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Linear Regression Models
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Test sample: (x test1 , x test2 , . . . , x testd )

Prediction:
y test = β̃1x

test
1 + · · · + β̃dx

test
d
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Logistic Regression Models

Linear regression models

Y = β1X1 + β2X2 + · · ·+ βdXd , β · X
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Y = β1X1 + β2X2 + · · ·+ βdXd , β · X

Logistic regression models

Pr(Y = +1|X) = β · X

Pr(Y = −1|X) = 1− Pr(Y = +1|X)

⇓ σ(x) := 1/(1 + e−x) ∈ [0, 1]

Pr(Y = +1|X) = σ(β ·X)

Pr(Y = −1|X) = 1− Pr(Y = +1|X)
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Individual Effects and Pairwise Interactions

Logistic regression model with individual effects and pairwise interactions

Pr(Y = +1|X) = σ(β1X1 + β2X2 + · · ·+ βdXd



Individual Effects and Pairwise Interactions

Logistic regression model with individual effects and pairwise interactions

Pr(Y = +1|X) = σ(β1X1 + β2X2 + · · ·+ βdXd

+β1,2X1X2 + β1,3X1X3 + · · ·+ βd−1,dXd−1Xd)
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Individual Effects and Pairwise Interactions

Logistic regression model with individual effects and pairwise interactions

Pr(Y = +1|X) = σ(β1X1 + β2X2 + · · ·+ βdXd

+β1,2X1X2 + β1,3X1X3 + · · ·+ βd−1,dXd−1Xd)

βi 6= 0: Xi has an individual effect.

βi = 0: Xi has no individual effect.

βi ,j 6= 0: Xi and Xj has a pairwise interaction.

βi ,j = 0: Xi and Xj has no pairwise interaction.
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System Model

X1,X2, . . . ,Xd are independent variables with
Pr{Xi = +1} = Pr{Xi = −1} = 1/2, for i = 1, 2, . . . , d .

Y is a binary outcome variable

Pr{Y = +1|X1,X2, . . . ,Xd} = σ
(

d
∑

i=1

βiXi +
∑

1≤i<j≤d

βi ,jXiXj

)

Pr{Y = −1|X1,X2, . . . ,Xd} = 1− Pr{Y = +1|X1,X2, . . . ,Xd}

= σ
(

−
d
∑

i=1

βiXi −
∑

1≤i<j≤d

βi ,jXiXj

)
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(

d
∑

i=1

βiXi +
∑

1≤i<j≤d

βi ,jXiXj

)

Pr{Y = −1|X1,X2, . . . ,Xd} = 1− Pr{Y = +1|X1,X2, . . . ,Xd}

= σ
(

−
d
∑

i=1

βiXi −
∑

1≤i<j≤d

βi ,jXiXj

)

Target:

Detect all individual effects and pairwise interactions in logistic
regression models from a limited number of samples.
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Motivation 1: Detection of the Graph Underlying an Ising

Model [Bresler (2015)]

Ising models on a graph G = (V ,E ) with |V | = d :

p(X1,X2, . . . ,Xd ) = exp







∑

i∈V

βiXi +
∑

{i ,j}∈E

βi ,jXiXj − Φ(β)







parameter vector: β = {βi}i∈V ∪ {βi ,j}{i ,j}∈E

normalizing constant: Φ(β)

the maximum degree of nodes is p (constant)

|βi | ≤ h and λ ≤ |βi ,j | ≤ µ.
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Motivation 1: Detection of the Graph Underlying an Ising

Model [Bresler (2015)] (Continued)

Theorem (Bresler 2015)

Let δ = 1
2e

−2(µp+h), τ∗ = λ2δ4p+1

16pµ , ǫ∗ = τ∗

2 , ℓ
∗ = 8

(τ∗)2
. Suppose we

observe n samples with

n ≥
144(ℓ∗ + 3)

(ǫ∗)2δ2ℓ∗
log

d

ζ
.

Then with probability at least 1− ζ, there exists an algorithm to detect
the structure of G running in polynomial time O(ℓ∗dn).
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Motivation 2: Chow-Liu Tree [Chow & Liu (1968)]

Chow-Liu representation:

p(X1,X2,X3,X4,X5)

= p(X1) · p(X2|X1) · p(X3|X1,X2) · p(X4|X1,X2,X3) · p(X5|X1,X2,X3,X4)

≈ p(X1) · p(X2|X1) · p(X3|X2) · p(X4|X2) · p(X5|X2)

(first-order product approximation)

= p′(X1,X2,X3,X4,X5)

Target: Find p′ to minimize the Kullback-Leibler distance D(p||p′)
between p and p′.
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Motivation 2: Chow-Liu Tree [Chow & Liu (1968)]

(Continued)

Dependency Relationship
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Motivation 2: Chow-Liu Tree [Chow & Liu (1968)]

(Continued)

Chow-Liu Algorithm:

Construct a weighted complete graph G = (V ,E ) with
V = {v1, v2, . . . , vd}.

The weight w(vi , vj ) of edge (vi , vj ) is assigned to be I (Xi ;Xj).

Find a maximum spanning tree T of G (by Kruskal’s algorithm or
Prim’s algorithm).

Set an arbitrarily node v to be the root of T , then rank the other
nodes by their depths.
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Our Work

Model all individual effects and pairwise interaction by a so-called
interaction graph.
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Our Work

Model all individual effects and pairwise interaction by a so-called
interaction graph.

Establish an algorithm with a similar style as Chow-Liu algorithm to
detect the structure of the interaction graph from a limited number of
samples.

No assumption of the maximum degree of nodes.

Sample complexity and running time are both polynomial functions of
the number of features.
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Model with only Pairwise Interactions

Assumption:

No individual effects (βi = 0 for 1 ≤ i ≤ d).

For example:

◮ 5 variables X1,X2,X3,X4,X5

◮ β1,2, β2,3, β2,4, β2,5 6= 0 and other βi ,j = 0

Pr{Y = +1|X1,X2,X3,X4,X5} = σ(β1,2X1X2 + β2,3X2X3

+ β2,4X2X4 + β2,5X2X5)

Pr{Y = −1|X1,X2,X3,X4,X5} = 1− Pr{Y = +1|X1,X2,X3,X4,X5}
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Interaction Graph

Interaction graph: Let G = (V ,E ) be the interaction graph with
V = {v1, v2, . . . , vd}, and the edge (vi , vj) ∈ E if and only if the
coefficient βi ,j corresponding to Xi and Xj is nonzero.

For example:

Pr{Y = +1|X1,X2,X3,X4,X5}

= σ(β1,2X1X2 + β2,3X2X3

+ β2,4X2X4 + β2,5X2X5)

Pr{Y = −1|X1,X2,X3,X4,X5}

= 1− Pr{Y = +1|X1,X2,X3,X4,X5}
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Assumption, Difficulty & Target

Assumption:

The interaction graph G = (V ,E ) is acyclic.

◮ When the model contains at most two interactions, G is always acyclic.
◮ When the number of interactions is far less than the number of

features, G is acyclic with a high probability.
◮ The model contains at most d − 1 interactions.

Difficulty:

We don’t know which edges this graph has.

Target:

Detect the structure of the interaction graph from a limited
number of samples.
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Construction of a Weighted Complete Graph

Construction:

Construct a weighted complete graph G ′ = (V ′,E ′) by

V ′ = (v ′1, v
′
2, . . . , v

′
d )

The weight of any edge (v ′i , v
′
j ) ∈ E ′ is

w{i ,j} = |Pr{Y = +1|Xi = +1,Xj = +1}−

Pr{Y = −1|Xi = +1,Xj = +1}|.
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Structure Detection of the Interaction Graph (Case 1)

Case 1: The third-order joint probability p(Xi ,Xj ,Y ) is known.

w{i ,j} can be calculated from the third-order joint distribution of
Xi ,Xj ,Y

w{i ,j}

= |Pr{Y = +1|Xi = +1,Xj = +1} − Pr{Y = −1|Xi = +1,Xj = +1}|

= |8Pr{Xi = +1,Xj = +1,Y = +1} − 1|
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Theorem on Detection (Case 1)

Theorem

Let T = (V ′,ET ) be a maximum spanning tree of G ′. Then

(vi , vj ) ∈ E if and only if (v ′i , v
′
j ) ∈ ET and w{i ,j} > 0.
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Theorem on Detection (Case 1)

Theorem

Let T = (V ′,ET ) be a maximum spanning tree of G ′. Then

(vi , vj ) ∈ E if and only if (v ′i , v
′
j ) ∈ ET and w{i ,j} > 0.

edges in the interaction graph
m

non-zero weighted edges in the maximum spanning tree
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Detection Algorithm (Case 1)

Algorithm (Detecting the interaction graph)

Construct a weighted graph G ′ = (V ′,E ′) with V ′ = {v ′1, v
′
2, . . . , v

′
d}.

The weight w{i ,j} of edge (v ′i , v
′
j ) is assigned to be

|Pr{Y = +1|Xi = +1,Xj = +1} − Pr{Y = −1|Xi = +1,Xj = +1}|.

Find a maximum spanning tree T ′ = (V ′,ET ) of G
′ (by Kruskal’s

algorithm or Prim’s algorithm).

Then the set of the edges in G is
{(vi , vj) : (v ′i , v

′
j ) ∈ ET and w{i ,j} > 0}.
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Detection Algorithm (Case 1)

Algorithm (Detecting the interaction graph)

Construct a weighted graph G ′ = (V ′,E ′) with V ′ = {v ′1, v
′
2, . . . , v

′
d}.

The weight w{i ,j} of edge (v ′i , v
′
j ) is assigned to be

|Pr{Y = +1|Xi = +1,Xj = +1} − Pr{Y = −1|Xi = +1,Xj = +1}|.

Find a maximum spanning tree T ′ = (V ′,ET ) of G
′ (by Kruskal’s

algorithm or Prim’s algorithm).

Then the set of the edges in G is
{(vi , vj) : (v ′i , v

′
j ) ∈ ET and w{i ,j} > 0}.

The algorithm is executed in polynomial time O(d2).
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Structure Detection of the Interaction Graph (Case 2)

Case 2:
◮ The third-order joint probability p(Xi ,Xj ,Y ) is unknown.
◮ Any non-zero parameter βi ,j satisfies that

λ ≤ |βi ,j | ≤ µ.

Weight Assignment: With n samples (Y (t),X
(t)
1 ,X

(t)
2 , . . . ,X

(t)
d

) for
1 ≤ t ≤ n, we estimate

w{i ,j} = |8Pr{Xi = +1,Xj = +1,Y = +1} − 1|

by

ŵ{i ,j} =

∣

∣

∣

∣

8

n

n
∑

t=1

1
(X

(t)
i

,X
(t)
j

,Y (t))=(+1,+1,+1)
− 1

∣

∣

∣

∣

.
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Theorem on Detection (Case 2)
Let

γ =

√

2

πd
[σ(λ+ 3µ)− σ(−λ+ 3µ)] .

Theorem

Assume for 1 ≤ i < j ≤ d,

|ŵ{i ,j} − w{i ,j}| < γ/2.

Let T = (V ′,ET ) be a maximum spanning tree of G ′. Then

(vi , vj ) ∈ E if and only if (v ′i , v
′
j ) ∈ ET and ŵ{i ,j} > γ/2.
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Theorem on Detection (Case 2)
Let

γ =

√

2

πd
[σ(λ+ 3µ)− σ(−λ+ 3µ)] .

Theorem

Assume for 1 ≤ i < j ≤ d,

|ŵ{i ,j} − w{i ,j}| < γ/2.

Let T = (V ′,ET ) be a maximum spanning tree of G ′. Then

(vi , vj ) ∈ E if and only if (v ′i , v
′
j ) ∈ ET and ŵ{i ,j} > γ/2.

edges in the interaction graph
m

large weighted edges in the maximum spanning tree
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Detection Algorithm (Case 2)

Algorithm (Detecting the interaction graph)

Construct a weighted graph G ′ = (V ′,E ′) with V ′ = {v ′1, v
′
2, . . . , v

′
d}.

The weight w{i ,j} of edge (v ′i , v
′
j ) is assigned to be

∣

∣

∣

∣

8

n

n
∑

t=1

1(Xi [t],Xj [t],Y [t])=(+1,+1,+1) − 1

∣

∣

∣

∣

.

Find a maximum spanning tree T ′ = (V ′,ET ) of G
′ (by Kruskal’s

algorithm or Prim’s algorithm).

Then the set of the edges in G is
{(vi , vj) : (v ′i , v

′
j ) ∈ ET and w{i ,j} > γ/2}.

The algorithm is executed in polynomial time O(nd2).
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Sample Complexity (Case 2)

Theorem

Fix 0 < ǫ < 1 and let n be a positive integer such that

n ≥
128

γ2
log

d2

ǫ
=

64πd

[σ(λ+ 3µ)− σ(−λ+ 3µ)]2
log

d2

ǫ
. (1)

Then with probability at least 1− ǫ, the algorithm can successfully detect
the graph G from n i.i.d. samples of (X1,X2, . . . ,Xd ,Y ).

The order of sample complexity: Θ
(

d log d
ǫ

)

Running time: O(d3 log d
ǫ
)
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Models with both Individual Effects and Pairwise

Interactions

For example:

◮ 4 variables X1,X2,X3,X4

◮ β2, β1,2, β2,3, β2,4 6= 0 and other βi , βi ,j = 0

Pr{Y = +1|X1,X2,X3,X4} = σ(β2X2 + β1,2X1X2

+β2,3X2X3 + β2,4X2X4)

Pr{Y = −1|X1,X2,X3,X4} = 1− Pr{Y = +1|X1,X2,X3,X4}
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Extended Interaction Graph
For extended interaction graph G = (V ,E ),

V = {v0(virtual vertex), v1, v2, . . . , vd}

(v0, vi ) ∈ E if and only if Xi has an individual effect

(vi , vj) ∈ E if and only if Xi and Xj have a cooperative interaction

With the help of the virtual vertex v0, G can capture all individual effects
and pairwise interactions.

For example:

Pr{Y = +1|X1,X2,X3,X4}

= σ(β2X2 + β1,2X1X2

+ β2,3X2X3 + β2,4X2X4)

Pr{Y = −1|X1,X2,X3,X4}

= 1− Pr{Y = +1|X1,X2,X3,X4}
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Auxiliary Model

Assumption:

The extended interaction graph G = (V ,E ) is acyclic.

Auxiliary model: Pr{X̃i = +1} = Pr{X̃i = −1} = 1/2 for
0 ≤ i ≤ d .
(X̃0: the virtual feature corresponding to the virtual node v0)

Pr{Ỹ = +1|X̃0, X̃1, X̃2, . . . , X̃d} = σ
(

d
∑

i=1

βi X̃0X̃i +
∑

1≤i<j≤d

βi ,j X̃i X̃j

)

Pr{Ỹ = −1|X̃0, X̃1, X̃2, . . . , X̃d} = 1− Pr{Ỹ = +1|X̃0, X̃1, X̃2, . . . , X̃d}

= σ
(

−
d
∑

i=1

βi X̃0X̃i −
∑

1≤i<j≤d

βi ,j X̃i X̃j

)
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Relationship between Original Model and its Auxiliary

Model

Original model:

w{0,i} := |Pr(Y = +1|Xi = +1)− Pr(Y = −1|Xi = +1)|

w{i ,j} := |Pr (Y = +1|Xi = +1,Xj = +1)

+ Pr (Y = +1|Xi = −1,Xj = −1)− 1|

Auxiliary model:

w̃{i ,j} :=
∣

∣

∣
Pr(Ỹ = +1|X̃i = +1, X̃j = +1)− Pr(Ỹ = −1|X̃i = +1, X̃j = +1)

∣

∣

∣

Theorem

For 0 ≤ i < j ≤ d,
wi ,j = w̃i ,j

“Easton” Li Xu (Texas A&M) Cooperative Interactions August 2016 26 / 40



Idea of Converting

Original model and auxiliary model share the same interaction graph.

Auxiliary model contains only pairwise interactions.

Assign the empirical weight of the original model into each edge of
the auxiliary model.
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Detection Algorithm of Extended Interaction Graphs

Algorithm

Construct a weighted complete graph G ′ = (V ′,E ′) with
V ′ = {v ′0, v

′
1, v

′
2, . . . , v

′
d}.

For 1 ≤ i ≤ d, the weight w{0,i} of edge (v ′0, v
′
i ) is assigned to be

∣

∣

∣

∣

∣

4

n

n
∑

t=1

1((xi [t], y[t]) = (+1,+1)) − 1

∣

∣

∣

∣

∣

;

for 1 ≤ i < j ≤ d, the weight w{i ,j} of edge (v ′i , v
′
j ) is assigned to be

∣

∣

∣

∣

∣

4

n

n
∑

t=1

1((xi [t], xj [t], y[t]) = (+1,+1,+1))+

4

n

n
∑

t=1

1((xi [t], xj [t], y[t]) = (−1,−1,+1)) − 1

∣

∣

∣

∣

∣

.
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Detection Algorithm of Extended Interaction Graphs

(Continued)

Algorithm

Find a maximum spanning tree T ′ = (V ′,ET ) of G
′ (by Kruskal’s

algorithm or Prim’s algorithm).

Then the set of the edges in G is
{(vi , vj) : (v ′i , v

′
j ) ∈ ET and w{i ,j} > γ′/2}, with

γ′ =

√

2

π(d + 1)
[σ(λ+ 3µ)− σ(−λ+ 3µ)] .

The algorithm is also executed in polynomial time.
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Non-Uniform Case

Assumption:

◮ X1,X2, . . . ,Xd are independent variables with
Pr{Xi = +1} = pi , Pr{Xi = −1} = qi with pi + qi = 1, for
i = 1, 2, . . . , d (non-uniform features)

◮ The interaction graph G = (V ,E ) is simply a path of length at most 4.

Target:

Reconstruct the graph from the samples of (Y ,X1,X2, . . . ,Xd ).

Construction:
Construct a weighted complete graph G ′ = (V ′,E ′) by
◮ V ′ = (v ′

1, v
′
2, . . . , v

′
d)

◮ The weight of any edge (v ′
i , v

′
j ) ∈ E ′ is assigned to be

w{i ,j} =
∣

∣

∣
Q i ,j

+1,+1,+1 + Q i ,j
−1,−1,+1 + Q i ,j

−1,+1,−1 + Q i ,j
+1,−1,−1

−Q i ,j
+1,+1,−1 − Q i ,j

−1,−1,−1 − Q i ,j
−1,+1,+1 − Q i ,j

+1,−1,+1

∣

∣

∣
.

(Q i ,j
i1,i2,i3

:= Pr{Y = i3|Xi = i1,Xj = i2})
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Theorem on Detection (Non-uniform Case)

Theorem

Let T = (V ′,ET ) be a maximum spanning tree of G ′. Then

(vi , vj ) ∈ E if and only if (v ′i , v
′
j ) ∈ ET and w{i ,j} > 0.
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Hardness of Detection (Non-uniform Case)

Theorem

Assume that the interaction graph is simply a path of length 5. If the
weight of edge (v ′i , v

′
j ) in G ′ is assigned to be

w{i ,j} =

∣

∣

∣

∣

∣

∣

∑

i1,i2,i3∈{+1,−1}

αi1,i2,i3Q
i ,j
i1,i2,i3

∣

∣

∣

∣

∣

∣

,

for any constants {αi1,i2,i3 : i1, i2, i3 ∈ {+1,−1}}, then there exists a
counterexample where we cannot correctly detect the structure of the
interaction graph by finding a maximum spanning tree of G ′.

The theorem for the uniform cases cannot be extended into the generic
non-uniform cases.
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Simulation Experiments

1000 logistic regression models

15 features, 5 individual effects, 10 pairwise interactions

400, 800, 1,200, 1,600, 2,000 samples

Detection of the interaction graphs
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Results of Simulation Experiments - Part 1

Comparison of detection correctness among mRMR forward selection
[Peng, Long & Ding (2005)], feature ranking based on mutual information
estimation [Paninski (2003)], and our algorithm.
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Results of Simulation Experiments - Part 2

Comparison of prediction correctness among mRMR forward selection
[Peng, Long & Ding (2005)], feature ranking based on mutual information
estimation [Paninski (2003)], and L1-penalized logistic regression [Park &
Hastie (2007)], and our algorithm.
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Results of Simulation Experiments - Part 3

Comparison of false positive rates for detection between L1-penalized
logistic regression [Park & Hastie (2007)] and our Algorithm.
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Summary

Logistic regression models:

Pr{Y = +1|X1,X2, . . . ,Xd} = σ
(

∑

1≤i≤d

βiXi +
∑

1≤i<j≤d

βi ,jXiXj

)

Pr{Y = −1|X1,X2, . . . ,Xd} = 1− Pr{Y = +1|X1,X2, . . . ,Xd}

Interaction graph G = (V ,E ):

(vi , vj) ∈ E ⇐⇒ βi ,j 6= 0.

Detection of the interaction graph:
◮ Construct a weighted complete graph.
◮ Find its maximum spanning tree.
◮ Pick the edges with large weights.

Extended to the models with both individual effects and pairwise
interactions
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Thank you!
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