Hypercontractivity and Information Theory

Chandra Nair

The Chinese University of Hong Kong August 25, 2016

Hypercontractive inequalities: an introduction

Disclaimer: If you are a mathematician

- $\bullet\,$ Hypercontractivity is usually discussed using the language of Markov semi-groups
- In this talk, I will use conditional expectations (snapshot rather than a time-indexed family) to discuss hypercontractivity

Hypercontractive inequalities: an introduction

Disclaimer: If you are a mathematician

- Hypercontractivity is *usually* discussed using the language of Markov semi-groups
- In this talk, I will use conditional expectations (snapshot rather than a time-indexed family) to discuss hypercontractivity

Elementary result

Conditional expectation (a Markov operator) is contractive

 $\|\mathbf{E}(X|Y)\|_p \le \|X\|_p, \quad \forall p \ge 1,$

where $||X||_p = E(|X|^p)^{1/p}$.

Hypercontractive inequalities: an introduction

Disclaimer: If you are a mathematician

- \bullet Hypercontractivity is usually discussed using the language of Markov semi-groups
- In this talk, I will use conditional expectations (snapshot rather than a time-indexed family) to discuss hypercontractivity

Elementary result

Conditional expectation (a Markov operator) is contractive

 $\|\mathbf{E}(X|Y)\|_p \le \|X\|_p, \quad \forall p \ge 1,$

where $||X||_p = E(|X|^p)^{1/p}$.

Hypercontractivity

 $(X,Y) \sim \mu_{XY}$ satisfies (p,q)-hypercontractivity $(1 \le q \le p)$ if

 $\|\mathbf{E}(g(Y)|X)\|_p \le \|g(Y)\|_q \quad \forall g \ge 0.$

Background

Hypercontractive inequalities have been used in

- Quantum field theory
- Establish best constants in classical inequalities
- Bounds on semi-group kernels

Background

Hypercontractive inequalities have been used in

- Quantum field theory
- Establish best constants in classical inequalities
- Bounds on semi-group kernels
- Boolean function analysis (KKL theorem on influences)

This talk: relation to (network) information theory

- $\bullet\,$ equivalent characterizations
- why should information-theorists care
- why this relationship may interest mathematicians

Part I

Equivalent characterizations of hypercontractive inequalities using information measures

Elementary exercises

Definition: $(X, Y) \sim \mu_{XY}$ is (p, q)-hypercontractive for $1 \le q \le p$ if

 $\|\mathbf{E}(g(Y)|X)\|_p \le \|g(Y)\|_q \quad \forall g \ge 0.$

Elementary exercises

Definition: $(X, Y) \sim \mu_{XY}$ is (p, q)-hypercontractive for $1 \le q \le p$ if

 $\|\mathbf{E}(g(Y)|X)\|_p \le \|g(Y)\|_q \quad \forall g \ge 0.$

An equivalent condition: $(X, Y) \sim \mu_{XY}$ is (p, q)-hypercontractive for $1 \le q \le p$ if and only if

 $\mathbb{E}(f(X)g(Y)) \le \|f(X)\|_{p'} \|g(Y)\|_q \quad \forall f, g \ge 0,$

where $p' = \frac{p}{p-1}$, the Hölder conjugate. **Proof:** An application of Hölder's inequality.

Elementary exercises

Definition: $(X, Y) \sim \mu_{XY}$ is (p, q)-hypercontractive for $1 \le q \le p$ if

 $\|\mathbf{E}(g(Y)|X)\|_p \le \|g(Y)\|_q \quad \forall g \ge 0.$

An equivalent condition: $(X, Y) \sim \mu_{XY}$ is (p, q)-hypercontractive for $1 \le q \le p$ if and only if

 $\mathbb{E}(f(X)g(Y)) \le \|f(X)\|_{p'} \|g(Y)\|_q \quad \forall f, g \ge 0,$

where $p' = \frac{p}{p-1}$, the Hölder conjugate. **Proof:** An application of Hölder's inequality.

Tensorization property: Let $(X_1, Y_1) \sim \mu_{XY}^1$ be independent of $(X_2, Y_2) \sim \mu_{XY}^2$, and let (X_1, Y_1) and (X_2, Y_2) be (p, q)-hypercontractive.

Then $((X_1, X_2), (Y_1, Y_2))$ is also (p, q)-hypercontractive.

Elementary exercises continued...

Define: $r_p(X;Y) = \frac{1}{p} \times \{\inf q : (X,Y) \text{ is } (p,q)\text{-hypercontractive.}\}$

- $r_p(X;Y)$ is decreasing in p.
- **2** The $p \to \infty$ limit of $r_p(X; Y)$ is given by

$$r_{\infty}(X;Y) = \inf \left\{ r: \mathbf{E} \left(e^{\mathbf{E}(\log g(Y)|X)} \right) \leq \|g(Y)\|_r \quad \forall g > 0 \right\}.$$

Elementary exercises continued...

Define: $r_p(X;Y) = \frac{1}{p} \times \{\inf q : (X,Y) \text{ is } (p,q) \text{-hypercontractive.} \}$

- $r_p(X;Y)$ is decreasing in p.
- **2** The $p \to \infty$ limit of $r_p(X; Y)$ is given by

$$r_{\infty}(X;Y) = \inf \left\{ r: \mathbf{E} \left(e^{\mathbf{E}(\log g(Y)|X)} \right) \leq \|g(Y)\|_r \quad \forall g > 0 \right\}.$$

A (slightly) non-trivial inequality: If (X, Y) is (p, q)-hypercontractive then

 $\frac{q-1}{p-1} \ge \rho_m^2(X;Y),$

where $\rho_m^2(X;Y)$ is the maximal correlation.

- Maximal correlation: $\rho_m(X;Y) = \sup_{f,g} \mathbb{E}(f(X)g(Y))$ where f,g satisfy $\mathbb{E}(f(X)) = 0 = \mathbb{E}(g(Y))$ and $\mathbb{E}(f^2(X)) = 1 = \mathbb{E}(g^2(Y))$.
- A proof follows using perturbations from constant functions along directions induced by the optimizers for maximal correlation.

Equivalent characterizations

Ahlswede-Gács '76

$$r_{\infty}(X;Y) = \sup_{\nu_X \ll \mu_x} \frac{D(\nu_Y \| \mu_Y)}{D(\nu_X \| \mu_X)},$$

where ν_Y is the (output) distribution induced by operating the same channel $\mu_{Y|X}$ on the input distribution ν_X .

Remark: Gács (independently) observed and used the hypercontraction of the Markov operator to study:

Images of a set via a channel or equivalently

Region where measure concentrates when a noise operator is applied to a set

Equivalent characterizations

Ahlswede-Gács '76

$$r_{\infty}(X;Y) = \sup_{\nu_X \ll \mu_x} \frac{D(\nu_Y \| \mu_Y)}{D(\nu_X \| \mu_X)},$$

where ν_Y is the (output) distribution induced by operating the same channel $\mu_{Y|X}$ on the input distribution ν_X .

Remark: Gács (independently) observed and used the hypercontraction of the Markov operator to study:

Images of a set via a channel or equivalently

Region where measure concentrates when a noise operator is applied to a set

Anantharam-Gohari-Kamath-Nair '13

$$r_{\infty}(X;Y) = \sup_{\nu_X \ll \mu_x} \frac{D(\nu_Y || \mu_Y)}{D(\nu_X || \mu_X)} = \sup_{U:U-X-Y} \frac{I(U;Y)}{I(U;X)}$$

= $\inf \{\lambda : \mathsf{K}_X[H(Y) - \lambda H(X)]_{\mu} = H_{\mu}(Y) - \lambda H_{\mu}(X)\}$

Remark: Our interest was motivated by the tensorization property (clear later)

chandra@ie.cuhk.ed	u.h	k
--------------------	-----	---

Entire regime, $p \ge 1$

0

2

The following conditions are equivalent:

```
\|\mathbf{E}(g(Y)|X)\|_p \le \|g(Y)\|_q \quad \forall \ g \ge 0.
```

$E(f(X)g(Y)) \le ||f(X)||_{p'} ||g(Y)||_q \quad \forall f, g \ge 0.$

Entire regime, $p \ge 1$

0

2

The following conditions are equivalent:

```
\|\mathbf{E}(g(Y)|X)\|_p \le \|g(Y)\|_q \quad \forall \ g \ge 0.
```

 $\mathcal{E}(f(X)g(Y)) \leq \|f(X)\|_{p'}\|g(Y)\|_q \quad \forall \ f,g \geq 0.$

 O Using relative entropies (Carlen – Cordero-Erasquin '09, Nair '14, Friedgut '15)
 $\frac{1}{p'}D(\nu_X \| \mu_X) + \frac{1}{q}D(\nu_Y \| \mu_Y) \le D(\nu_{XY} \| \mu_{XY}) \quad \forall \nu_{XY} \ll \mu_{XY}.$

Entire regime, $p \ge 1$

2

The following conditions are equivalent:

 $\|\mathbf{E}(g(Y)|X)\|_p \le \|g(Y)\|_q \quad \forall \ g \ge 0.$

 $\mathcal{E}(f(X)g(Y)) \leq \|f(X)\|_{p'}\|g(Y)\|_q \quad \forall \ f,g \geq 0.$

 O Using relative entropies (Carlen – Cordero-Erasquin '09, Nair '14, Friedgut '15)
 $\frac{1}{p'}D(\nu_X \| \mu_X) + \frac{1}{q}D(\nu_Y \| \mu_Y) \le D(\nu_{XY} \| \mu_{XY}) \quad \forall \nu_{XY} \ll \mu_{XY}.$

• Using mutual information and auxiliary variables (Nair '14)

$$\frac{1}{p'}I(U;X) + \frac{1}{q}I(U;Y) \le I(U;XY) \quad \forall \mu_{U|XY}.$$

• Using convex envelopes (Nair '14)

$$\mathsf{K}_{XY}\left[\frac{1}{p'}H(X) + \frac{1}{q}H(Y) - H(XY)\right]_{\mu_{XY}} = \frac{1}{p'}H_{\mu}(X) + \frac{1}{q}H_{\mu}(Y) - H_{\mu}(XY).$$

Functional form \implies mutual information condition

Use tensorization property: $f(X^n) = 1_A$, where $A = \{x^n : (u_0^n, x^n) \text{ is jointly typical}\}$ $g(Y^n) = 1_B$, where $B = \{y^n : (u_0^n, y^n) \text{ is jointly typical}\}$

Functional form \implies mutual information condition

Use tensorization property: $f(X^n) = 1_A$, where $A = \{x^n : (u_0^n, x^n) \text{ is jointly typical}\}$ $g(Y^n) = 1_B$, where $B = \{y^n : (u_0^n, y^n) \text{ is jointly typical}\}$

Mutual information condition \implies relative entropy condition

A (natural) perturbation argument

Functional form \implies mutual information condition

Use tensorization property: $f(X^n) = 1_A$, where $A = \{x^n : (u_0^n, x^n) \text{ is jointly typical}\}$ $g(Y^n) = 1_B$, where $B = \{y^n : (u_0^n, y^n) \text{ is jointly typical}\}$

Mutual information condition \implies relative entropy condition

A (natural) perturbation argument

Relative entropy condition \implies functional form

Let $||f(X)||_{p'} = ||g(Y)||_q = 1$. Define $\nu_{XY} = \frac{1}{Z} \mu_{XY} f(X) g(Y)$.

Functional form \implies mutual information condition

Use tensorization property: $f(X^n) = 1_A$, where $A = \{x^n : (u_0^n, x^n) \text{ is jointly typical}\}$ $g(Y^n) = 1_B$, where $B = \{y^n : (u_0^n, y^n) \text{ is jointly typical}\}$

Mutual information condition \implies relative entropy condition A (natural) perturbation argument

Relative entropy condition \implies functional form Let $||f(X)||_{p'} = ||g(Y)||_q = 1$. Define $\nu_{XY} = \frac{1}{Z}\mu_{XY}f(X)g(Y)$. $D(\nu_{XY}||\mu_{XY}) - \frac{1}{p'}D(\nu_X||\mu_X) - \frac{1}{q}D(\nu_Y||\mu_Y)$ $= \log \frac{1}{Z} + \frac{1}{p'}E_{\nu}\left(\log \frac{\mu_X f(X)^{p'}}{\nu_X}\right) + \frac{1}{q}E_{\nu}\left(\log \frac{\mu_Y g(Y)^q}{\nu_Y}\right) \le \log \frac{1}{Z}.$

Brascamp-Lieb-type inequalities

Brascamp Lieb-type inequalities

 $(X_1, ..., X_m) \sim \mu_{XY}$ is said to satisfy Brascamp-Lieb type inequalities with parameters $(\lambda_1, \lambda_2, \cdots, \lambda_m, C)$ with $\lambda_i \geq 0$ if

$$\mathbb{E}\left(\prod_{i=1}^{m} f_i(X_i)\right) \le 2^C \prod_{i=1}^{m} \|f_i(X_i)\|_{\lambda_i} \quad \forall \ \{f_i\}.$$

Brascamp-Lieb-type inequalities

Brascamp Lieb-type inequalities

 $(X_1, ..., X_m) \sim \mu_{XY}$ is said to satisfy Brascamp-Lieb type inequalities with parameters $(\lambda_1, \lambda_2, \cdots, \lambda_m, C)$ with $\lambda_i \ge 0$ if

$$\mathbb{E}\left(\prod_{i=1}^{m} f_i(X_i)\right) \le 2^C \prod_{i=1}^{m} \|f_i(X_i)\|_{\lambda_i} \quad \forall \ \{f_i\}.$$

- Hypercontractivity is a special case of above, C = 0 and m = 2
- These parameters satisfy tensorization property
- Strengthen Hölder's inequality

Equivalent characterizations: Brascamp-Lieb type inequalities

Let $X_1, ..., X_m \sim \mu_{X_1,...,X_m}$.

0

2

The following conditions are equivalent:

$$E(\prod_{i=1}^{m} f_i(X_i)) \le 2^C \prod_{i=1}^{m} ||f_i(X_i)||_{\lambda_i} \quad \forall \ f_i \ge 0.$$

$$\|\mathbb{E}(\prod_{i=2}^{m} f_i(X_i)|X_1)\|_{\lambda_1'} \le 2^C \prod_{i=2}^{m} \|f_i(X_i)\|_{\lambda_i} \quad \forall \ f_i \ge 0. \quad \frac{1}{\lambda_1'} = 1 - \frac{1}{\lambda_1}.$$

• Using relative entropies (Carlen – Cordero-Erasquin '09)

 $\sum_{i=1}^{m} \frac{1}{\lambda_i} D(\nu_{X_i} \| \mu_{X_i}) \le C + D(\nu_{X_1,\dots,X_m} \| \mu_{X_1,\dots,X_m}) \quad \forall \nu_{X_1,\dots,X_m} \ll \mu_{X_1,\dots,X_m}.$

Equivalent characterizations: Brascamp-Lieb type inequalities

Let $X_1, ..., X_m \sim \mu_{X_1,...,X_m}$.

2

The following conditions are equivalent:

$$E(\prod_{i=1}^{m} f_i(X_i)) \le 2^C \prod_{i=1}^{m} ||f_i(X_i)||_{\lambda_i} \quad \forall f_i \ge 0.$$

$$\|\mathbf{E}(\prod_{i=2}^{m} f_i(X_i)|X_1)\|_{\lambda_1'} \le 2^C \prod_{i=2}^{m} \|f_i(X_i)\|_{\lambda_i} \quad \forall \ f_i \ge 0. \quad \frac{1}{\lambda_1'} = 1 - \frac{1}{\lambda_1}.$$

• Using relative entropies (Carlen – Cordero-Erasquin '09)

 $\sum_{i=1}^{m} \frac{1}{\lambda_i} D(\nu_{X_i} \| \mu_{X_i}) \le C + D(\nu_{X_1,\dots,X_m} \| \mu_{X_1,\dots,X_m}) \quad \forall \nu_{X_1,\dots,X_m} \ll \mu_{X_1,\dots,X_m}.$

() When C = 0 then it is also equivalent to (earlier proof immediately extends)

$$\sum_{i=1}^{m} \frac{1}{\lambda_i} I(U; X_i) \le I(U; X_1, ..., X_m) \quad \forall \mu_{U|X_1, ..., X_m}.$$

Ahlswede-Gacs type limit (special case)

Interesting limit: for information theorists

Let $\lambda'_1 \to \infty$ and, $\lambda_i \to \infty$ such that $r_i = \frac{\lambda_i}{\lambda'_1}, i = 2, ..., m$.

The functional characterization (Bracscamp-Lieb) reduces to

$$e^{\mathbb{E}(\sum_{i=2}^{m} \log f_i(X_i)|X_1)} \le 2^C \prod_{i=2}^{m} \|f_i(X_i)\|_{r_i} \quad \forall f_i > 0,$$

Ahlswede-Gacs type limit (special case)

Interesting limit: for information theorists

Let $\lambda'_1 \to \infty$ and, $\lambda_i \to \infty$ such that $r_i = \frac{\lambda_i}{\lambda'_1}, i = 2, ..., m$.

The functional characterization (Bracscamp-Lieb) reduces to

$$e^{\mathbb{E}(\sum_{i=2}^{m} \log f_i(X_i)|X_1)} \le 2^C \prod_{i=2}^{m} \|f_i(X_i)\|_{r_i} \quad \forall f_i > 0,$$

Equivalent characterization of (Carlen - Cordero-Erasquin '09) reduces to

$$\sum_{i=2}^{m} \frac{1}{r_i} D(\nu_{X_i} \| \mu_{X_i}) \le C + D(\nu_{X_1} \| \mu_{X_1}) \quad \forall \nu_{X_1} \ll \mu_{X_1}.$$

Here $\nu_{X_i} = \nu_{X_1} \odot \mu_{X_i|X_1}$, i.e. channels from X_1 to X_i are preserved.

Ahlswede-Gacs type limit (special case)

Interesting limit: for information theorists

Let $\lambda'_1 \to \infty$ and, $\lambda_i \to \infty$ such that $r_i = \frac{\lambda_i}{\lambda'_1}, i = 2, ..., m$.

The functional characterization (Bracscamp-Lieb) reduces to

$$e^{\mathbb{E}(\sum_{i=2}^{m} \log f_i(X_i)|X_1)} \le 2^C \prod_{i=2}^{m} \|f_i(X_i)\|_{r_i} \quad \forall f_i > 0,$$

Equivalent characterization of (Carlen - Cordero-Erasquin '09) reduces to

$$\sum_{i=2}^{m} \frac{1}{r_i} D(\nu_{X_i} \| \mu_{X_i}) \le C + D(\nu_{X_1} \| \mu_{X_1}) \quad \forall \nu_{X_1} \ll \mu_{X_1}.$$

Here $\nu_{X_i} = \nu_{X_1} \odot \mu_{X_i|X_1}$, i.e. channels from X_1 to X_i are preserved.

Remark: Work by (Liu et. al. '16): derive above equivalence directly extending the technique of (Carlen – Cordero-Erasquin '09) and not as a limit.

Definitions: Reverse Inequalities

Reverse Hypercontractivity

 $(X,Y)\sim \mu_{XY}$ is said to be $(\lambda_1,\lambda_2)\text{-reverse-hypercontractive if}$

 $E(f(X)g(Y)) \ge ||f(X)||_{\lambda_1} ||g(Y)||_{\lambda_2} \quad \forall \ f(X), g(Y).$

Interested in $\lambda_1, \lambda_2 \leq 1$ and $\frac{1}{\lambda_1} + \frac{1}{\lambda_2} \leq 1$. (Notation: $||Z||_{\lambda} = \mathbb{E}(|Z|^{\lambda})^{1/\lambda}$.)

Definitions: Reverse Inequalities

Reverse Hypercontractivity

 $(X,Y)\sim \mu_{XY}$ is said to be $(\lambda_1,\lambda_2)\text{-reverse-hypercontractive if}$

```
\mathbb{E}(f(X)g(Y)) \ge \|f(X)\|_{\lambda_1} \|g(Y)\|_{\lambda_2} \quad \forall \ f(X), g(Y).
```

Interested in $\lambda_1, \lambda_2 \leq 1$ and $\frac{1}{\lambda_1} + \frac{1}{\lambda_2} \leq 1$. (Notation: $||Z||_{\lambda} = \mathbb{E}(|Z|^{\lambda})^{1/\lambda}$.)

Reverse Brascamp-Lieb-type inequalities

 $(X_1, ..., X_m) \sim \mu_{XY}$ is said to satisfy reverse-Brascamp-Lieb type inequalities with parameters $(\lambda_1, \lambda_2, \cdots, \lambda_m, C)$ if

$$\mathbb{E}(\prod_{i=1}^{m} f_i(X_i)) \ge 2^C \prod_{i=1}^{m} \|f_i(X_i)\|_{\lambda_i} \quad \forall \ \{f_i\}.$$

Definitions: Reverse Inequalities

Reverse Hypercontractivity

 $(X,Y)\sim \mu_{XY}$ is said to be $(\lambda_1,\lambda_2)\text{-reverse-hypercontractive if}$

```
\mathbb{E}(f(X)g(Y)) \ge \|f(X)\|_{\lambda_1} \|g(Y)\|_{\lambda_2} \quad \forall \ f(X), g(Y).
```

Interested in $\lambda_1, \lambda_2 \leq 1$ and $\frac{1}{\lambda_1} + \frac{1}{\lambda_2} \leq 1$. (Notation: $||Z||_{\lambda} = \mathbb{E}(|Z|^{\lambda})^{1/\lambda}$.)

Reverse Brascamp-Lieb-type inequalities

 $(X_1, ..., X_m) \sim \mu_{XY}$ is said to satisfy reverse-Brascamp-Lieb type inequalities with parameters $(\lambda_1, \lambda_2, \cdots, \lambda_m, C)$ if

$$E(\prod_{i=1}^{m} f_i(X_i)) \ge 2^C \prod_{i=1}^{m} \|f_i(X_i)\|_{\lambda_i} \quad \forall \ \{f_i\}.$$

- Reverse-Hypercontractivity is a special case of reverse-Brascamp-Lieb
- These parameters satisfy tensorization property

Reverse inequalities

Reverse Brascamp-Lieb-type inequalities

Beigi-Nair '16

Let $X_1, ..., X_m$ be finite valued random variables and let μ denote their joint probability mass function with marginals μ_i , $1 \le i \le m$. Let $\lambda_1, \ldots, \lambda_m$ be non-zero numbers. Let $S_{+} = \{i : \lambda_i > 0\}$ be the set containing the indices of the positive λ_i 's. Then for any $C \in \mathbb{R}$ the followings are equivalent:

(i) For all positive functions $f_1, ..., f_m$ we have

$$\mathbb{E}\left[\prod_{i=1}^{m} f_i(X_i)\right] \ge 2^C \prod_{i=1}^{m} \|f_i(X_i)\|_{\lambda_i}.$$

(ii) For all probability mass functions ν_i for $i \in S_+$, there exists a probability mass function ν , consistent with the given marginals $\nu_i, i \in S_+$ such that

$$\sum_{i=1}^m \frac{1}{\lambda_i} D(\nu_i \| \mu_i) \ge C + D(\nu \| \mu).$$

For $i \notin S_+$, ν_i is the marginal induced by the p.m.f. ν .

Recap

Saw: hypercontractive inequalities can be equivalently characterized using information measures

Recap

Saw: hypercontractive inequalities can be equivalently characterized using information measures

Part II Why should some information-theorists care?

(Degraded) broadcast channel

Figure 1: Discrete memoryless broadcast channel

• **Degraded**: A broadcast channel is degraded if $W(z|x) = \sum_{y} W'(z|y)W(y|x)$

(Degraded) broadcast channel

Figure 1: Discrete memoryless broadcast channel

- Degraded: A broadcast channel is degraded if $W(z|x) = \sum_{y} W'(z|y)W(y|x)$
- Particular sub-setting: Y = X

Key Question: What is the capacity region (or union of achievable rate pairs)?

Capacity region characterization

(Cover '72, Gallager '74)

The capacity region, C, is given by the union of rate pairs (R_1, R_2) satisfying

 $R_2 \le I(U; Z)$ $R_1 \le H(X|U)$

for some U such that U - X - Z is Markov.

Capacity region characterization

(Cover '72, Gallager '74)

The capacity region, C, is given by the union of rate pairs (R_1, R_2) satisfying

 $R_2 \le I(U; Z)$ $R_1 \le H(X|U)$

for some U such that U - X - Z is Markov.

Gallager's converse proof:

- Single-letterization argument
- Explicit identification of auxiliary U in terms of other variables induced by a given code

Remark: There are some important settings where single-letter achievable regions (in terms of auxiliaries) lack a converse, and where there is evidence to suggest that the achievable regions are optimal

Capacity region characterization

(Cover '72, Gallager '74)

The capacity region, C, is given by the union of rate pairs (R_1, R_2) satisfying

 $R_2 \le I(U; Z)$ $R_1 \le H(X|U)$

for some U such that U - X - Z is Markov.

Gallager's converse proof:

- Single-letterization argument
- Explicit identification of auxiliary U in terms of other variables induced by a given code

Remark: There are some important settings where single-letter achievable regions (in terms of auxiliaries) lack a converse, and where there is evidence to suggest that the achievable regions are optimal

Question: Can we provide an alternate proof to the capacity region (single-letter expression) that does not involve explicit identification of auxiliaries

Alternate converse

Alternate characterization of capacity region

 $\max_{(R_1,R_2)\in\mathcal{C}} R_1 + \lambda R_2 = \max_{\mu_X} \lambda I_{\mu}(X;Z) + \mathsf{C}_X[H(X) - \lambda I(X;Z)]_{\mu}.$

Remarks

- Supporting hyperplane characterization of a convex region
- \bullet Interested in $\lambda \geq 1$
- Key: Sub-additivity of $C_X[H(X) \lambda I(X;Z)]_{\mu}$ implies optimality (converse)

Alternate converse

Alternate characterization of capacity region

 $\max_{(R_1,R_2)\in\mathcal{C}} R_1 + \lambda R_2 = \max_{\mu_X} \lambda I_{\mu}(X;Z) + \mathsf{C}_X[H(X) - \lambda I(X;Z)]_{\mu}.$

Remarks

- Supporting hyperplane characterization of a convex region
- \bullet Interested in $\lambda \geq 1$
- Key: Sub-additivity of $C_X[H(X) \lambda I(X;Z)]_{\mu}$ implies optimality (converse)

Lemma

Sub-additivity of $C_X[H(X) - \lambda I(X;Z)]_{\mu}$ is equivalent to tensorization property of $r_{\infty}(X;Z)$.

- **Proof:** follows from an equivalent characterization of $r_{\infty}(X; Z)$
- Tensorization property of hypercontractivity region: a simple exercise
- No identification of auxiliary variables

Alternate converse

Alternate characterization of capacity region

 $\max_{(R_1,R_2)\in\mathcal{C}} R_1 + \lambda R_2 = \max_{\mu_X} \lambda I_{\mu}(X;Z) + \mathsf{C}_X[H(X) - \lambda I(X;Z)]_{\mu}.$

Remarks

- Supporting hyperplane characterization of a convex region
- Interested in $\lambda \geq 1$
- Key: Sub-additivity of $C_X[H(X) \lambda I(X;Z)]_{\mu}$ implies optimality (converse)

Lemma

Sub-additivity of $C_X[H(X) - \lambda I(X;Z)]_{\mu}$ is equivalent to tensorization property of $r_{\infty}(X;Z)$.

- **Proof:** follows from an equivalent characterization of $r_{\infty}(X; Z)$
- *Tensorization property* of hypercontractivity region: a simple exercise
- No identification of auxiliary variables
- Our original interest in hypercontractivity came from its tensorization property

Remarks

Beigi-Gohari '15

The entire hypercontractive region's tensorization property implies optimality of Gray-Wyner source coding problem

Remarks

Beigi-Gohari '15 The entire hypercontractive region's tensorization property implies optimality of Gray-Wyner source coding problem

Recall: There are some important settings where single-letter achievable regions (in terms of auxiliaries) lack a converse, and where there is evidence to suggest that the achievable regions are optimal

- Two receiver discrete memoryless broadcast channel
- Gaussian interference channel
- Some sub-classes of broadcast channels with three or more receivers
- Sum-capacity of interference channels with very weak interference

Optimality in these settings would be implied by showing sub-additivity of certain functionals.

Remarks

Beigi-Gohari '15 The entire hypercontractive region's tensorization property implies optimality of Gray-Wyner source coding problem

Recall: There are some important settings where single-letter achievable regions (in terms of auxiliaries) lack a converse, and where there is evidence to suggest that the achievable regions are optimal

- Two receiver discrete memoryless broadcast channel
- Gaussian interference channel
- Some sub-classes of broadcast channels with three or more receivers
- Sum-capacity of interference channels with very weak interference

Optimality in these settings would be implied by showing $\mathit{sub-additivity}$ of certain functionals.

Questions

- Are these sub-additivity questions equivalent to showing that certain functional inequalities satisfy a tensorization property?
- O the corresponding functional inequalities have an operational link with the corresponding coding questions?

Recap

Saw: Equivalent characterizations and tensorization property together imply optimality of single-letter regions in some settings.

Proposal is that this link is worth exploring to solve open problems and to understand existing results in a different light

Recap

Saw: Equivalent characterizations and tensorization property together imply optimality of single-letter regions in some settings.

Proposal is that this link is worth exploring to solve open problems and to understand existing results in a different light

Part III Why may some mathematicians care?

Background

Consider binary-valued random variables X, Y distributed as follows: X is uniform, $W(y|x) \sim BSC\left(\frac{1+\rho}{2}\right)$.

Theorem (Bonami '70, Beckner '75)

(X,Y) is (p,q)-hypercontractive if and only if

$$\frac{q-1}{p-1} \ge \rho^2.$$

Shows tightness of the correlation lower bound.

Background

Consider binary-valued random variables X, Y distributed as follows: X is uniform, $W(y|x) \sim BSC\left(\frac{1+\rho}{2}\right)$.

Theorem (Bonami '70, Beckner '75)

 $(X,Y) \mbox{ is } (p,q)\mbox{-hypercontractive if and only if }$

$$\frac{q-1}{p-1} \ge \rho^2.$$

Shows tightness of the correlation lower bound.

A similar statement also holds for jointly Gaussian random variables (Gross '75)

Remarks

- Exact characterization of optimal (or near optimal) hypercontractivity parameters has been done only in a few settings
- Typically arguments are non-trivial

Idea: Use equivalent characterizations to obtain new results.

Results on $r_{\infty}(X;Y)$, the strong data processing constant

Anantharam-Gohari-Kamath-Nair '13

Consider binary-valued random variables X, Y distributed as:

• $P(X = 0) = \frac{1+s}{2}, W(y|x) \sim BSC\left(\frac{1+\rho}{2}\right)$, then

$$r_{\infty}(X;Y) = \frac{J\left(\frac{1+s\rho}{2}\right)}{J\left(\frac{1+s}{2}\right)}, \text{ where } J(x) = \log \frac{1-x}{x}$$

Results on $r_{\infty}(X; Y)$, the strong data processing constant

Anantharam-Gohari-Kamath-Nair '13

Consider binary-valued random variables X, Y distributed as:

• $P(X = 0) = \frac{1+s}{2}, W(y|x) \sim BSC\left(\frac{1+\rho}{2}\right)$, then

$$r_{\infty}(X;Y) = rac{J\left(rac{1+s
ho}{2}
ight)}{J\left(rac{1+s}{2}
ight)}, ext{ where } J(x) = \lograc{1-x}{x}$$

 $\ensuremath{\mathfrak{O}}$ $\ensuremath{\mathbb{P}}(X=1)=x,$ $W(y|x)\sim Z(z),$ i.e. $W_{Y|X}(0|1)=z,$ then

$$r_{\infty}(X;Y) = \frac{\log(1-x(1-z))}{\log(1-x)}.$$

Remark: Both of these immediately follow from the *convex envelope* equivalent characterization.

Results on $r_{\infty}(X;Y)$, continued..

Kamath-Nair '15

Let $X_1, ..., X_n$ be a sequence of i.i.d. random variables and $S_m = \sum_{i=1}^m X_i, m \le n$. Then,

$$r_{\infty}(S_n; S_m) \le \frac{m}{n}$$
, when $m \le n$.

Finite second moment, for instance, implies equality above.

Remark: This strengthens a result by (Dembo et. al. '01) that establish a similar result for correlation.

Results on $r_{\infty}(X;Y)$, continued..

Kamath-Nair '15

Let $X_1, ..., X_n$ be a sequence of i.i.d. random variables and $S_m = \sum_{i=1}^m X_i, m \le n$. Then,

$$r_{\infty}(S_n; S_m) \le \frac{m}{n}$$
, when $m \le n$.

Finite second moment, for instance, implies equality above.

Remark: This strengthens a result by (Dembo et. al. '01) that establish a similar result for correlation.

Proof: Given $U - S_n - S_m$ is Markov. W.l.o.g. can assume that $U - S_n - (X_1, ..., X_n)$ is Markov. Let $\Phi(m) = I(U; S_m)$. Then since $I(U; S_n) = I(U; S_n, S_m, S_n - S_m, X_1^m)$, we have

$$0 = I(U; X_1^m | S_m, S_n - S_m) \ge I(U; X_1^m | S_m) \ge 0.$$

Hence $\Phi(m) = I(U; X_1^m)$ for all $m \le n$.

Results on $r_{\infty}(X; Y)$, continued..

Kamath-Nair '15

Let $X_1, ..., X_n$ be a sequence of i.i.d. random variables and $S_m = \sum_{i=1}^m X_i, m \le n$. Then,

$$r_{\infty}(S_n; S_m) \le \frac{m}{n}$$
, when $m \le n$.

Finite second moment, for instance, implies equality above.

Remark: This strengthens a result by (Dembo et. al. '01) that establish a similar result for correlation.

Proof: Given $U - S_n - S_m$ is Markov. W.l.o.g. can assume that $U - S_n - (X_1, ..., X_n)$ is Markov. Let $\Phi(m) = I(U; S_m)$. Then since $I(U; S_n) = I(U; S_n, S_m, S_n - S_m, X_1^m)$, we have

$$0 = I(U; X_1^m | S_m, S_n - S_m) \ge I(U; X_1^m | S_m) \ge 0.$$

Hence $\Phi(m) = I(U; X_1^m)$ for all $m \le n$.

 $\Phi(m+1) - \Phi(m) = I(U; X_{m+1} | X_1^m) \ge I(U; X_{m+1} | X_2^m) = \Phi(m) - \Phi(m-1).$

The above convexity implies that $\frac{\Phi(m)}{m} \leq \frac{\Phi(n)}{n}$ or equivalently $\frac{\Phi(m)}{\Phi(n)} \leq \frac{m}{n}$.

Results on (p, q)-hypercontractivity

Consider random variable X, Y distributed as follows: X is uniform and binary, $W(y|x) \sim BEC(\epsilon)$.

Theorem (Nair-Wang '16)

For BEC the correlation bound is tight, i.e. (X, Y) is (p,q)-hypercontractive for $\frac{q-1}{p-1} = 1 - \epsilon$, if and only if the following condition is satisfied:

$$\epsilon - \frac{1}{2} \le \frac{3}{2}(q-1).$$

Results on (p, q)-hypercontractivity

Consider random variable X, Y distributed as follows: X is uniform and binary, $W(y|x) \sim BEC(\epsilon)$.

Theorem (Nair-Wang '16)

For BEC the correlation bound is tight, i.e. (X, Y) is (p, q)-hypercontractive for $\frac{q-1}{p-1} = 1 - \epsilon$, if and only if the following condition is satisfied:

$$\epsilon - \frac{1}{2} \le \frac{3}{2}(q-1).$$

Remarks:

- Always holds when $\epsilon \leq \frac{1}{2}$
- Holds for all ϵ if $q \geq \frac{4}{3}$.

Results on (p, q)-hypercontractivity

Consider random variable X, Y distributed as follows: X is uniform and binary, $W(y|x) \sim BEC(\epsilon)$.

Theorem (Nair-Wang '16)

For BEC the correlation bound is tight, i.e. (X, Y) is (p,q)-hypercontractive for $\frac{q-1}{p-1} = 1 - \epsilon$, if and only if the following condition is satisfied:

$$\epsilon - \frac{1}{2} \le \frac{3}{2}(q-1).$$

Remarks:

- Always holds when $\epsilon \leq \frac{1}{2}$
- Holds for all ϵ if $q \geq \frac{4}{3}$.

Proof:

- Uses the relative entropy characterization
- Approach: study the stationary points (unique in above region)
- Technique also yields another proof of Bonami's inequality for BSC.

Recap

Saw: Equivalent characterizations help

- Compute the hypercontractivity parameters in several new settings
- Obtain new proofs of old results

Recap

Saw: Equivalent characterizations help

- Compute the hypercontractivity parameters in several new settings
- Obtain new proofs of old results

Thank You