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Fundamental questions

1. ` devices in a cell; k of them are active.

2. ` and k are large numbers.

3. Massive grant free access in the uplink.
Who transmitted?
What are their messages?

4. Selective addressing in the downlink.
Who should listen?
What is the message for each receiver?
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Need a Many-User Information Theory

I Classical single-user Information Theory:
1 user, coding blocklength n→∞.

I Multiuser Information Theory:
k users (fixed, usually small), n→∞.

I Large-system analysis:
n→∞ first, then k →∞.

I However, k > n in many systems.
E.g., large sensor networks, Internet of things.

I n→∞ for fixed k may be inaccurate and provide little insight.

I We propose a Many-User Information Theory:
k, n→∞ simultaneously. For example:
k = αn→∞;
k = nα →∞ (e.g., k = 1, 000, 000 devices, frame length n = 1, 000).
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Outline

I (Almost practical) device identification

I Classical information theory

I Many-access channel

I Many-broadcast channel
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Neighbor discovery/device identification

I To acquire the network interface addresses (NIAs) of all neighbors.

I Prior art: random access. Each node sends its NIA repeatedly with
random delay.
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Discovery is fundamentally sparse signal recovery

I b-bit address, l = 2b valid NIAs total.

I Node i sends signal si.

I Multiaccess channel with path loss and fading:

Y =
∑

i∈neighborhood

siUi +W

=

l∑
i=1

siXi +W

= SX +W

I Given Y , what is X?

I Xi u 0 for all but a few neighbors.
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Network-wide discovery in one frame interval

I Each node transmits a single frame of signature.

I Synchronized transmissions (can be relaxed).

I One key challenge is decoding complexity (need to scale to 220–248 NIAs).

I Second-order Reed-Muller codes + chirp decoding algorithm
[Calderbank, Gilbert & Strauss ’06], [Howard, Calderbank & Searle ’08].

I In an ad hoc network with half-duplex transceivers, use symbol erasures
to achieve rapid on-off division duplex (RODD).
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Second order Reed-Muller signature generation
I Signature length n = 2m.
I Pm×m is a binary symmetric matrix, x, t ∈ Zm2 :

ϕP,t(x) =
(√
−1
)xTPx+2tTx

.

I Codebook size up to 2m(m+3)/2:
I m = 5, n = 25 = 32, l up to 220 codewords.
I m = 10, n = 210 = 1,024, l up to 265;
I m = 12, n = 212 = 4,096, l up to 290.

I Introduce about 50% erasures in case of virtual full duplex.

1 1 j -j j -j -1 -1 1 1 -j j j -j 1 1 1 -1 j j j j -1 1 -1 1 j j -j -j -1 1

1 1 j -j j -j 1 1 1 -1 -j -j -j -j 1 -1 j -j 1 1 -1 -1 -j j j j -1 1 1 -1 -j -j

1 1 j j j -j -1 1 j j 1 1 -1 1 j -j j -j -1 1 1 1 j j 1 -1 -j j -j -j -1 -1

1 -1 j -j j j 1 1 j j 1 1 1 -1 j -j 1 1 -j -j -j j 1 -1 j -j -1 1 -1 -1 j j

1 -j 1 j j 1 -j 1 1 j -1 j j -1 j 1 j -1 j 1 -1 -j 1 -j j 1 -j 1 -1 j -1 -j

1 -1 1 1 j -j -j -j 1 1 -1 1 -j -j -j j j j -j j -1 -1 -1 1 -j j -j -j -1 1 1 1

1 j -1 -j j -1 j -1 j 1 j 1 -1 j 1 -j 1 -j -1 j -j -1 -j -1 j -1 j -1 1 j -1 -j

1 1 -1 -1 j j j j j -j j -j 1 -1 -1 1 1 -1 1 -1 -j j j -j -j -j j j 1 1 1 1
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Error rate vs. SNR
220 nodes, path loss exponent = 3, Rayleigh fading
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Comparison with random access

I l = 220 nodes, on average 10 neighbors, SNR = 11.5 dB

Target Pe = 0.002

Random access RODD
# of frames 194 1
# of symbols ≥ 194×20=3,880 1,024

I In addition, significant reduction of per-frame overhead.

I More results in:
L. Zhang and D. Guo, “Virtual full duplex wireless broadcasting via
compressed sensing,” IEEE/ACM Trans. Networking, 2014.
L. Zhang, J. Luo, and D. Guo, “Neighbor discovery for wireless networks
via compressed sensing,” Performance Evaluation, 2013.
X. Chen and D. Guo, “Robust sublinear complexity Walsh-Hadamard
transform with arbitrary sparse support,” ISIT, 2015.

Dongning Guo (Northwestern Univ.) p. 11
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What are the fundamental limits?
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Outline

I (Almost practical) neighbor discovery

I Classical information theory: a digression

I Many-access channel

I Many-broadcast channel

Dongning Guo (Northwestern Univ.) p. 13
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Classical (single-user) information theory
I [Shannon–MacMillan–Breiman ’48, ’60] for discrete stationary ergodic

sequence,

− 1

n
log pX1,...,Xn

(X1, . . . , Xn)
a.s.→ H

I Typical set

T (n)
ε =

{
(x1, · · · , xn) :

∣∣∣− 1

n
log pX1,··· ,Xn

(x1, . . . , xn)−H
∣∣∣ ≤ ε}

I Asymptotic equipartition property:

I Almost all sequences that occur are typical, limn→∞ P
{
T

(n)
ε

}
= 1;

I There are about 2nH of them, |T (n)
ε | ≈ 2nH.
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Classical multiaccess channel

w1 7−→ (X11, . . . , X1n)↘

w2 7−→ (X21, . . . , X2n)
↗

PY |X1,X2
−→ (Y1, . . . , Yn) 7−→ (ŵ1, ŵ2)

The capacity region is due to Ahlswede (1971) and Liao (1972). It can be
achieved by random coding, joint typicality decoding, and time sharing.

Dongning Guo (Northwestern Univ.) p. 15
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Jointly typical set

T (n)
ε =

{
(x1,x2,y) :

∣∣∣ 1
n
log

1

pX1(x1)
−H(X1)

∣∣∣ < ε∣∣∣ 1
n
log

1

pX2(x2)
−H(X2)

∣∣∣ < ε∣∣∣ 1
n
log

1

pY (y)
−H(Y )

∣∣∣ < ε∣∣∣ 1
n
log

1

pX1Y (x1,y)
−H(X1, Y )

∣∣∣ < ε∣∣∣ 1
n
log

1

pX2Y (x2,y)
−H(X2, Y )

∣∣∣ < ε∣∣∣ 1
n
log

1

pX1X2(x1,x2)
−H(X1, X2)

∣∣∣ < ε∣∣∣ 1
n
log

1

pX1X2Y (x1,x2,y)
−H(X1, X2, Y )

∣∣∣ < ε

}
The “empirical entropy” converges to the entropy for all subsets of (X1, X2, Y ).
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Proof of multiaccess channel capacity

I Two users transmit X1(w1) and X2(w2) from random codebooks.

I Receiver puts out the first (ŵ1, ŵ2) satisfying

(X1(ŵ1),X2(ŵ2),Y ) ∈ T (n)
ε .

I Let Ew1w2
= {(X1(w1),X2(w2),Y ) ∈ T (n)

ε }. Then

Pe ≤ P (Ec11)︸ ︷︷ ︸
→0 by AEP

+
∑

w1=1,w2 6=1

P (E1w2
)︸ ︷︷ ︸

⇒bound on R2

+
∑

w1 6=1,w2=1

P (Ew11)︸ ︷︷ ︸
⇒bound on R1

+
∑

w1 6=1,w2 6=1

P (Ew1w2
)︸ ︷︷ ︸

⇒bound on R1+R2

→ 0

Dongning Guo (Northwestern Univ.) p. 17
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The large-system limit is ill-suited for many-user

I Example: The sum rate of the k-user Gaussian multiaccess channel:

Csum =
1

2
log(1 + kγ)→∞

1

k
Csum =

1

2k
log(1 + kγ)→ 0

I “When the total number of senders is very large, so that there is a lot of
interference, we can still send a total amount of information that is
arbitrary large even though the rate per individual sender goes to 0.”
—Cover & Thomas, Elements of Information Theory.

I Rate or capacity in bits per channel use is ill-suited for many-user systems.

Dongning Guo (Northwestern Univ.) p. 18
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Outline

I (Almost practical) neighbor discovery

I Classical information theory

I Many-access channel

I Many-broadcast channel
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Gaussian many-access channel (MnAC)

Y =
∑̀
j=1

Sj(wj) +Z

I Many (`) transmitters, each active w.p. α ∈ (0, 1] in a block.

I Average number of active users:

k = α`.

I Message of user j: wj , corresponding codeword Sj(wj).

I User j is silent if wj = 0, Sj(0) = 0.

Dongning Guo (Northwestern Univ.) p. 20
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New challenges

I Time sharing is not good in general. If n = 1, 000, k = 2, 000, an average
user has half a channel use!

I Classical joint typicality does not apply as n, `→∞:
Xn

1,1 Xn
1,2 . . . Xn

1,n

Xn
2,1 Xn

2,2 . . . Xn
2,n

...
...

...
Xn
`,1 Xn

`,2 . . . Xn
`,n


I The union bound fails as the number of error events 2k grows

exponentially with n.

Dongning Guo (Northwestern Univ.) p. 21
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Identification code for the memoryless Gaussian MnAC

1. Let ` denote the total number of users.

2. If user j is inactive (Wj = 0), it transmits 0;

3. If user j is active (Wj = 1), it transmits sj ,

1

n`

n∑̀
i=1

s2ji ≤ γ.

4. On average, k` users are active with i.i.d. activities, P{Wj = 1} = k`
` .

5. Average identification error probability:

p` = P {D(Y ) 6= (W1, . . . ,W`)} .

Dongning Guo (Northwestern Univ.) p. 22
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Main result 1: identification cost

Theorem
Let

n` =
`H2(k`/`)

1
2 log(1 + k`γ)

.

For every ε ∈ (0, 1), as `→∞, arbitrarily reliable identification (p` → 0) is
achievable with (1 + ε)n` channel uses; whereas p` → 0 is not achievable with
(1− ε)n` channel uses. Here

H2(α) = α log
1

α
+ (1− α) log 1

1− α.

I Intuition: The activity uncertainty of ` users is `H2(k`/`).

I Achievable code: random Gaussian sequences as signatures.

Dongning Guo (Northwestern Univ.) p. 23
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Identification cost vs. user number
γ = 10 dB
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Identification and channel code for the Gaussian MnAC
An (M,n) symmetric code:

1. Encoders Ek : {0, . . . ,M} → Snk yields codewords sk(0), · · · , sk(M).

1

n

n∑
i=1

s2ki(w) ≤ γ, ∀w ∈ {1, · · · ,M}.

sk(0) = 0.

2. Decoder D : Yn → {0, . . . ,M}`n .

I.i.d. messages {Wk},

P{Wk = w} =
{
1− α, w = 0,
α
M , w ∈ {1, · · · ,M}.

P (n)
e = P {D(Y ) 6= (W1, . . . ,W`n)} .
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Capacity

I (v(n))∞n=1 with v(n) > 1 is a sequence of asymptotically achievable
message lengths for the MnAC if there exists a sequence of

(dexp(v(n))e, n) codes such that P
(n)
e vanishes as n→∞.

I B = (B(n))∞n=1 is said to be a symmetric capacity of the MnAC channel
if, for every ε ∈ (0, 1), ((1− ε)B(n)) is asymptotically achievable but
((1 + ε)B(n)) is not.

I If (B(n)) is a capacity, then (B(n) + o(B(n))) is also a capacity.

I In classical IT, B(n) = nC;
In Many-User IT, B(n) may be nonlinear.
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Main result 2: capacity of Gaussian MnAC

Theorem (Symmetric capacity)
Suppose kn →∞, kn = O(n), and `n = o(eδkn), ∀δ > 0.

B(n) =

(
n

2kn
log(1 + knγ)−

H2(α)

α

)+

=

(
B1(n)−

H2(α)

α

)+

nats

I The capacity is B1(n) if α = 1 or the set of active users is known.

I The penalty H2(α)/α is the total amount of activity uncertainty divided
by the number of active users.

I If H2(α)/α > B1(n), an average user cannot send 1 bit reliably.

I Large-system analysis (k →∞ after n→∞) obliterates the
identification cost.
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Capacity (message length) vs. blocklength
γ = 10 dB, kn = n/4
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Proof using an equivalent model

Y = SX +Z

I Concatenated codebook

S = [s1(1), · · · , s1(M), . . . , s`n(1), · · · , s`n(M)]n×(M`n)

I X ∈ {0, 1}M`n selects the codewords:

X =


X1

X2

...
X`n


Xk = 0 or ej = [0 . . . 0 1 0 . . . 0]>
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Proof of achievability: The codebooks

. . .

1
2 m

{

{

0
n

0
n n−

1
2 m

. . .

Signature

Message-bearing codeword jj

User 1 User 2

1
2 m

. . ..   .   .

User 
n

l

I The first n0 symbols form a user-specific signature. The remaining
symbols carry data.

I The capacity is achieved by separate identification and decoding.

I X. Chen and D. Guo, “Gaussian many-access channels with random user
activities,” ISIT 2014.
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Achievability: Separate identification and decoding

Y =

[
Y a
n0×1

Y b
(n−n0)×1

]
=

[
SaXa +Za

SbX +Zb

]
1. Identification:

minimize ‖Y a − Saxa‖2
subject to xa ∈ {0, 1}`n

ln∑
i=1

xai ≤ (1 + 2k
− 1

3
n )kn

2. ML joint message decoding based on result of identification.

minimize ‖Y b − Sbx‖2
subject to xk = ewk

, ∀k = 1, . . . , kn.
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Identification error probability

I Simple union bound fails for the exponential number of error events.

I The identification error event is decomposed to polynomial number of
events (t1 misses and t2 false alarms):

E =
⋃
t1,t2

Et1,t2

I Using techniques from Gallager ’68 to upper bound the error

P {Et1,t2 |Xa = xa} ≤ e−nhn(t1,t2)

where for large enough n, hn(t1, t2) ≥ c0(ε) > 0, ∀(t1, t2).
I Correct identification with high probability with n0 channel uses.

Dongning Guo (Northwestern Univ.) p. 32

Massive access and many-user information theory



Motivation Identification Classical IT Many-access Many-broadcast Concluding remarks

Identification error probability

I Simple union bound fails for the exponential number of error events.

I The identification error event is decomposed to polynomial number of
events (t1 misses and t2 false alarms):

E =
⋃
t1,t2

Et1,t2

I Using techniques from Gallager ’68 to upper bound the error

P {Et1,t2 |Xa = xa} ≤ e−nhn(t1,t2)

where for large enough n, hn(t1, t2) ≥ c0(ε) > 0, ∀(t1, t2).
I Correct identification with high probability with n0 channel uses.

Dongning Guo (Northwestern Univ.) p. 32

Massive access and many-user information theory



Motivation Identification Classical IT Many-access Many-broadcast Concluding remarks

Identification error probability

I Simple union bound fails for the exponential number of error events.

I The identification error event is decomposed to polynomial number of
events (t1 misses and t2 false alarms):

E =
⋃
t1,t2

Et1,t2

I Using techniques from Gallager ’68 to upper bound the error

P {Et1,t2 |Xa = xa} ≤ e−nhn(t1,t2)

where for large enough n, hn(t1, t2) ≥ c0(ε) > 0, ∀(t1, t2).
I Correct identification with high probability with n0 channel uses.

Dongning Guo (Northwestern Univ.) p. 32

Massive access and many-user information theory



Motivation Identification Classical IT Many-access Many-broadcast Concluding remarks

Identification error probability

I Simple union bound fails for the exponential number of error events.

I The identification error event is decomposed to polynomial number of
events (t1 misses and t2 false alarms):

E =
⋃
t1,t2

Et1,t2

I Using techniques from Gallager ’68 to upper bound the error

P {Et1,t2 |Xa = xa} ≤ e−nhn(t1,t2)

where for large enough n, hn(t1, t2) ≥ c0(ε) > 0, ∀(t1, t2).
I Correct identification with high probability with n0 channel uses.

Dongning Guo (Northwestern Univ.) p. 32

Massive access and many-user information theory



Motivation Identification Classical IT Many-access Many-broadcast Concluding remarks

ML decoding error probability
I Characterized similarly by lower bounding the error exponents.
I kn active users, decomposed to kn events according to # of users in error:

E =

kn⋃
k=1

Ek

I Error exponent

P{Ek} ≤ e−nf(k,ρ), ∀ρ ∈ [0, 1]

f(k, ρ) = E0

(
k

kn
, ρ

)
− ρk

n
logM − kn

n
H2

(
k

kn

)
.

I Let logM = B(n)− εn/kn. For large enough n, ∃d(ε) > 0, s.t.

min
k

max
ρ∈[0,1]

f(k, ρ) ≥ d(ε).

I The decoding error probability vanishes. Hence the achievability.
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Recap

Theorem (Symmetric capacity)

B(n) =

(
n

2kn
log(1 + knγ)−

H2(αn)

αn

)+

=

(
B1(n)−

H2(αn)

αn

)+

nats.

I Achieved by using random Gaussian codebooks with separate
indentification and decoding.

I Large-system analysis (k →∞ after n→∞) would obliterate the
identification cost.
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Outline

I (Almost practical) neighbor discovery

I Classical information theory

I Many-access channel

I Many-broadcast channel
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Classical degraded broadcast channels (BC)

I 2-user BC: PY1Y2|X .

I Degraded if X–Y1–Y2 is Markov.

I The capacity region is⋃
PXU :U−X−Y1−Y2

{
(R1, R2) :

0 ≤ R2 ≤ I(U ;Y2)
0 ≤ R1 ≤ I(X;Y1|U)

}
I Generalizing to a k-user degraded BC:

Rj ≤ I(Uj ;Yj |Uj+1), j = 1, . . . , k

where (0 = Uk+1)–Uk–. . . –(U1 = X)–Y1–. . . –Yk.
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I Generalizing to a k-user degraded BC:

Rj ≤ I(Uj ;Yj |Uj+1), j = 1, . . . , k

where (0 = Uk+1)–Uk–. . . –(U1 = X)–Y1–. . . –Yk.
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Gaussian degraded many-broadcast channel (MnBC)

I kn channel outputs:

Yj = X + σn,jZj , j = 1, 2, . . . , kn

where Zj i.i.d.∼ N (0, 1) and σn,j ≤ σn,j+1.

I kn →∞ monotonically. kn = O(n).

I Power constraint γ.

I How many bits can one send to each user reliably?

I Noise level as a triangular array (σn,j : n = 1, 2, . . . ; j = 1, . . . , kn).
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Definitions
I A triangular array

V =



v1,1
v2,1 v2,2
v3,1 v3,2 v3,3

...
vn,1 vn,2 . . . . . . vn,kn

...
...


I A triangular array V = (vn,j : n = 1, 2, . . . ; j = 1, . . . , kn) describes an

asymptotically achievable message length array for an MnBC if there

exists a sequence of
((

2dvn,je
)kn
j=1

, n
)

codes s.t. limn→∞ P
(n)
e = 0.

I The message length capacity of an MnBC is a collection of triangular
arrays B such that (1− δ)B is asymptotically achievable and (1 + δ)B is
not asymptotically achievable.
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Capacity results

I Let auxiliary variables U1, . . . , Ukn be jointly Gaussian.

I Power allocation described by a triangular array
(αn,j : n = 1, 2, . . . ; j = 1, . . . , kn), with

∑kn
j=1 αn,j = 1.

I User j’s SNR is then αn,jγ/σ
2
j .

I An asymptotically achievable triangular array:

Bn,j = Bj(n) =
n

2
log

(
1 +

αn,jγ

σ2
n,j +

∑j−1
i=1 αn,iγ

)
.
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Gaussian MnBC: a numerical example
n = 1000, γ = 20, kn = 250 (i.e., c = 1/4), and

σ2
j = exp

[
− j

(1 + j)2

]
.
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Numerical evaluation of Cj(n) for n = 1000

Asymptotic approximation

Using uniform power allocation:
I Can send ≥ 1 bits reliably to all users;
I Can send ≥ 10 bits reliably to about 20% of the users.
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Grouping
I What is the optimal strategy if a fraction q of the users can be dropped?

I It’s optimal to drop the group of qkn least capable users.

I In general, multiple groups with different rates—leading to a notion of
“capacity region.”
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Uniform power allocation
Symmetric rate power allocation
Symmetric rate with 30% outage
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Many-Source coding?


Xn

1,1 Xn
1,2 . . . Xn

1,n

Xn
2,1 Xn

2,2 . . . Xn
2,n

...
...

...
Xn
ln,1

Xn
ln,2

. . . Xn
ln,n


I No joint typicality in general.

I A certain joint typicality can be established if the sources form a Markov
chain.
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Conclusion

I Proposed a new many-user paradigm.

I Determined the minimum device identification cost.

I Determined the symmetric capacity of the Gaussian many-access channel
with random user activities.

I Capacity results for the Gaussian degraded many-broadcast channel also
develped (not shown here).

I large-system 6= many-user.

I Ongoing: other many-user channel models, source coding, rate distortion.

I The goal is to develop a Many-User Information Theory for emerging
many-user systems.
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Remark: a related work

The only prior many-user model in the literature is the noiseless binary adder
channel:

S.-C. Chang and E. Weldon, “Coding for t-user multiple-access channels,”
IEEE Trans. Inform. Theory, vol. 25, no. 6, pp. 684-691, 1979.

The number of users and blocklength taken to infinity simultaneously.
They studied uniquely decodable multiuser codes and the capacity.
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Remark: large-system 6= many-user
I Large-system analysis of CDMA and MIMO:

Send to infinity the number of users and spreading factor simultaneously
with fixed ratio; or the number of transmit and receive antennas with
fixed ratio;
Blocklength n→∞ before that.
[Foschini & Gans ’96, Telatar ’99, Verdú & Shamai ’99, Tanaka ’02,
Guo & Verdú ’05, Huh, Tulino & Caire ’12]

I Massive MIMO:
First, n→∞.
Then, send the number of antennas to infinity.
[Rusek, Persson, Lau, Larsson, Marzetta, Edfors & Tufvesson ’13,
Hoydis, ten Brink & Debbah ’13]

I The CEO problem [Berger & Zhang ’96].
n→∞ before the number of agents.

I Broadcast strategy for point-to-point slow-fading channels [Shamai ’97].
n→∞ before the number of layers.
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