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Main Ingredients

1 Channel with memory

m xi
En DeP (yi, si|xi, si−1)

yi

Delay
yi−1

m̂(yn)

Oron Sabag, Haim Permuter and Navin Kashyap Input-Constrained Erasure Channel with Feedback



Main Ingredients

1 Channel with memory

m xi(m)
En DeP (yi, si|xi, si−1)

yi

Delay
yi−1

m̂(yn)

Oron Sabag, Haim Permuter and Navin Kashyap Input-Constrained Erasure Channel with Feedback



Main Ingredients

1 Channel with memory

m xi(m, yi−1)
En DeP (yi, si|xi, si−1)

yi

Delay
yi−1

m̂

2 Feedback

Oron Sabag, Haim Permuter and Navin Kashyap Input-Constrained Erasure Channel with Feedback



Main Ingredients

1 Channel with memory

m xi(m, yi−1)
En DeP (yi, si|xi, si−1)

yi

Delay
yi−1

m̂

2 Feedback
3 Directed information

I(Xn → Y n)
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Definition of directed information

I(Xn;Y n) , H(Y n)−H(Y n|Xn)

H(Y n|Xn) , E[− log P (Y n|Xn)]

P (yn|xn) =

n
∏

i=1

P (yi|x
n, yi−1)

Xn , (X1,X2,X3, ...,Xn)
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Feedback capacity of FSC

Theorem

For any FSC with feedback [P.&Weissman&Goldsmith09]

CFB≥ 1

n
max

P (xn||yn−1)
min
s0

I(Xn → Y n|s0)−
log |S|

n

CFB≤ 1

n
max

P (xn||yn−1)
max
s0

I(Xn → Y n|s0)+
log |S|

n
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maxP (xn||yn−1) I(X
n → Y n) can be computed using an

extension of Blahut-Arimoto algorithm. [Naiss.&P.13]
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Feedback capacity of FSC

Theorem

For any FSC with feedback [P.&Weissman&Goldsmith09]

CFB≥ 1

n
max

P (xn||yn−1)
min
s0

I(Xn → Y n|s0)−
log |S|

n

CFB≤ 1

n
max

P (xn||yn−1)
max
s0

I(Xn → Y n|s0)+
log |S|

n

maxP (xn||yn−1) I(X
n → Y n) can be computed using an

extension of Blahut-Arimoto algorithm. [Naiss.&P.13]

Under mild conditions

CFB= lim
n→∞

1

n
max

P (xn||yn−1)
I(Xn → Y n)
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0 0

1 1

?

Trapdoor Channel [Blackwell61] Ising Channel [Berger90]

yi =

{

xi, with prob. 1
2

xi−1, with prob. 1
2

yi =

{

xi − xi−1, with prob. 1− ǫ

?, with prob. ǫ

1− ǫ

1− ǫ

ǫ

Cfb = log φ, φ =
√
5+1
2

Cfb = maxp
2H2(p)
3+p

≈ 0.575

Cfb = maxp(1− ǫ)p+ǫH2(p)
ǫ+(1−ǫ)p

Cfb = maxp
H2(p)

p+ 1
1−ǫ

[Elischo/P.13][P. et al08]

[Sabag/P/Kashyap15][Sabag/P/Pfister16]

Dicode Erasure Channel [Pfister08] Erasure Channel
with no repeated 1’s
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Feedback capacity computation

For a unifilar channel we have

CFB = lim
n→∞

1

n
max

Q(xn||yn−1)
I(Xn → Y n)
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Feedback capacity computation

For a unifilar channel we have

CFB = lim
n→∞

1

n
max

Q(xn||yn−1)
I(Xn → Y n)

CFB = sup
{Q(xt|st−1,yt−1)}t≥1

lim inf
n→∞

1

n

n
∑

t=1

I(Xt, St−1;Yt|Y
t−1)
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Dynamic programming (DP) formulation

state: βt−1

action: at
disturbance: wt

P (wt|β
t−1, wt−1, at) = P (wt|βt−1, at); βt = F (βt−1, at, wt)

reward per unit time:

g(βt−1, at)

objective:

sup
{at}t≥1

lim inf
n→∞

1

n

n
∑

t=1

E [g(βt−1, at)]
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Dynamic programming (DP) formulation

state: βt−1 = p(st−1|y
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t−1).

objective:

sup
{at}t≥1

lim inf
n→∞

1

n

n
∑

t=1

E [g(βt−1, at)]

Oron Sabag, Haim Permuter and Navin Kashyap Input-Constrained Erasure Channel with Feedback



Dynamic programming (DP) formulation

state: βt−1 = p(st−1|y
t−1), β ∈ [0, 1]

action: at = p(xt|st−1), at ∈ [0, 1]

disturbance: wt = yt−1, wt ∈ {0, 1, ?}

P (wt|β
t−1, wt−1, at) = P (wt|βt−1, at); βt = F (βt−1, at, wt)

reward per unit time:

g(βt−1, at) = I(Xt, St−1;Yt|y
t−1).

objective:

sup
{at}t≥1

lim inf
n→∞

1

n

n
∑

t=1

E [g(βt−1, at)]

= sup
{p(xt|st−1,yt−1)}t≥1

lim inf
n→∞

1

n

n
∑

t=1

I(Xt, St−1;Yt|Y
t−1) = CFB
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Dynamic programming operator, T

The dynamic programming operator T is given by

(T ◦ J)(β) = sup
a∈A

(

g(β, a) +
∑

w

P (w|β, a)J(F (β, a,w))

)
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The dynamic programming operator T is given by

(T ◦ J)(β) = sup
a∈A

(

g(β, a) +
∑

w

P (w|β, a)J(F (β, a,w))

)

In our case: J : [0, 1] → R and

(T ◦ J)(β) = sup0≤δ≤z ǭHb(δ)+(1 − δ)ǭJ(1)+ǫJ(1−δ)+δǭJ(0)
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Dynamic programming operator, T

The dynamic programming operator T is given by

(T ◦ J)(β) = sup
a∈A

(

g(β, a) +
∑

w

P (w|β, a)J(F (β, a,w))

)

In our case: J : [0, 1] → R and

(T ◦ J)(β) = sup0≤δ≤z ǭHb(δ)+(1 − δ)ǭJ(1)+ǫJ(1−δ)+δǭJ(0)

Value iteration algorithms: executed 20 iterations

Jk+1 = T ◦ Jk

CFB ≈ 0.405 bits
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Result of value iteration
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Dynamic programming- Bellman equation

Theorem (Bellman Equation)

If there exist a function J(β) and a constant ρ that satisfy

T ◦ J(β) = J(β) + ρ

then ρ is the optimal infinite horizon average reward.
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Dynamic programming- Bellman equation

Theorem (Bellman Equation)

If there exist a function J(β) and a constant ρ that satisfy

T ◦ J(β) = J(β) + ρ

then ρ is the optimal infinite horizon average reward.

J∗(z) =







ǭHb(z)− zǭ Hb(pǫ)

pǫ+
1

1−ǫ

if 0 ≤ z ≤ pǫ
Hb(pǫ)

pǫ+
1

1−ǫ

if pǫ ≤ z ≤ 1.

ρ∗ǫ = max
0≤p≤1

Hb(p)

p+ 1
1−ǫ

,

We showed that J∗(z) and ρ∗ǫ solve the Bellman equation.

Oron Sabag, Haim Permuter and Navin Kashyap Input-Constrained Erasure Channel with Feedback



Non-Feedback capacity

Comparing to achievable rate of non-feedback [Li, Han14].

Erasure probability ǫ

Feedback
Capacity

Inner-bound
[Li, Han 14]
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Result of Value iteration
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The DP optimal policy [Sabag/P./Kashyap15]

q1 q2

q3

y = 0/?

y = 0

y = 0

y = 1

y = 1

y =?

y =?
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Upper bound on capacity
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Upper bound on capacity

I(Xn → Y n) =
∑

i

I(Xi, Si−1;Yi|Y
i−1)
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Upper bound on capacity

I(Xn → Y n) =
∑

i

I(Xi, Si−1;Yi|Y
i−1)

≤
∑

I(Xi, Si−1;Yi|Qi−1(Y
i−1)).
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I(Xn → Y n) =
∑

i

I(Xi, Si−1;Yi|Y
i−1)

≤
∑

I(Xi, Si−1;Yi|Qi−1(Y
i−1)).

y = 1
y = 0
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q2q1
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Upper bound on capacity

I(Xn → Y n) =
∑

i

I(Xi, Si−1;Yi|Y
i−1)

≤
∑

I(Xi, Si−1;Yi|Qi−1(Y
i−1)).

y = 1
y = 0
y =? y = 0/?/1

q2q1

Theorem [Sabag/P./Pfiser16]

The feedback capacity of a unifilar FSC is bounded by

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q), ∀Q-graph
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Upper bound on capacity

I(Xn → Y n) =
∑

i

I(Xi, Si−1;Yi|Y
i−1)

≤
∑

I(Xi, Si−1;Yi|Qi−1(Y
i−1)).

y = 1
y = 0
y =? y = 0/?/1

q2q1

Theorem [Sabag/P./Pfiser16]

The feedback capacity of a unifilar FSC is bounded by

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q), ∀Q-graph

For BEC with no repeated 1’s

Cfb ≤ max
p

H2(p)
1

1−ǫ
+ p

.
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Summary and future work

Obtained the capacity of fundamental feedback problem.
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Obtained optimal code from the DP solution.
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known cases.

Future goal: find a unified solution for all FSC with
feedback.
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Summary and future work

Obtained the capacity of fundamental feedback problem.

Used directed information and DP.

Obtained optimal code from the DP solution.

Obtained single letter upper bound that is tight for all
known cases.

Future goal: find a unified solution for all FSC with
feedback.

Thank you !
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Sufficient condition

The channel state estimation (DP state):

p(st|y
t) =

p(st, yt|y
t−1)

p(yt|yt−1)

=

∑

xt,st−1
p(st, yt, xt, st−1|y

t−1)
∑

xt,st−1
p(yt, xt, st−1|yt−1)

.
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Sufficient condition

The channel state estimation (DP state):

p(st|y
t) =

p(st, yt|y
t−1)

p(yt|yt−1)

=

∑

xt,st−1
p(st, yt, xt, st−1|y

t−1)
∑

xt,st−1
p(yt, xt, st−1|yt−1)

.

This mapping is denoted by BCJR : Z × Y → Z.

If |Z| ≤ ∞ and PX|S,Z satisfies the BCJR mapping, we call it
BCJR-invariant.

Theorem (Lower bound)

The feedback capacity satisfies

Cfb ≥ I(X,S;Y |Q),

for all BCJR-invariant inputs.
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Upper bound with sufficient condition

Theorem [Sabag/P./Pfiser16]

The feedback capacity of a unifilar FSC is bounded by

Cfb ≤ max
p(x|s,q)

I(X,S;Y |Q), ∀Q-graph

and if p∗(x|s, q) is BCJR-invariant input, equality holds.
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