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Introduction Hypercontractive Inequalities: a review

Hypercontractive inequalities: an introduction

Disclaimer: If you are a mathematician

Hypercontractivity is usually discussed using the language of Markov semi-groups

In this talk, I will use conditional expectations (snapshot rather than a
time-indexed family) to discuss hypercontractivity

Elementary result

Conditional expectation (a Markov operator) is contractive

‖E(X|Y )‖p ≤ ‖X‖p, ∀p ≥ 1,

where ‖X‖p = E(|X|p)1/p.

Hypercontractivity

(X,Y ) ∼ µXY satisfies (p, q)-hypercontractivity (1 ≤ q ≤ p) if

‖E(g(Y )|X)‖p ≤ ‖g(Y )‖q ∀g ≥ 0.
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Introduction Hypercontractive Inequalities: a review

Background

Hypercontractive inequalities have been used in

Quantum field theory

Establish best constants in classical inequalities

Bounds on semi-group kernels

Boolean function analysis (KKL theorem on influences)

This talk: relation to (network) information theory

equivalent characterizations

why should information-theorists care

why this relationship may interest mathematicians
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Part I

Equivalent characterizations of hypercontractive inequalities using information
measures



Equivalent characterizations Hypercontractivity

Elementary exercises

Definition: (X,Y ) ∼ µXY is (p, q)-hypercontractive for 1 ≤ q ≤ p if

‖E(g(Y )|X)‖p ≤ ‖g(Y )‖q ∀g ≥ 0.

An equivalent condition: (X,Y ) ∼ µXY is (p, q)-hypercontractive for 1 ≤ q ≤ p if
and only if

E(f(X)g(Y )) ≤ ‖f(X)‖p′‖g(Y )‖q ∀f, g ≥ 0,

where p′ = p
p−1 , the Hölder conjugate.

Proof: An application of Hölder’s inequality.

Tensorization property: Let (X1, Y1) ∼ µ1
XY be independent of (X2, Y2) ∼ µ2

XY ,
and let (X1, Y1) and (X2, Y2) be (p, q)-hypercontractive.

Then ((X1, X2), (Y1, Y2)) is also (p, q)-hypercontractive.
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Tensorization property: Let (X1, Y1) ∼ µ1
XY be independent of (X2, Y2) ∼ µ2

XY ,
and let (X1, Y1) and (X2, Y2) be (p, q)-hypercontractive.

Then ((X1, X2), (Y1, Y2)) is also (p, q)-hypercontractive.

chandra@ie.cuhk.edu.hk IT & HC 25-Aug-2016 5 / 25



Equivalent characterizations Hypercontractivity

Elementary exercises continued...

Define: rp(X;Y ) = 1
p × {inf q : (X,Y ) is (p, q)-hypercontractive.}

1 rp(X;Y ) is decreasing in p.

2 The p→∞ limit of rp(X;Y ) is given by

r∞(X;Y ) = inf
{
r : E

(
eE(log g(Y )|X)

)
≤ ‖g(Y )‖r ∀g > 0

}
.

A (slightly) non-trivial inequality: If (X,Y ) is (p, q)-hypercontractive then

q − 1

p− 1
≥ ρ2

m(X;Y ),

where ρ2
m(X;Y ) is the maximal correlation.

Maximal correlation: ρm(X;Y ) = supf,g E(f(X)g(Y )) where f, g satisfy
E(f(X)) = 0 = E(g(Y )) and E(f2(X)) = 1 = E(g2(Y )).

A proof follows using perturbations from constant functions along directions
induced by the optimizers for maximal correlation.
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Equivalent characterizations Hypercontractivity

Equivalent characterizations

Ahlswede-Gács ’76

r∞(X;Y ) = sup
νX�µx

D(νY ‖µY )

D(νX‖µX)
,

where νY is the (output) distribution induced by operating the same channel µY |X on
the input distribution νX .

Remark: Gács (independently) observed and used the hypercontraction of the
Markov operator to study:
Images of a set via a channel or equivalently
Region where measure concentrates when a noise operator is applied to a set

Anantharam-Gohari-Kamath-Nair ’13

r∞(X;Y ) = sup
νX�µx

D(νY ‖µY )

D(νX‖µX)
= sup

U :U−X−Y

I(U ;Y )

I(U ;X)

= inf {λ : KX [H(Y )− λH(X)]µ = Hµ(Y )− λHµ(X)}

Remark: Our interest was motivated by the tensorization property (clear later)
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Equivalent characterizations Hypercontractivity

Entire regime, p ≥ 1

The following conditions are equivalent:
1

‖E(g(Y )|X)‖p ≤ ‖g(Y )‖q ∀ g ≥ 0.

2

E(f(X)g(Y )) ≤ ‖f(X)‖p′‖g(Y )‖q ∀ f, g ≥ 0.

3 Using relative entropies (Carlen – Cordero-Erasquin ’09, Nair ’14, Friedgut ’15)

1

p′
D(νX‖µX) +

1

q
D(νY ‖µY ) ≤ D(νXY ‖µXY ) ∀νXY � µXY .

4 Using mutual information and auxiliary variables (Nair ’14)

1

p′
I(U ;X) +

1

q
I(U ;Y ) ≤ I(U ;XY ) ∀µU |XY .

5 Using convex envelopes (Nair ’14)

KXY

[
1

p′
H(X) +

1

q
H(Y )−H(XY )

]
µXY

=
1

p′
Hµ(X) +

1

q
Hµ(Y )−Hµ(XY ).
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Equivalent characterizations Hypercontractivity

Some remarks on equivalence proof

Functional form =⇒ mutual information condition

Use tensorization property:
f(Xn) = 1A, where A = {xn : (un0 , x

n) is jointly typical}
g(Y n) = 1B, where B = {yn : (un0 , y

n) is jointly typical}

Mutual information condition =⇒ relative entropy condition

A (natural) perturbation argument

Relative entropy condition =⇒ functional form

Let ‖f(X)‖p′ = ‖g(Y )‖q = 1. Define νXY = 1
ZµXY f(X)g(Y ).

D(νXY ‖µXY )− 1

p′
D(νX‖µX)− 1

q
D(νY ‖µY )

= log
1

Z
+

1

p′
Eν

(
log

µXf(X)p
′

νX

)
+

1

q
Eν

(
log

µY g(Y )q

νY

)
≤ log

1

Z
.
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Equivalent characterizations Brascamp-Lieb-type inequalities

Brascamp-Lieb-type inequalities

Brascamp Lieb-type inequalities

(X1, .., Xm) ∼ µXY is said to satisfy Brascamp-Lieb type inequalities with parameters
(λ1, λ2, · · · , λm, C) with λi ≥ 0 if

E

(
m∏
i=1

fi(Xi)

)
≤ 2C

m∏
i=1

‖fi(Xi)‖λi ∀ {fi}.

Hypercontractivity is a special case of above, C = 0 and m = 2

These parameters satisfy tensorization property

Strengthen Hölder’s inequality
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Equivalent characterizations Brascamp-Lieb-type inequalities

Equivalent characterizations: Brascamp-Lieb type inequalities

Let X1, .., Xm ∼ µX1,...,Xm .

The following conditions are equivalent:
1

E(

m∏
i=1

fi(Xi)) ≤ 2C
m∏
i=1

‖fi(Xi)‖λi ∀ fi ≥ 0.

2

‖E(

m∏
i=2

fi(Xi)|X1)‖λ′1 ≤ 2C
m∏
i=2

‖fi(Xi)‖λi ∀ fi ≥ 0.
1

λ′1
= 1− 1

λ1
.

3 Using relative entropies (Carlen – Cordero-Erasquin ’09)

m∑
i=1

1

λi
D(νXi‖µXi) ≤ C +D(νX1,..,Xm‖µX1,...,Xm) ∀νX1,...,Xm � µX1,..,Xm .

4 When C = 0 then it is also equivalent to (earlier proof immediately extends)

m∑
i=1

1

λi
I(U ;Xi) ≤ I(U ;X1, ..., Xm) ∀µU |X1,..,Xm

.
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Equivalent characterizations Brascamp-Lieb-type inequalities

Ahlswede-Gacs type limit (special case)

Interesting limit: for information theorists

Let λ′1 →∞ and, λi →∞ such that ri = λi
λ′1
, i = 2, ..,m.

The functional characterization (Bracscamp-Lieb) reduces to

eE(
∑m

i=2 log fi(Xi)|X1) ≤ 2C
m∏
i=2

‖fi(Xi)‖ri ∀fi > 0,

Equivalent characterization of (Carlen – Cordero-Erasquin ’09) reduces to

m∑
i=2

1

ri
D(νXi‖µXi) ≤ C +D(νX1‖µX1) ∀νX1 � µX1 .

Here νXi = νX1 � µXi|X1
, i.e. channels from X1 to Xi are preserved.

Remark: Work by (Liu et. al. ’16): derive above equivalence directly extending the
technique of (Carlen – Cordero-Erasquin ’09) and not as a limit.

chandra@ie.cuhk.edu.hk IT & HC 25-Aug-2016 12 / 25



Equivalent characterizations Brascamp-Lieb-type inequalities

Ahlswede-Gacs type limit (special case)

Interesting limit: for information theorists

Let λ′1 →∞ and, λi →∞ such that ri = λi
λ′1
, i = 2, ..,m.

The functional characterization (Bracscamp-Lieb) reduces to

eE(
∑m

i=2 log fi(Xi)|X1) ≤ 2C
m∏
i=2

‖fi(Xi)‖ri ∀fi > 0,

Equivalent characterization of (Carlen – Cordero-Erasquin ’09) reduces to

m∑
i=2

1

ri
D(νXi‖µXi) ≤ C +D(νX1‖µX1) ∀νX1 � µX1 .

Here νXi = νX1 � µXi|X1
, i.e. channels from X1 to Xi are preserved.

Remark: Work by (Liu et. al. ’16): derive above equivalence directly extending the
technique of (Carlen – Cordero-Erasquin ’09) and not as a limit.

chandra@ie.cuhk.edu.hk IT & HC 25-Aug-2016 12 / 25



Equivalent characterizations Brascamp-Lieb-type inequalities

Ahlswede-Gacs type limit (special case)

Interesting limit: for information theorists

Let λ′1 →∞ and, λi →∞ such that ri = λi
λ′1
, i = 2, ..,m.

The functional characterization (Bracscamp-Lieb) reduces to

eE(
∑m

i=2 log fi(Xi)|X1) ≤ 2C
m∏
i=2

‖fi(Xi)‖ri ∀fi > 0,

Equivalent characterization of (Carlen – Cordero-Erasquin ’09) reduces to

m∑
i=2

1

ri
D(νXi‖µXi) ≤ C +D(νX1‖µX1) ∀νX1 � µX1 .

Here νXi = νX1 � µXi|X1
, i.e. channels from X1 to Xi are preserved.

Remark: Work by (Liu et. al. ’16): derive above equivalence directly extending the
technique of (Carlen – Cordero-Erasquin ’09) and not as a limit.

chandra@ie.cuhk.edu.hk IT & HC 25-Aug-2016 12 / 25



Equivalent characterizations Reverse inequalities

Definitions: Reverse Inequalities

Reverse Hypercontractivity

(X,Y ) ∼ µXY is said to be (λ1, λ2)-reverse-hypercontractive if

E(f(X)g(Y )) ≥ ‖f(X)‖λ1‖g(Y )‖λ2 ∀ f(X), g(Y ).

Interested in λ1, λ2 ≤ 1 and 1
λ1

+ 1
λ2
≤ 1. (Notation: ‖Z‖λ = E(|Z|λ)1/λ.)

Reverse Brascamp-Lieb-type inequalities

(X1, .., Xm) ∼ µXY is said to satisfy reverse-Brascamp-Lieb type inequalities with
parameters (λ1, λ2, · · · , λm, C) if

E(
m∏
i=1

fi(Xi)) ≥ 2C
m∏
i=1

‖fi(Xi)‖λi ∀ {fi}.

Reverse-Hypercontractivity is a special case of reverse-Brascamp-Lieb

These parameters satisfy tensorization property
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Equivalent characterizations Reverse inequalities

Reverse Brascamp-Lieb-type inequalities

Beigi-Nair ’16

Let X1, ..., Xm be finite valued random variables and let µ denote their joint
probability mass function with marginals µi, 1 ≤ i ≤ m. Let λ1, ..., λm be non-zero
numbers. Let S+ = {i : λi > 0} be the set containing the indices of the positive λi’s.
Then for any C ∈ R the followings are equivalent:

(i) For all positive functions f1, .., fm we have

E

[
m∏
i=1

fi(Xi)

]
≥ 2C

m∏
i=1

‖fi(Xi)‖λi .

(ii) For all probability mass functions νi for i ∈ S+, there exists a probability mass
function ν, consistent with the given marginals νi, i ∈ S+ such that

m∑
i=1

1

λi
D(νi‖µi) ≥ C +D(ν‖µ).

For i /∈ S+, νi is the marginal induced by the p.m.f. ν.
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Multiuser information theory Review

(Degraded) broadcast channel

(M1,M2) Encoder
Xn

W (y, z|x)

Y n

Zn

Decoder 1

Decoder 2

M̂1

M̂2

Figure 1: Discrete memoryless broadcast channel

Degraded: A broadcast channel is degraded if W (z|x) =
∑

yW
′(z|y)W (y|x)

Particular sub-setting: Y = X

Key Question: What is the capacity region (or union of achievable rate pairs)?
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Multiuser information theory Review

Capacity region characterization

(Cover ’72, Gallager ’74)

The capacity region, C, is given by the union of rate pairs (R1, R2) satisfying

R2 ≤ I(U ;Z)

R1 ≤ H(X|U)

for some U such that U −X − Z is Markov.

Gallager’s converse proof:

Single-letterization argument

Explicit identification of auxiliary U in terms of other variables induced by a
given code

Remark: There are some important settings where single-letter achievable regions
(in terms of auxiliaries) lack a converse, and where there is evidence to suggest that
the achievable regions are optimal

Question: Can we provide an alternate proof to the capacity region (single-letter
expression) that does not involve explicit identification of auxiliaries
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Multiuser information theory Use of hypercontractivity

Alternate converse

Alternate characterization of capacity region

max(R1,R2)∈C R1 + λR2 = maxµX λIµ(X;Z) + CX [H(X)− λI(X;Z)]µ.

Remarks

Supporting hyperplane characterization of a convex region

Interested in λ ≥ 1

Key: Sub-additivity of CX [H(X)− λI(X;Z)]µ implies optimality (converse)

Lemma

Sub-additivity of CX [H(X)− λI(X;Z)]µ is equivalent to tensorization property of
r∞(X;Z).

Proof: follows from an equivalent characterization of r∞(X;Z)

Tensorization property of hypercontractivity region: a simple exercise

No identification of auxiliary variables

Our original interest in hypercontractivity came from its tensorization property
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Multiuser information theory Use of hypercontractivity

Remarks

Beigi-Gohari ’15

The entire hypercontractive region’s tensorization property implies optimality of
Gray-Wyner source coding problem

Recall: There are some important settings where single-letter achievable regions (in
terms of auxiliaries) lack a converse, and where there is evidence to suggest that the
achievable regions are optimal

Two receiver discrete memoryless broadcast channel

Gaussian interference channel

Some sub-classes of broadcast channels with three or more receivers

Sum-capacity of interference channels with very weak interference

Optimality in these settings would be implied by showing sub-additivity of certain
functionals.

Questions

1 Are these sub-additivity questions equivalent to showing that certain functional
inequalities satisfy a tensorization property?

2 Do the corresponding functional inequalities have an operational link with the
corresponding coding questions?
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Recap

Saw: Equivalent characterizations and tensorization property together imply
optimality of single-letter regions in some settings.

Proposal is that this link is worth exploring to solve open problems and to
understand existing results in a different light

Part III

Why may some mathematicians care?
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Mathematics Review

Background

Consider binary-valued random variables X,Y distributed as follows:

X is uniform, W (y|x) ∼ BSC
(

1+ρ
2

)
.

Theorem (Bonami ’70, Beckner ’75)

(X,Y ) is (p, q)-hypercontractive if and only if

q − 1

p− 1
≥ ρ2.

Shows tightness of the correlation lower bound.

A similar statement also holds for jointly Gaussian random variables (Gross ’75)

Remarks

Exact characterization of optimal (or near optimal) hypercontractivity
parameters has been done only in a few settings

Typically arguments are non-trivial

Idea: Use equivalent characterizations to obtain new results.
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Mathematics Strong data processing constant

Results on r∞(X;Y ), the strong data processing constant

Anantharam-Gohari-Kamath-Nair ’13

Consider binary-valued random variables X,Y distributed as:

1 P(X = 0) = 1+s
2 , W (y|x) ∼ BSC

(
1+ρ

2

)
, then

r∞(X;Y ) =
J
(

1+sρ
2

)
J
(

1+s
2

) , where J(x) = log
1− x
x

.

2 P(X = 1) = x, W (y|x) ∼ Z(z), i.e. WY |X(0|1) = z, then

r∞(X;Y ) =
log(1− x(1− z))

log(1− x)
.

Remark: Both of these immediately follow from the convex envelope equivalent
characterization.
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Mathematics Strong data processing constant

Results on r∞(X;Y ), continued..

Kamath-Nair ’15

Let X1, ..., Xn be a sequence of i.i.d. random variables and Sm =
∑m

i=1Xi, m ≤ n.
Then,

r∞(Sn;Sm) ≤ m

n
, when m ≤ n.

Finite second moment, for instance, implies equality above.

Remark: This strengthens a result by (Dembo et. al. ’01) that establish a similar
result for correlation.

Proof: Given U − Sn − Sm is Markov. W.l.o.g. can assume that
U − Sn − (X1, ..., Xn) is Markov.
Let Φ(m) = I(U ;Sm). Then since I(U ;Sn) = I(U ;Sn, Sm, Sn − Sm, Xm

1 ), we have

0 = I(U ;Xm
1 |Sm, Sn − Sm) ≥ I(U ;Xm

1 |Sm) ≥ 0.

Hence Φ(m) = I(U ;Xm
1 ) for all m ≤ n.

Φ(m+ 1)− Φ(m) = I(U ;Xm+1|Xm
1 ) ≥ I(U ;Xm+1|Xm

2 ) = Φ(m)− Φ(m− 1).

The above convexity implies that Φ(m)
m ≤ Φ(n)

n or equivalently Φ(m)
Φ(n) ≤

m
n .
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Mathematics Full hypercontractive region

Results on (p, q)-hypercontractivity

Consider random variable X,Y distributed as follows:
X is uniform and binary, W (y|x) ∼ BEC (ε).

Theorem (Nair-Wang ’16)

For BEC the correlation bound is tight, i.e. (X,Y ) is (p, q)-hypercontractive for
q−1
p−1 = 1− ε, if and only if the following condition is satisfied:

ε− 1

2
≤ 3

2
(q − 1).

Remarks:

Always holds when ε ≤ 1
2

Holds for all ε if q ≥ 4
3 .

Proof:

Uses the relative entropy characterization

Approach: study the stationary points (unique in above region)

Technique also yields another proof of Bonami’s inequality for BSC.
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