px,.

i=2 "
Here vy, = vx, O 1 X;| X1 1€ channels from X7 to X; are preserved.

: Work by (Liu et. al. ’16): derive above equivalence directly extending the
technique of (Carlen — Cordero-Erasquin '09) and not as a limit. @

o
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Equivalent characterizations

Definitions: Reverse Inequalities

Reverse Hypercontractivity

(X,Y) ~ pxy is said to be (A1, A\g)-reverse-hypercontractive if
E(f(X)g(Y)) = [[f(X) gl ¥ F(X),9(Y).

Interested in Aj, \p < 1 and )\% + )\% <1 (Notation: | Z]|x = E(]Z]A)l/)‘.)
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Equivalent characterizations

Definitions: Reverse Inequalities

Reverse Hypercontractivity

(X,Y) ~ pxy is said to be (A1, A\g)-reverse-hypercontractive if

E(f(X)g(Y)) = [F(X)xllgM)lx, ¥ F(X), 9(Y).

Interested in Aj, \p < 1 and )\% + )\% <1 (Notation: | Z]|x = E(]Z]A)l/)‘.)

Reverse Brascamp-Lieb-type inequalities

(X1, .., X)) ~ pxy is said to satisfy reverse-Brascamp-Lieb type inequalities with
parameters (A, Ag, -+, A\, C) if

B0 = 2° T, v {5}
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Equivalent characterizations

Definitions: Reverse Inequalities

Reverse Hypercontractivity

(X,Y) ~ pxy is said to be (A1, A\g)-reverse-hypercontractive if

E(f(X)g(Y)) = [F(X)xllgM)lx, ¥ F(X), 9(Y).

Interested in Aj, \p < 1 and )\% + )\% <1 (Notation: | Z]|x = E(]Z]A)l/)‘.)

Reverse Brascamp-Lieb-type inequalities

(X1, .., X)) ~ pxy is said to satisfy reverse-Brascamp-Lieb type inequalities with
parameters (A, Ag, -+, A\, C) if

Hfz i) >20H”fz ”/\ v {fi}.

e Reverse-Hypercontractivity is a special case of reverse-Brascamp-Lieb

@ These parameters satisfy tensorization property
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Equivalent characterizations

Reverse inequalities

Reverse Brascamp-Lieb-type inequalities

Beigi-Nair 16

Let X1, ..., X, be finite valued random variables and let ;1 denote their joint
probability mass function with marginals u;, 1 <i <m. Let A1, ..., \;, be non-zero

numbers. Let S; = {i: A\; > 0} be the set containing the indices of the positive \;’s.
Then for any C' € R the followings are equivalent:

(i) For all positive functions f1, .., f,,, we have
m m
E [H fz'(Xz‘)] > 20 TTIF(X0) .-
i=1 i=1

(7i) For all probability mass functions v; for i € S, there exists a probability mass
function v, consistent with the given marginals v;,7 € S, such that

m

> D) = C+ D).

i=1 "

For i ¢ S, v; is the marginal induced by the p.m.f. v.

v

chandra@jie.cuhk.edu.hk IT & HC 25-Aug-2016 14 / 25



Recap

Saw: hypercontractive inequalities can be equivalently characterized using
information measures




Recap
Saw: hypercontractive inequalities can be equivalently characterized using
information measures

Part 11
Why should some information-theorists care?




Multiuser information theory Review

(Degraded) broadcast channel

(M, My) —>

Encoder

Xﬂ

Wy, z|x)

YTL

ZTL

Decoder 1

—>]LA{1

Decoder 2

> ]\2{2

Figure 1: Discrete memoryless broadcast channel

° : A broadcast channel is degraded if W (z[z) = >, W'(z[y)W (y|z)

chandra@ie.cuhk.edu.hk
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Multiuser information theory Review

(Degraded) broadcast channel

(M, My) —>

Encoder

Xﬂ

Wy, z|x)

YTL

ZTL

Decoder 1

—>]LA{1

Decoder 2

> ]\2{2

Figure 1: Discrete memoryless broadcast channel

° : A broadcast channel is degraded if W (z[z) = >, W'(z[y)W (y|z)

Y =X

: What is the capacity region (or union of achievable rate pairs)?

chandra@ie.cuhk.edu.hk
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Multiuser information theory

Capacity region characterization

(Cover 72, Gallager '74)
The capacity region, C, is given by the union of rate pairs (R, Ro) satisfying

Ry <I(U; Z)
Ry < H(X|U)

for some U such that U — X — Z is Markov.
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Multiuser information theory Review

Capacity region characterization

(Cover 72, Gallager '74)
The capacity region, C, is given by the union of rate pairs (R, Ry) satisfying

Ry < I(U; Z)
Ry < H(X|U)

for some U such that U — X — Z is Markov.

Gallager’s converse proof:
e Single-letterization argument
° of auxiliary U in terms of other variables induced by a
given code

: There are some important settings where single-letter achievable regions
(in terms of auxiliaries) lack a converse, and where there is evidence to suggest that
the achievable regions are optimal

9

E;&;-‘fhi“s;,

chandra@jie.cuhk.edu.hk IT & HC 25-Aug-2016 17 / 25




Multiuser information theory Review

Capacity region characterization

(Cover 72, Gallager '74)
The capacity region, C, is given by the union of rate pairs (R, Ry) satisfying

Ry < I(U; Z)
Ry < H(X|U)

for some U such that U — X — Z is Markov.

Gallager’s converse proof:
e Single-letterization argument
° of auxiliary U in terms of other variables induced by a
given code

: There are some important settings where single-letter achievable regions
(in terms of auxiliaries) lack a converse, and where there is evidence to suggest that
the achievable regions are optimal

: Can we provide an alternate proof to the capacity region (single-letter
expression) that does not involve explicit identification of auxiliaries

e
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Multiuser information theory

Alternate converse

Alternate characterization of capacity region
max (g, p,)ec 1 + ARz = max,, M (X5Z) + Cx[H(X) = M(X;2)],. J

Remarks
@ Supporting hyperplane characterization of a convex region
o Interested in A > 1
e I<ey: Sub-additivity of Cx[H(X) — AI(X; Z)], implies optimality (converse)
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Alternate converse

Alternate characterization of capacity region
max (g, ry)ec 1 + ARg = max,, M (X;Z) + Cx[H(X) — M(X; Z)], J

e Supporting hyperplane characterization of a convex region
o Interested in A > 1
° : Sub-additivity of Cx[H (X) — AI(X; Z)], implies optimality (converse)

Lemma

Sub-additivity of Cx[H (X ) — A (X; Z)], is equivalent to tensorization property of
T'oo (Xa Z)

° : follows from an equivalent characterization of r.(X; Z)
e Tensorization property of hypercontractivity region: a simple exercise

e No identification of auxiliary variables

9
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Alternate converse

Alternate characterization of capacity region
max (g, ry)ec 1 + ARg = max,, M (X;Z) + Cx[H(X) — M(X; Z)], J

e Supporting hyperplane characterization of a convex region
o Interested in A > 1
° : Sub-additivity of Cx[H (X) — AI(X; Z)], implies optimality (converse)

Lemma
Sub-additivity of Cx[H (X ) — A (X; Z)], is equivalent to tensorization property of
T'oo (Xa Z) :

° : follows from an equivalent characterization of r.(X; Z)

Tensorization property of hypercontractivity region: a simple exercise

No identification of auxiliary variables

@ Our original interest in hypercontractivity came from its tensorization property@

Frrey
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Multiuser information theory

Remarks

Beigi-Gohari ’15

The entire hypercontractive region’s tensorization property implies optimality of

Gray-Wyner source coding problem
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Remarks

Beigi-Gohari ’15

The entire hypercontractive region’s tensorization property implies optimality of
Gray-Wyner source coding problem

: There are some important settings where single-letter achievable regions (in
terms of auxiliaries) lack a converse, and where there is evidence to suggest that the
achievable regions are optimal

e Two receiver discrete memoryless broadcast channel

o Gaussian interference channel

@ Some sub-classes of broadcast channels with three or more receivers
°

Sum-capacity of interference channels with very weak interference

Optimality in these settings would be implied by showing sub-additivity of certain
functionals.

L;L'\ﬁf FEe
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Remarks

Beigi-Gohari ’15

The entire hypercontractive region’s tensorization property implies optimality of
Gray-Wyner source coding problem

: There are some important settings where single-letter achievable regions (in
terms of auxiliaries) lack a converse, and where there is evidence to suggest that the
achievable regions are optimal

e Two receiver discrete memoryless broadcast channel

o Gaussian interference channel

@ Some sub-classes of broadcast channels with three or more receivers

e Sum-capacity of interference channels with very weak interference
Optimality in these settings would be implied by showing sub-additivity of certain
functionals.
Questions

@ Are these sub-additivity questions equivalent to showing that certain functional
inequalities satisfy a tensorization property?

@ Do the corresponding functional inequalities have an operational link with the
corresponding coding questions?
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Recap
: Equivalent characterizations and tensorization property together imply
optimality of single-letter regions in some settings.

Proposal is that this link is worth exploring to solve open problems and to
understand existing results in a different light




Recap
: Equivalent characterizations and tensorization property together imply
optimality of single-letter regions in some settings.

Proposal is that this link is worth exploring to solve open problems and to
understand existing results in a different light

Part II1
Why may some mathematicians care?




Mathematics

Background

Consider binary-valued random varia
X is uniform, W (y|z) ~ BSC (H_Tp)

Theorem (Bonami ’70, Beckner ’75)

bles X, Y distributed as follows:

(X,Y) is (p, q)-hypercontractive if and only if

qg—1
7>p2.

p—17—

Shows tightness of the correlation lower bound.
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Mathematics BRGNS

Background

Consider binary-valued random variables X, Y distributed as follows:
X is uniform, W (y|z) ~ BSC (H_Tp)

Theorem (Bonami ’70, Beckner ’75)
(X,Y) is (p, q)-hypercontractive if and only if

qg—1

> 2.
pfl_p

Shows tightness of the correlation lower bound.

A similar statement also holds for jointly Gaussian random variables (Gross '75)

e Exact characterization of optimal (or near optimal) hypercontractivity
parameters has been done only in a few settings

e Typically arguments are non-trivial

: Use equivalent characterizations to obtain new results. @
g&;"h:ﬁé;,
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Mathematics

Results on 7. (X;Y), the strong data processing constant

Anantharam-Gohari-Kamath-Nair "13
Consider binary-valued random variables X, Y distributed as:

@ P(X =0) = 4=, W(yla) ~ BSC (HTP) then

J (e B
Too(X;Y) = J<(1—2ks))’ where J(x) = log ! . &
2

chandra@ie.cuhk.edu.hk IT & HC




Mathematics

Results on 7. (X;Y), the strong data processing constant

Anantharam-Gohari-Kamath-Nair "13
Consider binary-valued random variables X, Y distributed as:

@ P(X =0) = =, W(yla) ~ BSC (%) then

J (e B
Too(X;Y) = J<(1—2ks))’ where J(x) = log ! . &
2

Q@ P(X =1)==z, W(ylz) ~ Z(2), i.e. Wy |x(0[1) = z, then

log(1 — (1 — z))

reo(X;Y) = log(1 — z)

Remark: Both of these immediately follow from the convex envelope equivalent
characterization.

L
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Results on 7. (X;Y), continued..

Kamath-Nair 15

Let X,..., X, be a sequence of i.i.d. random variables and S, = > | X;, m < n.
Then,

m
Too(Sn; Sm) < P when m < n.

Finite second moment, for instance, implies equality above.

Remarlk: This strengthens a result by (Dembo et. al. ’01) that establish a similar
result for correlation.
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Results on 7. (X;Y), continued..

Kamath-Nair 15

Let X1, ..., X,, be a sequence of i.i.d. random variables and S, = > | X;, m < n.
Then,

m
Too(Sn; Sm) < P when m < n.

Finite second moment, for instance, implies equality above.

Remarlk: This strengthens a result by (Dembo et. al. ’01) that establish a similar
result for correlation.

Proof: Given U — S, — ), is Markov. W.l.o.g. can assume that
U-5,—(Xi,..,X,) is Markov.
Let ®(m) = I(U; Sy,). Then since I(U;S,)) = I(U; Sp, Sm, Sn — S, X{"), we have

0=I(U; X{"|Sm, Sn — Sm) > I(U; X{"|Sm) > 0.

Hence ®(m) = I(U; X{") for all m < n.
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Results on 7. (X;Y), continued..

Kamath-Nair 15

Let X1,..., X,, be a sequence of i.i.d. random variables and S,, = E;ll X, m<n.
Then,

m
TOO(Sn; Sm) S ;, when m g n.

Finite second moment, for instance, implies equality above.

: This strengthens a result by (Dembo et. al. ’01) that establish a similar
result for correlation.

: Given U — S, — 5, is Markov. W.l.o.g. can assume that
U—5S,—(Xi,...,X,) is Markov.
Let ®(m) = I(U; Sy,). Then since I(U;S,)) = I(U; Sp, Sm, Sn — S, X{"), we have

0= I(U; X{"[Sm, Sn — Sm) = I(U; X1*|Sm) = 0.
Hence ®(m) = I(U; X{") for all m < n.
B(m + 1) — D(m) = I(Us Xonsa|X") = I Xp1| X5') = D(m) — B(m — 1).

<m @
—n

Frrey

®(m)

m

d(m
®(n)

"

The above convexity implies that < —,.~ or equivalently
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Results on (p, ¢)-hypercontractivity

Consider random variable X, Y distributed as follows:
X is uniform and binary, W(y|z) ~ BEC (e).

Theorem (Nair-Wang ’16)

For BEC the correlation bound is tight, i.e. (X,Y) is (p, q)-hypercontractive for

;% = 1—c¢, if and only if the following condition is satisfied:

€e— - <

DO o

(g —1).

DN =
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Mathematics

Results on (p, ¢)-hypercontractivity

Consider random variable X, Y distributed as follows:
X is uniform and binary, W(y|z) ~ BEC (e).

Theorem (Nair-Wang ’16)

For BEC the correlation bound is tight, i.e. (X,Y) is (p, q)-hypercontractive for

;% = 1—c¢, if and only if the following condition is satisfied:

€e— - <

DO o

(g —1).

DN =

Remarks:

@ Always holds when € < %
e Holds for all € if ¢ > %.
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WEND e atesll Full hypercontractive region

Results on (p, ¢)-hypercontractivity

Consider random variable X, Y distributed as follows:
X is uniform and binary, W (y|z) ~ BEC (e).

Theorem (Nair-Wang ’16)

For BEC the correlation bound is tight, i.e. (X,Y") is (p, q)-hypercontractive for
;]% =1 —¢, if and only if the following condition s satisfied:

<5(@-1).

€ —

DO W

1
2

Always holds when ¢ <
Holds for all € if ¢ > %.

Uses the relative entropy characterization

Approach: study the stationary points (unique in above region)

Technique also yields another proof of Bonami’s inequality for BSC. @

E;&;-‘fhifé;,
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Recap
Saw: Equivalent characterizations help
e Compute the hypercontractivity parameters in several new settings

e Obtain new proofs of old results




Recap
Saw: Equivalent characterizations help
e Compute the hypercontractivity parameters in several new settings

e Obtain new proofs of old results

Thank You
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