Large Random Matrices and Applications to Statistical Signal Processing

Jianfeng Yao

Department of Statistics \& Act. Sci., The University of Hong Kong

2016 Conference on Applied Mathematics - August 2016 - HKU
(With contributions from Jamal Najim [CNRS, Paris])

Outline

Quick introduction to random matrix theory

Large Covariance Matrices

Spiked models

Statistical Test for Single-Source Detection

Applications to the MIMO channel

Outline

Quick introduction to random matrix theory Large Random Matrices
Basic technical tools

Large Covariance Matrices

Spiked models

Statistical Test for Single-Source Detection

Applications to the MIMO channel

Large Random Matrices

Random matrices
It is a $N \times N$ matrix

$$
\mathbf{Y}_{N}=\left[\begin{array}{ccc}
Y_{11} & \cdots & Y_{1 N} \\
\vdots & & \vdots \\
Y_{N 1} & \cdots & Y_{N N}
\end{array}\right]
$$

whose entries $\left(Y_{i j} ; 1 \leq i, j \leq N\right)$ are random variables.

Large Random Matrices

Random matrices

It is a $N \times N$ matrix

$$
\mathbf{Y}_{N}=\left[\begin{array}{ccc}
Y_{11} & \cdots & Y_{1 N} \\
\vdots & & \vdots \\
Y_{N 1} & \cdots & Y_{N N}
\end{array}\right]
$$

whose entries $\left(Y_{i j} ; 1 \leq i, j \leq N\right)$ are random variables.
Matrix features
Of interest are the following quantities

- \mathbf{Y}_{N} 's spectrum $\left(\lambda_{i}, 1 \leq i \leq N\right)$ in particular $\lambda_{\min }$ and $\lambda_{\max }$ (if real spectrum).

Large Random Matrices

Random matrices

It is a $N \times N$ matrix

$$
\mathbf{Y}_{N}=\left[\begin{array}{ccc}
Y_{11} & \cdots & Y_{1 N} \\
\vdots & & \vdots \\
Y_{N 1} & \cdots & Y_{N N}
\end{array}\right]
$$

whose entries $\left(Y_{i j} ; 1 \leq i, j \leq N\right)$ are random variables.

Matrix features

Of interest are the following quantities

- \mathbf{Y}_{N} 's spectrum $\left(\lambda_{i}, 1 \leq i \leq N\right)$ in particular $\lambda_{\min }$ and $\lambda_{\max }$ (if real spectrum).
- linear statistics

$$
\operatorname{tr} f\left(\mathbf{Y}_{N}\right)=\sum_{i=1}^{N} f\left(\lambda_{i}\right)
$$

Large Random Matrices

Random matrices

It is a $N \times N$ matrix

$$
\mathbf{Y}_{N}=\left[\begin{array}{ccc}
Y_{11} & \cdots & Y_{1 N} \\
\vdots & & \vdots \\
Y_{N 1} & \cdots & Y_{N N}
\end{array}\right]
$$

whose entries $\left(Y_{i j} ; 1 \leq i, j \leq N\right)$ are random variables.

Matrix features

Of interest are the following quantities

- \mathbf{Y}_{N} 's spectrum $\left(\lambda_{i}, 1 \leq i \leq N\right)$ in particular $\lambda_{\min }$ and $\lambda_{\max }$ (if real spectrum).
- linear statistics

$$
\operatorname{tr} f\left(\mathbf{Y}_{N}\right)=\sum_{i=1}^{N} f\left(\lambda_{i}\right)
$$

- eigenvectors, etc.

Large Random Matrices

Random matrices

It is a $N \times N$ matrix

$$
\mathbf{Y}_{N}=\left[\begin{array}{ccc}
Y_{11} & \cdots & Y_{1 N} \\
\vdots & & \vdots \\
Y_{N 1} & \cdots & Y_{N N}
\end{array}\right]
$$

whose entries $\left(Y_{i j} ; 1 \leq i, j \leq N\right)$ are random variables.

Matrix features

Of interest are the following quantities

- \mathbf{Y}_{N} 's spectrum $\left(\lambda_{i}, 1 \leq i \leq N\right)$ in particular $\lambda_{\min }$ and $\lambda_{\max }$ (if real spectrum).
- linear statistics

$$
\operatorname{tr} f\left(\mathbf{Y}_{N}\right)=\sum_{i=1}^{N} f\left(\lambda_{i}\right)
$$

- eigenvectors, etc.

Asymptotic regime

Often, the description of the previous features takes a simplified form as

$$
N \rightarrow \infty
$$

Large Random Matrices

Random matrices

It is a $N \times N$ matrix

$$
\mathbf{Y}_{N}=\left[\begin{array}{ccc}
Y_{11} & \cdots & Y_{1 N} \\
\vdots & & \vdots \\
Y_{N 1} & \cdots & Y_{N N}
\end{array}\right]
$$

whose entries $\left(Y_{i j} ; 1 \leq i, j \leq N\right)$ are random variables.

Matrix features

Of interest are the following quantities

- \mathbf{Y}_{N} 's spectrum $\left(\lambda_{i}, 1 \leq i \leq N\right)$ in particular $\lambda_{\min }$ and $\lambda_{\max }$ (if real spectrum).
- linear statistics

$$
\operatorname{tr} f\left(\mathbf{Y}_{N}\right)=\sum_{i=1}^{N} f\left(\lambda_{i}\right)
$$

- eigenvectors, etc.

Asymptotic regime

Often, the description of the previous features takes a simplified form as

$$
N \rightarrow \infty
$$

leading to "good enough" approximation in real applications with finite N.

Large Random Matrices: Wigner Matrices

Matrix model
Let $\mathbf{X}_{N}=\left(X_{i j}\right)$ a symmetric $N \times N$ matrix with i.i.d. entries on and above the diagonal with

$$
\mathbb{E} X_{i j}=0 \text { and } \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and $X_{i j}=X_{j i}$ (for symmetry).

- consider the spectrum of Wigner matrix $\mathbf{Y}_{N}=\frac{\mathbf{X}_{N}}{\sqrt{N}}$

Large Random Matrices: Wigner Matrices

Wigner Matrix, N= 10

Matrix model

Let $\mathbf{X}_{N}=\left(X_{i j}\right)$ a symmetric $N \times N$ matrix with i.i.d. entries on and above the diagonal with

$$
\mathbb{E} X_{i j}=0 \text { and } \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and $X_{i j}=X_{j i}$ (for symmetry).

- consider the spectrum of Wigner matrix $\mathbf{Y}_{N}=\frac{\mathbf{x}_{N}}{\sqrt{N}}$

Figure: Histogram of the eigenvalues of \mathbf{Y}_{N}

Large Random Matrices: Wigner Matrices

Wigner Matrix, $\mathrm{N}=\mathbf{5 0}$

Matrix model

Let $\mathbf{X}_{N}=\left(X_{i j}\right)$ a symmetric $N \times N$ matrix with i.i.d. entries on and above the diagonal with

$$
\mathbb{E} X_{i j}=0 \text { and } \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and $X_{i j}=X_{j i}$ (for symmetry).

- consider the spectrum of Wigner matrix $\mathbf{Y}_{N}=\frac{\mathbf{X}_{N}}{\sqrt{N}}$

Figure: Histogram of the eigenvalues of \mathbf{Y}_{N}

Large Random Matrices: Wigner Matrices

Wigner Matrix, $\mathrm{N}=100$

Matrix model

Let $\mathbf{X}_{N}=\left(X_{i j}\right)$ a symmetric $N \times N$ matrix with i.i.d. entries on and above the diagonal with

$$
\mathbb{E} X_{i j}=0 \text { and } \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and $X_{i j}=X_{j i}$ (for symmetry).

- consider the spectrum of Wigner matrix $\mathbf{Y}_{N}=\frac{\mathbf{X}_{N}}{\sqrt{N}}$

Figure: Histogram of the eigenvalues of \mathbf{Y}_{N}

Wigner Matrix, $\mathrm{N}=\mathbf{5 0 0}$

Matrix model

Let $\mathbf{X}_{N}=\left(X_{i j}\right)$ a symmetric $N \times N$ matrix with i.i.d. entries on and above the diagonal with

$$
\mathbb{E} X_{i j}=0 \text { and } \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and $X_{i j}=X_{j i}$ (for symmetry).

- consider the spectrum of Wigner matrix $\mathbf{Y}_{N}=\frac{\mathbf{X}_{N}}{\sqrt{N}}$

Figure: Histogram of the eigenvalues of \mathbf{Y}_{N}

Matrix model

Let $\mathbf{X}_{N}=\left(X_{i j}\right)$ a symmetric $N \times N$ matrix with i.i.d. entries on and above the diagonal with

$$
\mathbb{E} X_{i j}=0 \text { and } \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and $X_{i j}=X_{j i}$ (for symmetry).

- consider the spectrum of Wigner matrix $\mathbf{Y}_{N}=\frac{\mathbf{x}_{N}}{\sqrt{N}}$

Figure: Histogram of the eigenvalues of \mathbf{Y}_{N}

Large Random Matrices: Wigner Matrices

Wigner Matrix, $\mathrm{N}=1500$

Matrix model

Let $\mathbf{X}_{N}=\left(X_{i j}\right)$ a symmetric $N \times N$ matrix with i.i.d. entries on and above the diagonal with

$$
\mathbb{E} X_{i j}=0 \text { and } \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and $X_{i j}=X_{j i}$ (for symmetry).

- consider the spectrum of Wigner matrix $\mathbf{Y}_{N}=\frac{\mathbf{X}_{N}}{\sqrt{N}}$

Figure: The semi-circular distribution (in red) with density $x \mapsto \frac{\sqrt{4-x^{2}}}{2 \pi}$

Wigner's theorem (1948)
"The histogram of a Wigner matrix converges to the semi-circular distribution"

Large Covariance Matrices

Matrix model

Let \mathbf{X}_{N} be a $N \times n$ matrix with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and consider the spectrum of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}$
in the regime where

$$
N, n \rightarrow \infty \quad \text { and } \quad \frac{N}{n} \rightarrow c \in(0, \infty)
$$

dimensions of matrix \mathbf{X}_{N} of the same order

Large Covariance Matrices

Wishart Matrix, $N=4$, $n=10$

Matrix model

Let \mathbf{X}_{N} be a $N \times n$ matrix with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and consider the spectrum of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}$ in the regime where

$$
N, n \rightarrow \infty \quad \text { and } \quad \frac{N}{n} \rightarrow c \in(0, \infty)
$$

dimensions of matrix \mathbf{X}_{N} of the same order

Figure: Spectrum's histogram $-\frac{N}{n}=0.4$

Large Covariance Matrices

Matrix model

Let \mathbf{X}_{N} be a $N \times n$ matrix with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and consider the spectrum of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}$ in the regime where

$$
N, n \rightarrow \infty \quad \text { and } \quad \frac{N}{n} \rightarrow c \in(0, \infty)
$$

dimensions of matrix \mathbf{X}_{N} of the same order

Figure: Spectrum's histogram $-\frac{N}{n}=0.4$

Large Covariance Matrices

Wishart Matrix, $N=200$, $n=500$

Matrix model

Let \mathbf{X}_{N} be a $N \times n$ matrix with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and consider the spectrum of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}$ in the regime where

$$
N, n \rightarrow \infty \quad \text { and } \quad \frac{N}{n} \rightarrow c \in(0, \infty)
$$

dimensions of matrix \mathbf{X}_{N} of the same order

Figure: Spectrum's histogram $-\frac{N}{n}=0.4$

Large Covariance Matrices

Matrix model

Let \mathbf{X}_{N} be a $N \times n$ matrix with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and consider the spectrum of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}$ in the regime where

$$
N, n \rightarrow \infty \quad \text { and } \quad \frac{N}{n} \rightarrow c \in(0, \infty)
$$

dimensions of matrix \mathbf{X}_{N} of the same order

Figure: Spectrum's histogram $-\frac{N}{n}=0.4$

Large Covariance Matrices

Matrix model

Let \mathbf{X}_{N} be a $N \times n$ matrix with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and consider the spectrum of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}$ in the regime where

$$
N, n \rightarrow \infty \quad \text { and } \quad \frac{N}{n} \rightarrow c \in(0, \infty)
$$

dimensions of matrix \mathbf{X}_{N} of the same order

Figure: Spectrum's histogram $-\frac{N}{n}=0.4$

Large Covariance Matrices: Marčenko-Pastur's theorem

Wishart Matrix, $N=1600$, $n=4000$

Matrix model

Let \mathbf{X}_{N} be a $N \times n$ matrix with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and consider the spectrum of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}$ in the regime where

$$
N, n \rightarrow \infty \quad \text { and } \quad \frac{N}{n} \rightarrow c \in(0, \infty)
$$

dimensions of matrix \mathbf{X}_{N} of the same order

Figure: Marčenko-Pastur's distribution (in red)

Marčenko-Pastur's theorem (1967)

> "The histogram of a Large Covariance Matrix converges to Marčenko-Pastur distribution with given parameter (here $\mathbf{0 . 4) "}$

Large Non-Hermitian Matrices

Matrix model
Let \mathbf{X}_{N} be a $N \times N$ matrix with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and consider the spectrum of matrix
$\mathbf{Y}_{N}=\frac{1}{\sqrt{N}} \mathbf{X}_{N}$ as $N \rightarrow \infty$

- In this case, the eigenvalues are complex!

Large Non-Hermitian Matrices

Non-hermitian matrix eigenvalues, $\mathbf{N}=\mathbf{2 0}$

Matrix model

Let \mathbf{X}_{N} be a $N \times N$ matrix with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and consider the spectrum of matrix $\mathbf{Y}_{N}=\frac{1}{\sqrt{N}} \mathbf{X}_{N}$ as $N \rightarrow \infty$

- In this case, the eigenvalues are complex!

Figure: Distribution of \mathbf{Y}_{N} 's eigenvalues

Large Non-Hermitian Matrices

Non-hermitian matrix eigenvalues, $\mathrm{N}=\mathbf{5 0}$

Matrix model

Let \mathbf{X}_{N} be a $N \times N$ matrix with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and consider the spectrum of matrix $\mathbf{Y}_{N}=\frac{1}{\sqrt{N}} \mathbf{X}_{N}$ as $N \rightarrow \infty$

- In this case, the eigenvalues are complex!

Figure: Distribution of \mathbf{Y}_{N} 's eigenvalues

Large Non-Hermitian Matrices

Matrix model

Let \mathbf{X}_{N} be a $N \times N$ matrix with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and consider the spectrum of matrix $\mathbf{Y}_{N}=\frac{1}{\sqrt{N}} \mathbf{X}_{N}$ as $N \rightarrow \infty$

- In this case, the eigenvalues are complex!

Non-hermitian matrix eigenvalues, $\mathrm{N}=100$

Figure: Distribution of \mathbf{Y}_{N} 's eigenvalues

Large Non-Hermitian Matrices: The Circular Law

Non-hermitian matrix eigenvalues, $\mathrm{N}=\mathbf{2 0 0}$

Matrix model

Let \mathbf{X}_{N} be a $N \times N$ matrix with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and consider the spectrum of matrix $\mathbf{Y}_{N}=\frac{1}{\sqrt{N}} \mathbf{X}_{N}$ as $N \rightarrow \infty$

- In this case, the eigenvalues are complex!

Figure: Distribution of \mathbf{Y}_{N} 's eigenvalues

Large Non-Hermitian Matrices

Non-hermitian matrix eigenvalues, $\mathrm{N}=1000$

Matrix model

Let \mathbf{X}_{N} be a $N \times N$ matrix with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and consider the spectrum of matrix $\mathbf{Y}_{N}=\frac{1}{\sqrt{N}} \mathbf{X}_{N}$ as $N \rightarrow \infty$

- In this case, the eigenvalues are complex!

Figure: Distribution of \mathbf{Y}_{N} 's eigenvalues

Large Non-Hermitian Matrices

Non-hermitian matrix eigenvalues, $\mathrm{N}=1000$

Matrix model

Let \mathbf{X}_{N} be a $N \times N$ matrix with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

and consider the spectrum of matrix $\mathbf{Y}_{N}=\frac{1}{\sqrt{N}} \mathbf{X}_{N}$ as $N \rightarrow \infty$

- In this case, the eigenvalues are complex!

Figure: The circular law (in red)

Theorem: The Circular Law (Ginibre, Girko, Bai, Tao \& Vu, etc.)
The spectrum of \mathbf{Y}_{N} converges to the uniform probability on the disc

Motivations

An old history

- Data Analysis (Wishart, 1928)
- Theoretical Physics (from the '50s - Wigner, Dyson, Pastur, etc.)
- Pure mathematics (from the late '80s - non-commutative probability, free probability, operator algebra - Voiculescu, etc.)
- Graph theory (spectrum of the Laplacian)
- Wireless communication (Telatar, 1995 - Verdú, Tse, Shamai, Lévêque, a Parisian group with Loubaton, Debbah, Najim, etc.)

Motivations

An old history

- Data Analysis (Wishart, 1928)
- Theoretical Physics (from the '50s - Wigner, Dyson, Pastur, etc.)
- Pure mathematics (from the late '80s - non-commutative probability, free probability, operator algebra - Voiculescu, etc.)
- Graph theory (spectrum of the Laplacian)
- Wireless communication (Telatar, 1995 - Verdú, Tse, Shamai, Lévêque, a Parisian group with Loubaton, Debbah, Najim, etc.)

Current trends

- Statistics in large dimension (Bai, Bickel \& Levina, Ledoit and Wolf, etc.)
- Pure mathematics: universality questions, operator algebra (Tao, Vu, Erdös, Guionnet, etc.)
- Social networks, communication networks
- Neuroscience (non-hermitian models - G. Wainrib)

Outline

Quick introduction to random matrix theory Large Random Matrices
Basic technical tools

Large Covariance Matrices

Spiked models

Statistical Test for Single-Source Detection

Applications to the MIMO channel

Empirical spectral distribution (ESD)

The spectral theorem
For a Hermitian (symmetric) matrix A,

$$
\mathbf{A}=\mathbf{U}^{*} \boldsymbol{\Lambda} \mathbf{U}=\sum_{j=1}^{N} \lambda_{j} \mathbf{u}_{j} \mathbf{u}_{j}^{*}
$$

with its real eigenvalues $\left\{\lambda_{j}\right\}$ and orthonormalized eigenvectors $\left\{\mathbf{u}_{j}\right\}$.

Empirical spectral distribution (ESD)

The spectral theorem
For a Hermitian (symmetric) matrix A,

$$
\mathbf{A}=\mathbf{U}^{*} \boldsymbol{\Lambda} \mathbf{U}=\sum_{j=1}^{N} \lambda_{j} \mathbf{u}_{j} \mathbf{u}_{j}^{*}
$$

with its real eigenvalues $\left\{\lambda_{j}\right\}$ and orthonormalized eigenvectors $\left\{\mathbf{u}_{j}\right\}$.

The ESD
The ESD of \mathbf{A} is the normalized counting measure of the eigenvalues:

$$
L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}} \quad \text { that is, } \quad L_{N}(B)=\frac{1}{N} \#\left\{\lambda_{i} \in B\right\} .
$$

Spectral analysis tool (i): by moment convergence

Example of the semi-circle law

- The Hermitian Wigner matrix is $\mathbf{Y}_{N}=\frac{1}{\sqrt{N}} \mathbf{X}_{N}$;

Moment convergence method:

Note. Computation of the empirical moments $\left\{m_{p}(N)\right\}$ relies on heavy combinatorics.

Spectral analysis tool (i): by moment convergence

Example of the semi-circle law

- The Hermitian Wigner matrix is $\mathbf{Y}_{N}=\frac{1}{\sqrt{N}} \mathbf{X}_{N}$;
- Moments of its ESD are

$$
m_{p}(N)=\int x^{p} L_{n}(d x)=\frac{1}{N} \sum_{i=1}^{N} \lambda_{i}^{p}=\frac{1}{N} \operatorname{tr} \mathbf{Y}_{N}^{p}
$$

Moment convergence method:

Note. Computation of the empirical moments $\left\{m_{p}(N)\right\}$ relies on heavy combinatorics.

Spectral analysis tool (i): by moment convergence

Example of the semi-circle law

- The Hermitian Wigner matrix is $\mathbf{Y}_{N}=\frac{1}{\sqrt{N}} \mathbf{X}_{N}$;
- Moments of its ESD are

$$
m_{p}(N)=\int x^{p} L_{n}(d x)=\frac{1}{N} \sum_{i=1}^{N} \lambda_{i}^{p}=\frac{1}{N} \operatorname{tr} \mathbf{Y}_{N}^{p}
$$

Moment convergence method:

1. Prove, in probability or almost surely, that

$$
m_{p}(N) \xrightarrow[N \rightarrow \infty]{ } \begin{cases}\frac{1}{k+1}\binom{2 k}{k} & \text { if } p=2 k \\ 0 & \text { if } p \text { is odd }\end{cases}
$$

Note. Computation of the empirical moments $\left\{m_{p}(N)\right\}$ relies on heavy combinatorics.

Spectral analysis tool (i): by moment convergence

Example of the semi-circle law

- The Hermitian Wigner matrix is $\mathbf{Y}_{N}=\frac{1}{\sqrt{N}} \mathbf{X}_{N}$;
- Moments of its ESD are

$$
m_{p}(N)=\int x^{p} L_{n}(d x)=\frac{1}{N} \sum_{i=1}^{N} \lambda_{i}^{p}=\frac{1}{N} \operatorname{tr} \mathbf{Y}_{N}^{p}
$$

Moment convergence method:

1. Prove, in probability or almost surely, that

$$
m_{p}(N) \xrightarrow[N \rightarrow \infty]{ } \begin{cases}\frac{1}{k+1}\binom{2 k}{k} & \text { if } p=2 k \\ 0 & \text { if } p \text { is odd }\end{cases}
$$

2. Figure out that these are exactly the moment sequence of the semi-circular law:

$$
\int_{-2}^{2} x^{k} \mu_{s c}(d x)= \begin{cases}\frac{1}{k+1}\binom{2 k}{k} & \text { if } p=2 k \\ 0 & \text { if } p \text { is odd }\end{cases}
$$

Note. Computation of the empirical moments $\left\{m_{p}(N)\right\}$ relies on heavy combinatorics.

Spectral analysis tool (i): by moment convergence

Example of the semi-circle law

- The Hermitian Wigner matrix is $\mathbf{Y}_{N}=\frac{1}{\sqrt{N}} \mathbf{X}_{N}$;
- Moments of its ESD are

$$
m_{p}(N)=\int x^{p} L_{n}(d x)=\frac{1}{N} \sum_{i=1}^{N} \lambda_{i}^{p}=\frac{1}{N} \operatorname{tr} \mathbf{Y}_{N}^{p}
$$

Moment convergence method:

1. Prove, in probability or almost surely, that

$$
m_{p}(N) \xrightarrow[N \rightarrow \infty]{ } \begin{cases}\frac{1}{k+1}\binom{2 k}{k} & \text { if } p=2 k \\ 0 & \text { if } p \text { is odd }\end{cases}
$$

2. Figure out that these are exactly the moment sequence of the semi-circular law:

$$
\int_{-2}^{2} x^{k} \mu_{s c}(d x)= \begin{cases}\frac{1}{k+1}\binom{2 k}{k} & \text { if } p=2 k \\ 0 & \text { if } p \text { is odd }\end{cases}
$$

3. Conclude, by Carleman's criterion, that $\quad L_{N} \Longrightarrow \mu_{s c}$.

Note. Computation of the empirical moments $\left\{m_{p}(N)\right\}$ relies on heavy combinatorics.

Spectral analysis tool (ii): The Stieltjes Transform

- The Stieltjes transform of a probability measure μ on \mathbb{R} is

$$
s_{\mu}(z)=\int_{\mathbb{R}} \frac{1}{x-z} \mu(d x), \quad z \in \mathbb{C}^{+}
$$

Spectral analysis tool (ii): The Stieltjes Transform

- The Stieltjes transform of a probability measure μ on \mathbb{R} is

$$
s_{\mu}(z)=\int_{\mathbb{R}} \frac{1}{x-z} \mu(d x), \quad z \in \mathbb{C}^{+}
$$

Spectral analysis tool (ii): The Stieltjes Transform

- The Stieltjes transform of a probability measure μ on \mathbb{R} is

$$
s_{\mu}(z)=\int_{\mathbb{R}} \frac{1}{x-z} \mu(d x), \quad z \in \mathbb{C}^{+}
$$

- the transform characterize the measure through the inversion formula: for all continuity points a, b of μ,

$$
\mu([a, b])=\frac{1}{\pi} \lim _{y \downarrow 0} \Im \int_{a}^{b} s_{\mu}(x+\mathbf{i} y) d x,
$$

Spectral analysis tool (ii): The Stieltjes Transform

- The Stieltjes transform of a probability measure μ on \mathbb{R} is

$$
s_{\mu}(z)=\int_{\mathbb{R}} \frac{1}{x-z} \mu(d x), \quad z \in \mathbb{C}^{+}
$$

- the transform characterize the measure through the inversion formula: for all continuity points a, b of μ,

$$
\mu([a, b])=\frac{1}{\pi} \lim _{y \downarrow 0} \Im \int_{a}^{b} s_{\mu}(x+\mathbf{i} y) d x,
$$

Spectral analysis tool (ii): The Stieltjes Transform

- The Stieltjes transform of a probability measure μ on \mathbb{R} is

$$
s_{\mu}(z)=\int_{\mathbb{R}} \frac{1}{x-z} \mu(d x), \quad z \in \mathbb{C}^{+}
$$

- the transform characterize the measure through the inversion formula: for all continuity points a, b of μ,

$$
\mu([a, b])=\frac{1}{\pi} \lim _{y \downarrow 0} \Im \int_{a}^{b} s_{\mu}(x+\mathbf{i} y) d x
$$

Examples

1. ESD of a Hermitian matrix $A: \quad s_{L_{N}}(z)=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_{i}-z}$
(by convention, \sqrt{z} has positive imaginary part for $z \in \mathbb{C}^{+}$)

Spectral analysis tool (ii): The Stieltjes Transform

- The Stieltjes transform of a probability measure μ on \mathbb{R} is

$$
s_{\mu}(z)=\int_{\mathbb{R}} \frac{1}{x-z} \mu(d x), \quad z \in \mathbb{C}^{+}
$$

- the transform characterize the measure through the inversion formula: for all continuity points a, b of μ,

$$
\mu([a, b])=\frac{1}{\pi} \lim _{y \downarrow 0} \Im \int_{a}^{b} s_{\mu}(x+\mathbf{i} y) d x,
$$

Examples

1. ESD of a Hermitian matrix $A: \quad s_{L_{N}}(z)=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_{i}-z}$
2. Semi-circle law: $\quad s_{\mu_{s c}}(z)=\int_{-2}^{2} \frac{1}{x-z} \frac{1}{2 \pi} \sqrt{4-x^{2}} d x=\frac{1}{2}\left(-z+\sqrt{z^{2}-4}\right)$.
(by convention, \sqrt{z} has positive imaginary part for $z \in \mathbb{C}^{+}$)

Spectral analysis tool (ii): The Stieltjes Transform

- The Stieltjes transform of a probability measure μ on \mathbb{R} is

$$
s_{\mu}(z)=\int_{\mathbb{R}} \frac{1}{x-z} \mu(d x), \quad z \in \mathbb{C}^{+}
$$

- the transform characterize the measure through the inversion formula: for all continuity points a, b of μ,

$$
\mu([a, b])=\frac{1}{\pi} \lim _{y \downarrow 0} \Im \int_{a}^{b} s_{\mu}(x+\mathbf{i} y) d x,
$$

Examples

1. ESD of a Hermitian matrix $A: \quad s_{L_{N}}(z)=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_{i}-z}$
2. Semi-circle law: $\quad s_{\mu_{s c}}(z)=\int_{-2}^{2} \frac{1}{x-z} \frac{1}{2 \pi} \sqrt{4-x^{2}} d x=\frac{1}{2}\left(-z+\sqrt{z^{2}-4}\right)$.
3. Marčenko-Pastur Law:

$$
s_{\mu_{M P}}(z)=\int_{a}^{b} \frac{1}{x-z} \frac{1}{2 \pi c x} \sqrt{(b-x)(x-a)} d x=\frac{1-c-z-\sqrt{(z-a)(z-b)}}{2 c z} .
$$

(by convention, \sqrt{z} has positive imaginary part for $z \in \mathbb{C}^{+}$)

Why does RMT prefer Stieltjes transform ?

- For a Hermitian matrix A,

$$
\begin{aligned}
s_{L_{N}}(z) & =\text { Stieltjes transform of }\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}\right) \\
& =\frac{1}{N} \sum_{1}^{N} \frac{1}{\lambda_{i}-z}
\end{aligned}
$$

Why does RMT prefer Stieltjes transform ?

- For a Hermitian matrix A,

$$
\begin{aligned}
s_{L_{N}}(z) & =\text { Stieltjes transform of }\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}\right) \\
& =\frac{1}{N} \sum_{1}^{N} \frac{1}{\lambda_{i}-z}
\end{aligned}
$$

Why does RMT prefer Stieltjes transform ?

- For a Hermitian matrix A,

$$
\begin{aligned}
s_{L_{N}}(z) & =\text { Stieltjes transform of }\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}\right) \\
& =\frac{1}{N} \sum_{1}^{N} \frac{1}{\lambda_{i}-z} \\
& =\frac{1}{N} \operatorname{tr}(\mathbf{A}-z \boldsymbol{I})^{-1}
\end{aligned}
$$

- Write

$$
\mathbf{A}=\left(\begin{array}{ll}
a_{11} & \mathbf{a}_{1}^{*} \\
\mathbf{a}_{1} & \mathbf{A}_{1}
\end{array}\right)
$$

and similarly for the diagonal elements $a_{22}, \ldots, a_{N N}$ to get the sequence of $N-1$ dimensional vectors $\left\{\mathbf{a}_{k}\right\}$ and principal submatrices $\left\{\mathbf{A}_{k}\right\}$;

This shows how matrix algebra helps the study of the ESD of a large matrix \mathbf{A}.

Why does RMT prefer Stieltjes transform ?

- For a Hermitian matrix A,

$$
\begin{aligned}
s_{L_{N}}(z) & =\text { Stieltjes transform of }\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}\right) \\
& =\frac{1}{N} \sum_{1}^{N} \frac{1}{\lambda_{i}-z} \\
& =\frac{1}{N} \operatorname{tr}(\mathbf{A}-z \boldsymbol{I})^{-1}
\end{aligned}
$$

- Write

$$
\mathbf{A}=\left(\begin{array}{ll}
a_{11} & \mathbf{a}_{1}^{*} \\
\mathbf{a}_{1} & \mathbf{A}_{1}
\end{array}\right)
$$

and similarly for the diagonal elements $a_{22}, \ldots, a_{N N}$ to get the sequence of $N-1$ dimensional vectors $\left\{\mathbf{a}_{k}\right\}$ and principal submatrices $\left\{\mathbf{A}_{k}\right\}$;

- By Schur complement

$$
s_{L_{N}}(z)=\frac{1}{N} \operatorname{tr}(\mathbf{A}-z \boldsymbol{I})^{-1}=\frac{1}{N} \sum_{k=1}^{N} \frac{1}{a_{k k}-z-\mathbf{a}_{k}^{*}\left(\mathbf{A}_{k}-z \mathbf{I}\right)^{-1} \mathbf{a}_{k}}
$$

This shows how matrix algebra helps the study of the ESD of a large matrix A.

Sketched proof of Wigner's semi-circle law

- Now we let

$$
\mathbf{A}=\mathbf{Y}_{N}=\frac{1}{\sqrt{N}} \mathbf{X}_{N}=\frac{1}{\sqrt{N}}\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{N N} \\
& x_{22} & \cdots & x_{2 N} \\
& \vdots & \vdots & \vdots \\
& & & x_{N N}
\end{array}\right)
$$

where $\left\{x_{i j}: i \leq j\right\}$ are i.i.d. with mean 0 and variance 1 .
So,

$$
a_{i j}=\frac{1}{\sqrt{N}} x_{i j}, \quad \mathbf{a}_{k}=\frac{1}{\sqrt{N}} \mathbf{x}_{k}, \quad \mathbf{A}_{k}=\frac{1}{\sqrt{N}} \mathbf{X}_{k}, \quad \text { etc. }
$$

Sketched proof of Wigner's semi-circle law

- Now we let

$$
\mathbf{A}=\mathbf{Y}_{N}=\frac{1}{\sqrt{N}} \mathbf{X}_{N}=\frac{1}{\sqrt{N}}\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{N N} \\
& x_{22} & \cdots & x_{2 N} \\
& \vdots & \vdots & \vdots \\
& & & x_{N N}
\end{array}\right)
$$

where $\left\{x_{i j}: i \leq j\right\}$ are i.i.d. with mean 0 and variance 1 .
So,

$$
a_{i j}=\frac{1}{\sqrt{N}} x_{i j}, \quad \mathbf{a}_{k}=\frac{1}{\sqrt{N}} \mathbf{x}_{k}, \quad \mathbf{A}_{k}=\frac{1}{\sqrt{N}} \mathbf{X}_{k}, \quad \text { etc. }
$$

- We have

$$
\begin{aligned}
s_{L_{N}}(z) & =\frac{1}{N} \sum_{k=1}^{N} \frac{1}{a_{k k}-z-\mathbf{a}_{k}^{*}\left(\mathbf{A}_{k}-z \mathbf{I}\right)^{-1} \mathbf{a}_{k}} \\
& =\frac{1}{N} \sum_{k=1}^{N} \frac{1}{\frac{1}{\sqrt{N}} x_{k k}-z-\frac{1}{N} \mathbf{x}_{k}^{*}\left(\frac{1}{\sqrt{N}} \mathbf{X}_{k}-z \mathbf{I}\right)^{-1} \mathbf{x}_{k}}
\end{aligned}
$$

Sketched proof of Wigner's semi-circle law (cont.)

$s_{L_{N}}(z)=\frac{1}{N} \operatorname{tr}\left(\frac{1}{\sqrt{N}} \mathbf{X}_{N}-z \mathbf{I}\right)^{-1}=\frac{1}{N} \sum_{k=1}^{N} \frac{1}{\frac{1}{\sqrt{N}} x_{k k}-z-\frac{1}{N} \mathbf{x}_{k}^{*}\left(\frac{1}{\sqrt{N}} \mathbf{X}_{k}-z \mathbf{I}\right)^{-1} \mathbf{x}_{k}}$

- When $N \rightarrow \infty, \frac{1}{\sqrt{N}} x_{k k} \rightarrow 0 ;$

Sketched proof of Wigner's semi-circle law (cont.)

$s_{L_{N}}(z)=\frac{1}{N} \operatorname{tr}\left(\frac{1}{\sqrt{N}} \mathbf{X}_{N}-z \mathbf{I}\right)^{-1}=\frac{1}{N} \sum_{k=1}^{N} \frac{1}{\frac{1}{\sqrt{N}} x_{k k}-z-\frac{1}{N} \mathbf{x}_{k}^{*}\left(\frac{1}{\sqrt{N}} \mathbf{X}_{k}-z \mathbf{I}\right)^{-1} \mathbf{x}_{k}}$

- When $N \rightarrow \infty, \frac{1}{\sqrt{N}} x_{k k} \rightarrow 0 ;$

$$
\begin{aligned}
\frac{1}{N} \mathbf{x}_{k}^{*}\left(\frac{1}{\sqrt{N}} \mathbf{X}_{k}-z \mathbf{I}\right)^{-1} \mathbf{x}_{k} & =\frac{1}{N} \operatorname{tr} \mathbf{x}_{k}^{*}\left(\frac{1}{\sqrt{N}} \mathbf{X}_{k}-z \mathbf{I}\right)^{-1} \mathbf{x}_{k} \\
& =\frac{1}{N} \operatorname{tr}\left(\frac{1}{\sqrt{N}} \mathbf{X}_{k}-z \mathbf{I}\right)^{-1} \mathbf{x}_{k} \mathbf{x}_{k}^{*} \\
& \simeq \frac{1}{N} \operatorname{tr}\left(\frac{1}{\sqrt{N}} \mathbf{X}_{k}-z \mathbf{I}\right)^{-1} \mathbf{I}_{N-1} \\
& =\frac{1}{N} \operatorname{tr}\left(\frac{1}{\sqrt{N}} \mathbf{X}_{k}-z \mathbf{I}\right)^{-1} \\
& \simeq s_{L_{N}}(z)
\end{aligned}
$$

Sketched proof of Wigner's semi-circle law (cont.)

$s_{L_{N}}(z)=\frac{1}{N} \operatorname{tr}\left(\frac{1}{\sqrt{N}} \mathbf{X}_{N}-z \mathbf{I}\right)^{-1}=\frac{1}{N} \sum_{k=1}^{N} \frac{1}{\frac{1}{\sqrt{N}} x_{k k}-z-\frac{1}{N} \mathbf{x}_{k}^{*}\left(\frac{1}{\sqrt{N}} \mathbf{X}_{k}-z \mathbf{I}\right)^{-1} \mathbf{x}_{k}}$

- When $N \rightarrow \infty, \frac{1}{\sqrt{N}} x_{k k} \rightarrow 0 ;$

$$
\begin{aligned}
\frac{1}{N} \mathbf{x}_{k}^{*}\left(\frac{1}{\sqrt{N}} \mathbf{X}_{k}-z \mathbf{I}\right)^{-1} \mathbf{x}_{k} & =\frac{1}{N} \operatorname{tr} \mathbf{x}_{k}^{*}\left(\frac{1}{\sqrt{N}} \mathbf{X}_{k}-z \mathbf{I}\right)^{-1} \mathbf{x}_{k} \\
& =\frac{1}{N} \operatorname{tr}\left(\frac{1}{\sqrt{N}} \mathbf{X}_{k}-z \mathbf{I}\right)^{-1} \mathbf{x}_{k} \mathbf{x}_{k}^{*} \\
& \simeq \frac{1}{N} \operatorname{tr}\left(\frac{1}{\sqrt{N}} \mathbf{X}_{k}-z \mathbf{I}\right)^{-1} \mathbf{I}_{N-1} \\
& =\frac{1}{N} \operatorname{tr}\left(\frac{1}{\sqrt{N}} \mathbf{X}_{k}-z \mathbf{I}\right)^{-1} \\
& \simeq s_{L_{N}}(z)
\end{aligned}
$$

- So $s_{L_{N}}(z)$ does have a limit $s(z)$ satisfying

$$
s=\frac{1}{-z-s}, \quad \text { that is, } \quad s^{2}+z s+1=0
$$

Sketched proof of Wigner's semi-circle law (cont.)

$s_{L_{N}}(z)=\frac{1}{N} \operatorname{tr}\left(\frac{1}{\sqrt{N}} \mathbf{X}_{N}-z \mathbf{I}\right)^{-1}=\frac{1}{N} \sum_{k=1}^{N} \frac{1}{\frac{1}{\sqrt{N}} x_{k k}-z-\frac{1}{N} \mathbf{x}_{k}^{*}\left(\frac{1}{\sqrt{N}} \mathbf{X}_{k}-z \mathbf{I}\right)^{-1} \mathbf{x}_{k}}$

- When $N \rightarrow \infty, \frac{1}{\sqrt{N}} x_{k k} \rightarrow 0 ;$

$$
\begin{aligned}
\frac{1}{N} \mathbf{x}_{k}^{*}\left(\frac{1}{\sqrt{N}} \mathbf{X}_{k}-z \mathbf{I}\right)^{-1} \mathbf{x}_{k} & =\frac{1}{N} \operatorname{tr} \mathbf{x}_{k}^{*}\left(\frac{1}{\sqrt{N}} \mathbf{X}_{k}-z \mathbf{I}\right)^{-1} \mathbf{x}_{k} \\
& =\frac{1}{N} \operatorname{tr}\left(\frac{1}{\sqrt{N}} \mathbf{X}_{k}-z \mathbf{I}\right)^{-1} \mathbf{x}_{k} \mathbf{x}_{k}^{*} \\
& \simeq \frac{1}{N} \operatorname{tr}\left(\frac{1}{\sqrt{N}} \mathbf{X}_{k}-z \mathbf{I}\right)^{-1} \mathbf{I}_{N-1} \\
& =\frac{1}{N} \operatorname{tr}\left(\frac{1}{\sqrt{N}} \mathbf{X}_{k}-z \mathbf{I}\right)^{-1} \\
& \simeq s_{L_{N}}(z)
\end{aligned}
$$

- So $s_{L_{N}}(z)$ does have a limit $s(z)$ satisfying

$$
s=\frac{1}{-z-s}, \quad \text { that is, } \quad s^{2}+z s+1=0
$$

- Solving the equation, we find $\quad s(z)=\frac{1}{2}\left(-z+\sqrt{z^{2}-4}\right)$, i.e. $s_{\mu_{s c}}(z)$!

Outline

Quick introduction to random matrix theory

Large Covariance Matrices

Wishart matrices and Marčenko-Pastur theorem
Proof of Marčenko-Pastur's theorem

Spiked models

Statistical Test for Single-Source Detection

Applications to the MIMO channel

Wishart Matrices I

The model

- Consider a $N \times n$ matrix \mathbf{X}_{N} with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \quad \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

Matrix \mathbf{X}_{N} is a n-sample of N-dimensional vectors:

$$
\mathbf{X}_{N}=\left[\begin{array}{lll}
\mathbf{X}_{\cdot 1} & \cdots & \mathbf{X}_{\cdot n}
\end{array}\right] \quad \text { with } \quad \mathbb{E} \mathbf{X}_{\cdot 1} \mathbf{X}_{\cdot 1}^{*}=\mathbf{I}_{N}
$$

Wishart Matrices I

The model

- Consider a $N \times n$ matrix \mathbf{X}_{N} with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \quad \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

Matrix \mathbf{X}_{N} is a n-sample of N-dimensional vectors:

$$
\mathbf{X}_{N}=\left[\begin{array}{lll}
\mathbf{X}_{\cdot 1} & \cdots & \mathbf{X}_{\cdot n}
\end{array}\right] \quad \text { with } \quad \mathbb{E} \mathbf{X}_{\cdot 1} \mathbf{X}_{\cdot 1}^{*}=\mathbf{I}_{N} .
$$

Objective

- to describe the limiting spectrum of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}$ as

$$
\frac{N}{n} \xrightarrow[n \rightarrow \infty]{ } c \in(0, \infty)
$$

i.e. dimensions of matrix \mathbf{X}_{N} are of the same order.

Wishart Matrices II

The usual case $N \ll n$
Assume N fixed and $n \rightarrow \infty$.

Wishart Matrices II

The usual case $N \ll n$
Assume N fixed and $n \rightarrow \infty$. Since

$$
\mathbb{E} \mathbf{X}_{\cdot 1} \mathbf{X}_{\cdot 1}^{*}=\mathbf{I}_{N},
$$

L.L.N implies

$$
\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{\cdot i} \mathbf{X}_{\cdot i}^{*} \xrightarrow[n \rightarrow \infty]{\text { a.s. }} \quad \mathbf{I}_{N}
$$

Wishart Matrices II

The usual case $N \ll n$
Assume N fixed and $n \rightarrow \infty$. Since

$$
\mathbb{E} \mathbf{X}_{\cdot 1} \mathbf{X}_{\cdot 1}^{*}=\mathbf{I}_{N},
$$

L.L.N implies

$$
\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{\cdot i} \mathbf{X}_{\cdot i}^{*} \xrightarrow[n \rightarrow \infty]{\text { a.s. }} \quad \mathbf{I}_{N}
$$

In particular,

- all the eigenvalues of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}$ converge to 1 ,

Wishart Matrices II

The usual case $N \ll n$
Assume N fixed and $n \rightarrow \infty$. Since

$$
\mathbb{E} \mathbf{X}_{\cdot 1} \mathbf{X}_{\cdot 1}^{*}=\mathbf{I}_{N},
$$

L.L.N implies

$$
\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{\cdot i} \mathbf{X}_{\cdot i}^{*} \xrightarrow[n \rightarrow \infty]{\text { a.s. }} \quad \mathbf{I}_{N}
$$

In particular,

- all the eigenvalues of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}$ converge to 1 ,
- equivalently, the spectral measure of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}$ converges to δ_{1}.

Wishart Matrices II

The usual case $N \ll n$
Assume N fixed and $n \rightarrow \infty$. Since

$$
\mathbb{E} \mathbf{X}_{\cdot 1} \mathbf{X}_{\cdot 1}^{*}=\mathbf{I}_{N},
$$

L.L.N implies

$$
\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{\cdot i} \mathbf{X}_{\cdot i}^{*} \xrightarrow[n \rightarrow \infty]{\text { a.s. }} \quad \mathbf{I}_{N}
$$

In particular,

- all the eigenvalues of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}$ converge to 1 ,
- equivalently, the spectral measure of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}$ converges to δ_{1}.

A priori observation \# 1

If the ratio of dimensions $c \searrow 0$, then the spectral measure should look like a Dirac measure at point 1 .

Wishart Matrices III

The case where $c>1$
Recall that \mathbf{X}_{N} is $N \times n$ matrix and $c=\lim \frac{N}{n}$.

Wishart Matrices III

The case where $c>1$
Recall that \mathbf{X}_{N} is $N \times n$ matrix and $c=\lim \frac{N}{n}$.
If $N>n$, then $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}$ is rank-defficient and has rank n;

Wishart Matrices III

The case where $c>1$
Recall that \mathbf{X}_{N} is $N \times n$ matrix and $c=\lim \frac{N}{n}$.
If $N>n$, then $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}$ is rank-defficient and has rank n;

- in this case, eigenvalue 0 has multiplicity $N-n$ and the spectral measure writes:

$$
L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}=\frac{1}{N} \sum_{i=1}^{n} \delta_{\lambda_{i}}+\frac{N-n}{N} \delta_{0}
$$

Wishart Matrices III

The case where $c>1$

Recall that \mathbf{X}_{N} is $N \times n$ matrix and $c=\lim \frac{N}{n}$.
If $N>n$, then $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}$ is rank-defficient and has rank n;

- in this case, eigenvalue 0 has multiplicity $N-n$ and the spectral measure writes:

$$
L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}=\frac{1}{N} \sum_{i=1}^{n} \delta_{\lambda_{i}}+\frac{N-n}{N} \delta_{0}
$$

- The limiting spectral measure of L_{N} necessarily features a Dirac measure at $\mathbf{0}$:

$$
\frac{N-n}{N} \delta_{0} \longrightarrow\left(1-\frac{1}{c}\right) \delta_{0} \quad \text { as } \quad \frac{N}{n} \rightarrow c
$$

Wishart Matrices III

The case where $c>1$

Recall that \mathbf{X}_{N} is $N \times n$ matrix and $c=\lim \frac{N}{n}$.
If $N>n$, then $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}$ is rank-defficient and has rank n;

- in this case, eigenvalue 0 has multiplicity $N-n$ and the spectral measure writes:

$$
L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}=\frac{1}{N} \sum_{i=1}^{n} \delta_{\lambda_{i}}+\frac{N-n}{N} \delta_{0}
$$

- The limiting spectral measure of L_{N} necessarily features a Dirac measure at $\mathbf{0}$:

$$
\frac{N-n}{N} \delta_{0} \longrightarrow\left(1-\frac{1}{c}\right) \delta_{0} \quad \text { as } \quad \frac{N}{n} \rightarrow c
$$

A priori observation \#2
If $c>1$, then the limiting spectral measure will feature a Dirac measure at 0 with weight $1-\frac{1}{c}$.

Simulations

Wishart Matrix, $\mathrm{N}=900$, $\mathrm{n}=1000$, $\mathrm{c}=0.9$

Figure : Histogram of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}, \sigma^{2}=1$

Simulations

Wishart Matrix, $N=500, n=1000, c=0.5$

Figure : Histogram of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}, \sigma^{2}=1$

Simulations

Wishart Matrix, $\mathrm{N}=100$, $\mathrm{n}=1000$, $\mathrm{c}=0.1$

Figure: Histogram of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}, \sigma^{2}=1$

Simulations

Wishart Matrix, $\mathrm{N}=10$, $\mathrm{n}=1000$, $\mathrm{c}=\mathbf{0 . 0 1}$

Figure: Histogram of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}, \sigma^{2}=1$

Marčenko-Pastur theorem

Theorem

- Consider a $N \times n$ matrix \mathbf{X}_{N} with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \quad \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

with N and n of the same order and L_{N} its spectral measure:

Marčenko-Pastur theorem

Theorem

- Consider a $N \times n$ matrix \mathbf{X}_{N} with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \quad \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

with N and n of the same order and L_{N} its spectral measure:

$$
c_{n} \triangleq \frac{N}{n} \xrightarrow[n \rightarrow \infty]{ } c \in(0, \infty), \quad L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}, \quad \lambda_{i}=\lambda_{i}\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right)
$$

Marčenko-Pastur theorem

Theorem

- Consider a $N \times n$ matrix \mathbf{X}_{N} with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \quad \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

with N and n of the same order and L_{N} its spectral measure:

$$
c_{n} \triangleq \frac{N}{n} \xrightarrow[n \rightarrow \infty]{ } c \in(0, \infty), \quad L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}, \quad \lambda_{i}=\lambda_{i}\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right)
$$

- Then almost surely

$$
L_{N} \xrightarrow[N, n \rightarrow \infty]{ } \mu_{\mathrm{MP}} \quad \text { in distribution }
$$

Marčenko-Pastur theorem

Theorem

- Consider a $N \times n$ matrix \mathbf{X}_{N} with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \quad \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

with N and n of the same order and L_{N} its spectral measure:

$$
c_{n} \triangleq \frac{N}{n} \xrightarrow[n \rightarrow \infty]{ } c \in(0, \infty), \quad L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}, \quad \lambda_{i}=\lambda_{i}\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right)
$$

- Then almost surely

$$
L_{N} \xrightarrow[N, n \rightarrow \infty]{ } \mu_{\mathrm{MP}} \quad \text { in distribution }
$$

where μ_{MP} is Marčenko-Pastur distribution:

Marčenko-Pastur theorem

Theorem

- Consider a $N \times n$ matrix \mathbf{X}_{N} with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \quad \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

with N and n of the same order and L_{N} its spectral measure:

$$
c_{n} \triangleq \frac{N}{n} \xrightarrow[n \rightarrow \infty]{ } c \in(0, \infty), \quad L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}, \quad \lambda_{i}=\lambda_{i}\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right)
$$

- Then almost surely

$$
L_{N} \xrightarrow[N, n \rightarrow \infty]{ } \mu_{\mathrm{MP}} \quad \text { in distribution }
$$

where μ_{MP} is Marčenko-Pastur distribution:

$$
\mu_{\mathrm{MP}}(d x)=\left(1-\frac{1}{c}\right)^{+} \delta_{0}(d x)+\frac{\sqrt{(b-x)(x-a)}}{2 \pi c x} 1_{[a, b]}(x) d x
$$

Marčenko-Pastur theorem

Theorem

- Consider a $N \times n$ matrix \mathbf{X}_{N} with i.i.d. entries

$$
\mathbb{E} X_{i j}=0, \quad \mathbb{E}\left|X_{i j}\right|^{2}=1
$$

with N and n of the same order and L_{N} its spectral measure:

$$
c_{n} \triangleq \frac{N}{n} \xrightarrow[n \rightarrow \infty]{ } c \in(0, \infty), \quad L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}}, \quad \lambda_{i}=\lambda_{i}\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right)
$$

- Then almost surely

$$
L_{N} \xrightarrow[N, n \rightarrow \infty]{ } \mu_{\mathrm{MP}} \quad \text { in distribution }
$$

where μ_{MP} is Marčenko-Pastur distribution:

$$
\begin{aligned}
\mu_{\mathrm{MP}}(d x)= & \left(1-\frac{1}{c}\right)^{+} \delta_{0}(d x)+\frac{\sqrt{(b-x)(x-a)}}{2 \pi c x} 1_{[a, b]}(x) d x \\
\text { with } & \left\{\begin{aligned}
& a=(1-\sqrt{c})^{2} \\
& b=(1+\sqrt{c})^{2}
\end{aligned}\right.
\end{aligned}
$$

Simulations vs M̌P distribution

Wishart Matrix, $\mathrm{N}=900, \mathrm{n}=1000, \mathrm{c}=0.9$

Figure : Histogram of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}, \sigma^{2}=1$

Simulations vs M̌P distribution

Wishart Matrix, $N=900$, $n=1000, c=0.9$

Figure : Marčenko-Pastur distribution for $c=0.9$

Simulations vs M̌P distribution

Wishart Matrix, $\mathrm{N}=500$, $\mathrm{n}=1000$, $\mathrm{c}=0.5$

Figure : Histogram of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}, \sigma^{2}=1$

Simulations vs M̌P distribution

Wishart Matrix, $N=500, n=1000, c=0.5$

Figure: Marčenko-Pastur distribution for $c=0.5$

Simulations vs M̌P distribution

Wishart Matrix, $\mathrm{N}=100$, $\mathrm{n}=1000$, $\mathrm{c}=0.1$

Figure : Histogram of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}, \sigma^{2}=1$

Simulations vs M̌P distribution

Wishart Matrix, $\mathrm{N}=100$, $\mathrm{n}=1000$, $\mathrm{c}=0.1$

Figure : Marčenko-Pastur distribution for $c=0.1$

Simulations vs M̌P distribution

Wishart Matrix, $N=10, n=1000, c=0.01$

Figure: Histogram of $\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}, \sigma^{2}=1$

Simulations vs M̌P distribution

Wishart Matrix, $\mathrm{N}=10$, $\mathrm{n}=1000$, $\mathrm{c}=0.01$

Figure: Marčenko-Pastur distribution for $c=0.01$

Remarks I

- Marčenko-Pastur theorem describes the global regime of the spectrum.

Remarks I

- Marčenko-Pastur theorem describes the global regime of the spectrum.
- Convergence in distribution: For a given realization and every test function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ (continuous and bounded), the theorem states:

$$
\frac{1}{N} \sum_{i=1}^{N} \phi\left(\lambda_{i}\right) \xrightarrow[N, n \rightarrow \infty]{ } \int \phi(x) \mu_{\mathrm{MP}}(d x)
$$

Remarks I

- Marčenko-Pastur theorem describes the global regime of the spectrum.
- Convergence in distribution: For a given realization and every test function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ (continuous and bounded), the theorem states:

$$
\frac{1}{N} \sum_{i=1}^{N} \phi\left(\lambda_{i}\right) \xrightarrow[N, n \rightarrow \infty]{ } \int \phi(x) \mu_{\mathrm{MP}}(d x) .
$$

- The Dirac measure at zero is an artifact due to the dimensions of the matrix if

$$
N>n \quad(\text { cf. infra }) .
$$

Remarks II

What if $c \searrow 0$?

- If $c \rightarrow 0$, that is $n \gg N$, then typical from the usual regime "small dimensional data vs large samples".

Remarks II

What if $c \searrow 0$?

- If $c \rightarrow 0$, that is $n \gg N$, then typical from the usual regime "small dimensional data vs large samples".
- the support of Marčenko-Pastur distribution

$$
\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]
$$

concentrates around $\{1\}$ and

$$
\mu_{\mathrm{MP}} \xrightarrow[c \rightarrow 0]{ } \delta_{1}
$$

Remarks II

What if $c \searrow 0$?

- If $c \rightarrow 0$, that is $n \gg N$, then typical from the usual regime "small dimensional data vs large samples".
- the support of Marčenko-Pastur distribution

$$
\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]
$$

concentrates around $\{1\}$ and

$$
\mu_{\mathrm{MP}} \underset{c \rightarrow 0}{\longrightarrow} \delta_{1}
$$

- In accordance with a priori information \# 1

Marchenko-Pastur Distribution

Figure: MP distribution as $c \searrow 0$

Remarks II

What if $c \searrow 0$?

- If $c \rightarrow 0$, that is $n \gg N$, then typical from the usual regime "small dimensional data vs large samples".
- the support of Marčenko-Pastur distribution

$$
\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]
$$

concentrates around $\{1\}$ and

$$
\mu_{\mathrm{MP}} \underset{c \rightarrow 0}{\longrightarrow} \delta_{1}
$$

- In accordance with a priori information \# 1

Marchenko-Pastur Distribution

Figure: MP distribution as $c \searrow 0$

Remarks II

What if $c \searrow 0$?

- If $c \rightarrow 0$, that is $n \gg N$, then typical from the usual regime "small dimensional data vs large samples".
- the support of Marčenko-Pastur distribution

$$
\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]
$$

concentrates around $\{1\}$ and

$$
\mu_{\mathrm{MP}} \underset{c \rightarrow 0}{\longrightarrow} \delta_{1}
$$

- In accordance with a priori information \# 1

Marchenko-Pastur Distribution

Figure : MP distribution as $c \searrow 0$

Remarks II

What if $c \searrow 0$?

- If $c \rightarrow 0$, that is $n \gg N$, then typical from the usual regime "small dimensional data vs large samples".
- the support of Marčenko-Pastur distribution

$$
\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]
$$

concentrates around $\{1\}$ and

$$
\mu_{\mathrm{MP}} \underset{c \rightarrow 0}{\longrightarrow} \delta_{1}
$$

- In accordance with a priori information \# 1

Marchenko-Pastur Distribution

Figure: MP distribution as $c \searrow 0$

Extreme eigenvalues of Wishart matrices

Extreme eigenvalues of Wishart matrices

Convergence of extremal eigenvalues
Recall that $\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]$ is the support of M̌P distribution, then:

$$
\lambda_{\max }\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{\text { almost surely }}(1+\sqrt{c})^{2},
$$

Extreme eigenvalues of Wishart matrices

Convergence of extremal eigenvalues
Recall that $\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]$ is the support of M̌P distribution, then:

$$
\begin{array}{lll}
\lambda_{\max }\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right) & \xrightarrow[N, n \rightarrow \infty]{\text { almost surely }}(1+\sqrt{c})^{2}, \\
\lambda_{\min }\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right) & \xrightarrow[N, n \rightarrow \infty]{\text { almost surely }}(1-\sqrt{c})^{2},
\end{array}
$$

under the 4th moment condition: $\mathbb{E}\left|X_{i j}\right|^{4}<\infty$ (Bai and Yin, 1988).

Extreme eigenvalues of Wishart matrices

Convergence of extremal eigenvalues
Recall that $\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]$ is the support of M̌P distribution, then:

$$
\begin{array}{ll}
\lambda_{\max }\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right) & \xrightarrow[N, n \rightarrow \infty]{\text { almost surely }}(1+\sqrt{c})^{2}, \\
\lambda_{\min }\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right) & \xrightarrow[N, n \rightarrow \infty]{\text { almost surely }}(1-\sqrt{c})^{2}
\end{array}
$$

under the 4th moment condition: $\mathbb{E}\left|X_{i j}\right|^{4}<\infty$ (Bai and Yin, 1988).

Fluctuations of $\lambda_{\text {max }}$: Tracy-Widom distribution

We can fully describe the fluctuations of $\lambda_{\max }$:

Extreme eigenvalues of Wishart matrices

Convergence of extremal eigenvalues
Recall that $\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]$ is the support of M̌P distribution, then:

$$
\begin{array}{ll}
\lambda_{\max }\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right) & \xrightarrow[N, n \rightarrow \infty]{\text { almost surely }}(1+\sqrt{c})^{2}, \\
\lambda_{\min }\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right) & \xrightarrow[N, n \rightarrow \infty]{\text { almost surely }}(1-\sqrt{c})^{2},
\end{array}
$$

under the 4th moment condition: $\mathbb{E}\left|X_{i j}\right|^{4}<\infty$ (Bai and Yin, 1988).

Fluctuations of $\lambda_{\max }$: Tracy-Widom distribution

We can fully describe the fluctuations of $\lambda_{\max }$:

$$
\frac{N^{2 / 3}}{\Theta_{N}}\left\{\lambda_{\max }\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right)-\left(1+\sqrt{c_{n}}\right)^{2}\right\} \xrightarrow[N, n \rightarrow \infty]{\mathcal{L}} \mu_{\mathrm{TW}}
$$

where

$$
c_{n}=\frac{N}{n} \quad \text { and } \quad \Theta_{N}=\left(1+\sqrt{c_{n}}\right)\left(\frac{1}{\sqrt{c_{n}}}+1\right)^{1 / 3}
$$

(Johnstone 2001).

Outline

Quick introduction to random matrix theory

Large Covariance Matrices

Wishart matrices and Marčenko-Pastur theorem
Proof of Marčenko-Pastur's theorem

Spiked models

Statistical Test for Single-Source Detection

Applications to the MIMO channel

Sketched proof of Marčenko-Pastur's theorem

Recall definition of the Stieltjes transform s_{n} :

$$
s_{n}(z)=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_{i}-z}=\frac{1}{N} \operatorname{tr}\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}-z \mathbf{I}_{N}\right)^{-1}
$$

Sketched proof of Marčenko-Pastur's theorem

Recall definition of the Stieltjes transform s_{n} :

$$
s_{n}(z)=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_{i}-z}=\frac{1}{N} \operatorname{tr}\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}-z \mathbf{I}_{N}\right)^{-1}
$$

1. As for the semi-circle law, similar steps lead to

$$
s_{n}(z) \approx \frac{1}{\left(1-c_{n}\right)-z-z c_{n} s_{n}(z)}
$$

Sketched proof of Marčenko-Pastur's theorem

Recall definition of the Stieltjes transform s_{n} :

$$
s_{n}(z)=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_{i}-z}=\frac{1}{N} \operatorname{tr}\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}-z \mathbf{I}_{N}\right)^{-1}
$$

1. As for the semi-circle law, similar steps lead to

$$
s_{n}(z) \approx \frac{1}{\left(1-c_{n}\right)-z-z c_{n} s_{n}(z)}
$$

2. Therefore, s_{n} does have a limit s, solution to the fixed point equation:

$$
s(z)=\frac{1}{(1-c)-z-z c s(z)} . \quad\left[\text { semi-circle : } \quad s(z)=\frac{1}{-z-s(z)}\right]
$$

Sketched proof of Marčenko-Pastur's theorem

Recall definition of the Stieltjes transform s_{n} :

$$
s_{n}(z)=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_{i}-z}=\frac{1}{N} \operatorname{tr}\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}-z \mathbf{I}_{N}\right)^{-1}
$$

1. As for the semi-circle law, similar steps lead to

$$
s_{n}(z) \approx \frac{1}{\left(1-c_{n}\right)-z-z c_{n} s_{n}(z)}
$$

2. Therefore, s_{n} does have a limit s, solution to the fixed point equation:

$$
s(z)=\frac{1}{(1-c)-z-z \operatorname{cs}(z)} . \quad\left[\text { semi-circle }: \quad s(z)=\frac{1}{-z-s(z)}\right]
$$

3. An explicit solution is given by

$$
s(z)=\frac{-(z+(c-1))+\sqrt{(z-b)(z-a)}}{2 c z}
$$

which is $s_{\mu_{M P}}$!!

Sketched proof of Marčenko-Pastur's theorem

Recall definition of the Stieltjes transform s_{n} :

$$
s_{n}(z)=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\lambda_{i}-z}=\frac{1}{N} \operatorname{tr}\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}-z \mathbf{I}_{N}\right)^{-1}
$$

1. As for the semi-circle law, similar steps lead to

$$
s_{n}(z) \approx \frac{1}{\left(1-c_{n}\right)-z-z c_{n} s_{n}(z)}
$$

2. Therefore, s_{n} does have a limit s, solution to the fixed point equation:

$$
s(z)=\frac{1}{(1-c)-z-z \operatorname{cs}(z)} . \quad\left[\text { semi-circle }: \quad s(z)=\frac{1}{-z-s(z)}\right]
$$

3. An explicit solution is given by

$$
s(z)=\frac{-(z+(c-1))+\sqrt{(z-b)(z-a)}}{2 c z}
$$

which is $s_{\mu_{M P}}$!!
4. By the inversion formula, the density is found to be:

$$
\mu_{\mathrm{MP}}(d x)=\left(1-\frac{1}{c}\right)^{+} \delta_{0}(d x)+\frac{\sqrt{(b-x)(x-a)}}{2 \pi x c} 1_{[a, b]}(x) d x
$$

Outline

```
Quick introduction to random matrix theory
Large Covariance Matrices
```

Spiked models
Introduction and objective
The limiting spectral measure
The largest eigenvalue
Spiked models: Summary

Statistical Test for Single-Source Detection

Applications to the MIMO channel

Introduction

The largest eigenvalue in M̌P model
Given a $N \times n$ matrix \mathbf{X}_{N} with i.i.d. entries $\mathbb{E} X_{i j}=0$ and $\mathbb{E}\left|X_{i j}\right|^{2}=1$,

Introduction

The largest eigenvalue in M̌P model
Given a $N \times n$ matrix \mathbf{X}_{N} with i.i.d. entries $\mathbb{E} X_{i j}=0$ and $\mathbb{E}\left|X_{i j}\right|^{2}=1$,

$$
L_{N}\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{ } \mu_{\mathrm{MP}}
$$

where μ_{MP} has support

$$
\mathcal{S}_{\text {Mי }}=\{0\} \cup \underbrace{\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]}_{\text {bulk }}
$$

(remove the set $\{0\}$ if $c<1$)

Introduction

The largest eigenvalue in M̌P model
Given a $N \times n$ matrix \mathbf{X}_{N} with i.i.d. entries $\mathbb{E} X_{i j}=0$ and $\mathbb{E}\left|X_{i j}\right|^{2}=1$,

$$
L_{N}\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{ } \mu_{\mathrm{MP}}
$$

where μ_{MP} has support

$$
\mathcal{S}_{\text {Mי }}=\{0\} \cup \underbrace{\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]}_{\text {bulk }}
$$

(remove the set $\{0\}$ if $c<1$)
Theorem

Introduction

The largest eigenvalue in M̌P model
Given a $N \times n$ matrix \mathbf{X}_{N} with i.i.d. entries $\mathbb{E} X_{i j}=0$ and $\mathbb{E}\left|X_{i j}\right|^{2}=1$,

$$
L_{N}\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{ } \mu_{\mathrm{MP}}
$$

where μ_{MP} has support

$$
\mathcal{S}_{\text {MूP }}=\{0\} \cup \underbrace{\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]}_{\text {bulk }}
$$

(remove the set $\{0\}$ if $c<1$)

Theorem

- Let $\mathbb{E}\left|X_{i j}\right|^{4}<\infty$, then:

$$
\lambda_{\max }\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }}(1+\sqrt{c})^{2}
$$

Introduction

The largest eigenvalue in M̌ model
Given a $N \times n$ matrix \mathbf{X}_{N} with i.i.d. entries $\mathbb{E} X_{i j}=0$ and $\mathbb{E}\left|X_{i j}\right|^{2}=1$,

$$
L_{N}\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{ } \mu_{\mathrm{MP}}
$$

where μ_{MP} has support

$$
\mathcal{S}_{\check{\mathrm{M} P}}=\{0\} \cup \underbrace{\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]}_{\text {bulk }}
$$

(remove the set $\{0\}$ if $c<1$)

Theorem

- Let $\mathbb{E}\left|X_{i j}\right|^{4}<\infty$, then:

$$
\lambda_{\max }\left(\frac{1}{n} \mathbf{X}_{N} \mathbf{X}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }}(1+\sqrt{c})^{2} .
$$

Message: The largest eigenvalue converges to the right edge of the bulk.

Spiked Models I

Definition

Let Π_{N} be a small perturbation of the identity:

Spiked Models I

Definition

Let Π_{N} be a small perturbation of the identity:

$$
\boldsymbol{\Pi}_{N}=\mathbf{I}_{N}+\mathbf{P}_{N} \quad \text { where } \quad \mathbf{P}_{N}=\theta_{1} \overrightarrow{\mathbf{u}}_{1} \overrightarrow{\mathbf{u}}_{1}^{*}+\cdots+\theta_{k} \overrightarrow{\mathbf{u}}_{k} \overrightarrow{\mathbf{u}}_{k}^{*}
$$

where k is independent of the dimensions N, n.

Spiked Models I

Definition

Let Π_{N} be a small perturbation of the identity:

$$
\boldsymbol{\Pi}_{N}=\mathbf{I}_{N}+\mathbf{P}_{N} \quad \text { where } \quad \mathbf{P}_{N}=\theta_{1} \overrightarrow{\mathbf{u}}_{1} \overrightarrow{\mathbf{u}}_{1}^{*}+\cdots+\theta_{k} \overrightarrow{\mathbf{u}}_{k} \overrightarrow{\mathbf{u}}_{k}^{*}
$$

where k is independent of the dimensions N, n.
Consider

$$
\tilde{\mathbf{X}}_{N}=\boldsymbol{\Pi}_{N}^{1 / 2} \mathbf{X}_{N}
$$

This model will be refered to as a (multiplicative) spiked model.

Spiked Models I

Definition

Let Π_{N} be a small perturbation of the identity:

$$
\boldsymbol{\Pi}_{N}=\mathbf{I}_{N}+\mathbf{P}_{N} \quad \text { where } \quad \mathbf{P}_{N}=\theta_{1} \overrightarrow{\mathbf{u}}_{1} \overrightarrow{\mathbf{u}}_{1}^{*}+\cdots+\theta_{k} \overrightarrow{\mathbf{u}}_{k} \overrightarrow{\mathbf{u}}_{k}^{*}
$$

where k is independent of the dimensions N, n.
Consider

$$
\tilde{\mathbf{X}}_{N}=\boldsymbol{\Pi}_{N}^{1 / 2} \mathbf{X}_{N}
$$

This model will be refered to as a (multiplicative) spiked model.
Think of Π_{N} as

$$
\mathbf{\Pi}_{N}=\left(\begin{array}{cccc}
1+\theta_{1} & & & \\
& \ddots & & \\
& & 1+\theta_{k} & \\
& & & 1 \\
& & & \\
& & & \ddots
\end{array}\right)
$$

Spiked Models I

Definition

Let Π_{N} be a small perturbation of the identity:

$$
\boldsymbol{\Pi}_{N}=\mathbf{I}_{N}+\mathbf{P}_{N} \quad \text { where } \quad \mathbf{P}_{N}=\theta_{1} \overrightarrow{\mathbf{u}}_{1} \overrightarrow{\mathbf{u}}_{1}^{*}+\cdots+\theta_{k} \overrightarrow{\mathbf{u}}_{k} \overrightarrow{\mathbf{u}}_{k}^{*}
$$

where k is independent of the dimensions N, n.
Consider

$$
\tilde{\mathbf{X}}_{N}=\boldsymbol{\Pi}_{N}^{1 / 2} \mathbf{X}_{N}
$$

This model will be refered to as a (multiplicative) spiked model.
Think of Π_{N} as

$$
\mathbf{\Pi}_{N}=\left(\begin{array}{ccccc}
1+\theta_{1} & & & & \\
& \ddots & & & \\
& & 1+\theta_{k} & & \\
& & & 1 & \\
& & & & \ddots
\end{array}\right)
$$

Very important: The rank k of perturbations is finite

Spiked Models II

Remarks

- The spiked model is a particular case of large covariance matrix model with

$$
\mathbf{R}_{N}=\mathbf{I}_{N}+\sum_{\ell=1}^{k} \theta_{\ell} \overrightarrow{\mathbf{u}}_{\ell} \overrightarrow{\mathbf{u}}_{\ell}^{*}
$$

Spiked Models II

Remarks

- The spiked model is a particular case of large covariance matrix model with

$$
\mathbf{R}_{N}=\mathbf{I}_{N}+\sum_{\ell=1}^{k} \theta_{\ell} \overrightarrow{\mathbf{u}}_{\ell} \overrightarrow{\mathbf{u}}_{\ell}^{*}
$$

- There are also additive spiked models: $\check{\mathbf{X}}_{N}=\mathbf{X}_{N}+\mathbf{A}_{N}$ where \mathbf{A}_{N} is a matrix with finite rank.

Spiked Models II

Remarks

- The spiked model is a particular case of large covariance matrix model with

$$
\mathbf{R}_{N}=\mathbf{I}_{N}+\sum_{\ell=1}^{k} \theta_{\ell} \overrightarrow{\mathbf{u}}_{\ell} \overrightarrow{\mathbf{u}}_{\ell}^{*}
$$

- There are also additive spiked models: $\check{\mathbf{X}}_{N}=\mathbf{X}_{N}+\mathbf{A}_{N}$ where \mathbf{A}_{N} is a matrix with finite rank.
- Spiked models have been introduced by lain M. Johnstone in his 2001 paper in Annals of Statistics to take into account the fact that in many datasets, a small number of eigenvalues is "far away" the bulk of the other eigenvalues

Spiked Models II

Remarks

- The spiked model is a particular case of large covariance matrix model with

$$
\mathbf{R}_{N}=\mathbf{I}_{N}+\sum_{\ell=1}^{k} \theta_{\ell} \overrightarrow{\mathbf{u}}_{\ell} \overrightarrow{\mathbf{u}}_{\ell}^{*}
$$

- There are also additive spiked models: $\check{\mathbf{X}}_{N}=\mathbf{X}_{N}+\mathbf{A}_{N}$ where \mathbf{A}_{N} is a matrix with finite rank.
- Spiked models have been introduced by lain M. Johnstone in his 2001 paper in Annals of Statistics to take into account the fact that in many datasets, a small number of eigenvalues is "far away" the bulk of the other eigenvalues

Objective

- What is the influence of Π_{N} over $L_{N}\left(\frac{1}{n} \tilde{\mathbf{X}}_{N} \tilde{\mathbf{X}}_{N}^{*}\right)$?
- What is the influence of Π_{N} over $\lambda_{\max }\left(\frac{1}{n} \tilde{\mathbf{X}}_{N} \tilde{\mathbf{X}}_{N}^{*}\right)$?

Simulations I: Single spikes

Simulations I: Single spikes

$\mathrm{N}=800, \mathrm{n}=2000, \operatorname{sqrt}(\mathrm{c})=0.63$, theta=[0.1]

Figure : Spiked model - strength of the perturbation $\theta=0.1$

Simulations I: Single spikes

$\mathrm{N}=800, \mathrm{n}=2000, \operatorname{sqrt}(\mathrm{c})=0.63$, theta $=[0.5]$

Figure : Spiked model - strength of the perturbation $\theta=0.5$

Simulations I: Single spikes

$$
N=400, n=1000, \text { sqrt(c)=0.63, theta=[} 1 \text {] }
$$

Figure: Spiked model - strength of the perturbation $\theta=1$

Simulations I: Single spikes

$$
\mathrm{N}=800, \mathrm{n}=2000, \text { sqrt(c) }=0.63 \text {, theta=[} 2 \text {] }
$$

Figure : Spiked model - strength of the perturbation $\theta=2$

Simulations I: Single spikes

$\mathrm{N}=800, \mathrm{n}=2000, \operatorname{sqrt}(\mathrm{c})=\mathbf{0 . 6 3}$, theta=[3]

Figure : Spiked model - strength of the perturbation $\theta=3$

Observation \#1

If the strength θ of the perturbation \mathbf{P}_{N} is large enough, then the limit of $\lambda_{\max }\left(\frac{1}{n} \tilde{\mathbf{X}}_{N} \tilde{\mathbf{X}}_{N}^{*}\right)$ is strictly larger than the right edge of the bulk.

Simulations II: Spectral measure

Simulations II: Spectral measure

$\mathrm{N}=800, \mathrm{n}=2000, \operatorname{sqrt}(\mathrm{c})=0.63$, theta=[0.1]

Figure : Spiked model - strength of the perturbation $\theta=0.1$

Simulations II: Spectral measure

$\mathrm{N}=800, \mathrm{n}=2000, \mathrm{sqrt}(\mathrm{c})=0.63$, theta=[0.5]

Figure : Spiked model - strength of the perturbation $\theta=0.5$

Simulations II: Spectral measure

$$
\mathrm{N}=400, \mathrm{n}=1000, \text { sqrt(c)=0.63, theta=[} 1 \text {] }
$$

Figure: Spiked model - strength of the perturbation $\theta=1$

Simulations II: Spectral measure

$\mathrm{N}=800, \mathrm{n}=2000$, $\operatorname{sqrt}(\mathrm{c})=0.63$, theta $=[2]$

Figure : Spiked model - strength of the perturbation $\theta=2$

Simulations II: Spectral measure

$\mathrm{N}=800, \mathrm{n}=2000$, sqrt(c) $=0.63$, theta=[3]

Figure: Spiked model - strength of the perturbation $\theta=3$

Simulations III: Multiple Spikes

Simulations III: Multiple Spikes

$\mathrm{N}=400, \mathrm{n}=1000, \operatorname{sqrt}(\mathrm{c})=0.63$, theta $=[2,2.5]$

Figure: Spiked model - Two spikes

Simulations III: Multiple Spikes

$\mathrm{N}=400, \mathrm{n}=1000, \mathrm{sqrt}(\mathrm{c})=0.63$, theta=[2,2.5]

Figure: Spiked model - Two spikes

Simulations III: Multiple Spikes

$\mathrm{N}=400, \mathrm{n}=1000$, sqrt(c)=0.63, theta=[2,2.3,2.8]

Figure: Spiked model - Three spikes

Simulations III: Multiple Spikes

$\mathrm{N}=400, \mathrm{n}=1000$, sqrt(c)=0.63, theta=[2,2.3,2.8]

Figure: Spiked model - Three spikes

Simulations III: Multiple Spikes

$\mathrm{N}=400, \mathrm{n}=1000, \mathrm{sqrt}(\mathrm{c})=0.63$, theta=[2,2.5,2.5,3]

Figure: Spiked model - Multiple spikes

Simulations III: Multiple Spikes

$\mathrm{N}=400, \mathrm{n}=1000, \mathrm{sqrt}(\mathrm{c})=0.63$, theta=[2,2.5,2.5,3]

Figure: Spiked model - Multiple spikes

Observation \# 2

Whathever the perturbations, the spectral measure converges toward Marčenko-Pastur distribution

Outline

```
Quick introduction to random matrix theory
Large Covariance Matrices
```

Spiked models
Introduction and objective
The limiting spectral measure
The largest eigenvalue
Spiked models: Summary

Statistical Test for Single-Source Detection

Applications to the MIMO channel

The limiting spectral measure

Theorem

The following convergence holds true: $L_{N}\left(\frac{1}{n} \tilde{\mathbf{X}}_{N} \tilde{\mathbf{X}}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{a . s .} \mu_{\mathrm{MP}}$.

The limiting spectral measure

Theorem

The following convergence holds true: $L_{N}\left(\frac{1}{n} \tilde{\mathbf{X}}_{N} \tilde{\mathbf{X}}_{N}^{*}\right) \underset{N, n \rightarrow \infty}{a . s .} \mu_{\mathrm{MP}}$.

The theorem is a simple consequence of the Cauchy (Weyl) interlacing theorem which states that the eigenvalues of a finite-rank perturbated Hermitian matrix (or a finite rank reduced submatrix) are interlaced with those of the original Hermitian matrix.

Remark

The limiting spectral measure is not sensitive to the presence of spikes

Outline

```
Quick introduction to random matrix theory
Large Covariance Matrices
```

Spiked models
Introduction and objective
The limiting spectral measure
The largest eigenvalue
Spiked models: Summary

Statistical Test for Single-Source Detection

Applications to the MIMO channel

Behaviour of the largest eigenvalue

We consider the following spiked model:

$$
\tilde{\mathbf{X}}_{N}=\left(\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}\right)^{1 / 2} \mathbf{X}_{N} \quad \text { with } \quad\|\overrightarrow{\mathbf{u}}\|=1
$$

Behaviour of the largest eigenvalue

We consider the following spiked model:

$$
\tilde{\mathbf{X}}_{N}=\left(\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}\right)^{1 / 2} \mathbf{X}_{N} \quad \text { with } \quad\|\overrightarrow{\mathbf{u}}\|=1
$$

which corresponds to a rank-one perturbation.

Behaviour of the largest eigenvalue

We consider the following spiked model:

$$
\tilde{\mathbf{X}}_{N}=\left(\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}\right)^{1 / 2} \mathbf{X}_{N} \quad \text { with } \quad\|\overrightarrow{\mathbf{u}}\|=1
$$

which corresponds to a rank-one perturbation.

Theorem

Recall that $c=\lim _{N, n \rightarrow \infty} \frac{N}{n}$.

Behaviour of the largest eigenvalue

We consider the following spiked model:

$$
\tilde{\mathbf{X}}_{N}=\left(\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}\right)^{1 / 2} \mathbf{X}_{N} \quad \text { with } \quad\|\overrightarrow{\mathbf{u}}\|=1
$$

which corresponds to a rank-one perturbation.

Theorem

Recall that $c=\lim _{N, n \rightarrow \infty} \frac{N}{n}$.

- if $\theta \leq \sqrt{c}$ then

$$
\lambda_{\max }=\lambda_{\max }\left(\frac{1}{n} \tilde{\mathbf{X}}_{N} \tilde{\mathbf{X}}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }}(1+\sqrt{c})^{2}
$$

Behaviour of the largest eigenvalue

We consider the following spiked model:

$$
\tilde{\mathbf{X}}_{N}=\left(\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}\right)^{1 / 2} \mathbf{X}_{N} \quad \text { with } \quad\|\overrightarrow{\mathbf{u}}\|=1
$$

which corresponds to a rank-one perturbation.

Theorem

Recall that $c=\lim _{N, n \rightarrow \infty} \frac{N}{n}$.

- if $\theta \leq \sqrt{c}$ then

$$
\lambda_{\max }=\lambda_{\max }\left(\frac{1}{n} \tilde{\mathbf{X}}_{N} \tilde{\mathbf{X}}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }}(1+\sqrt{c})^{2}
$$

- if $\theta>\sqrt{c}$ then

$$
\lambda_{\max } \xrightarrow[N, n \rightarrow \infty]{a . s .}(1+\theta)\left(1+\frac{c}{\theta}\right)
$$

Behaviour of the largest eigenvalue

We consider the following spiked model:

$$
\tilde{\mathbf{X}}_{N}=\left(\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}\right)^{1 / 2} \mathbf{X}_{N} \quad \text { with } \quad\|\overrightarrow{\mathbf{u}}\|=1
$$

which corresponds to a rank-one perturbation.

Theorem

Recall that $c=\lim _{N, n \rightarrow \infty} \frac{N}{n}$.

- if $\theta \leq \sqrt{c}$ then

$$
\lambda_{\max }=\lambda_{\max }\left(\frac{1}{n} \tilde{\mathbf{X}}_{N} \tilde{\mathbf{X}}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }}(1+\sqrt{c})^{2}
$$

- if $\theta>\sqrt{c}$ then

$$
\lambda_{\max } \xrightarrow[N, n \rightarrow \infty]{a . s .}(1+\theta)\left(1+\frac{c}{\theta}\right)>(1+\sqrt{c})^{2}
$$

[Baik-Ben Arous-Péché (2005); Baik and Silverstein (2006)]

Phase transition Phenomenon

limit of lambda_max as a function of theta

Figure : Limit of largest eigenvalue $\lambda_{\max }$ as a function of the perturbation θ

Phase transition Phenomenon

limit of lambda_max as a function of theta

Figure : Limit of largest eigenvalue $\lambda_{\max }$ as a function of the perturbation θ

- If $\theta \leq \sqrt{c}$ then

$$
\lambda_{\max }\left(\frac{1}{n} \tilde{\mathbf{X}}_{N} \tilde{\mathbf{X}}_{N}^{*}\right) \quad \xrightarrow[N, n \rightarrow \infty]{ }(1+\sqrt{c})^{2}
$$

Phase transition Phenomenon

limit of lambda_max as a function of theta

Figure : Limit of largest eigenvalue $\lambda_{\max }$ as a function of the perturbation θ

- If $\theta \leq \sqrt{c}$ then

$$
\lambda_{\max }\left(\frac{1}{n} \tilde{\mathbf{X}}_{N} \tilde{\mathbf{X}}_{N}^{*}\right) \quad \xrightarrow[N, n \rightarrow \infty]{ }(1+\sqrt{c})^{2}
$$

Below the threshold $\sqrt{c}, \lambda_{\max }\left(\frac{1}{n} \tilde{\mathbf{X}}_{N} \tilde{\mathbf{X}}_{N}^{*}\right)$ asymptotically sticks to the bulk.

Phase transition Phenomenon

limit of lambda_max as a function of theta

Figure : Limit of largest eigenvalue $\lambda_{\max }$ as a function of the perturbation θ

Phase transition Phenomenon

limit of lambda_max as a function of theta

Figure : Limit of largest eigenvalue $\lambda_{\max }$ as a function of the perturbation θ

- if $\theta>\sqrt{c}$ then

$$
\lim _{N, n} \lambda_{\max }\left(\frac{1}{n} \tilde{\mathbf{X}}_{N} \tilde{\mathbf{X}}_{N}^{*}\right)=(1+\theta)\left(1+\frac{c}{\theta}\right)
$$

Phase transition Phenomenon

limit of lambda_max as a function of theta

Figure : Limit of largest eigenvalue $\lambda_{\max }$ as a function of the perturbation θ

- if $\theta>\sqrt{c}$ then

$$
\lim _{N, n} \lambda_{\max }\left(\frac{1}{n} \tilde{\mathbf{X}}_{N} \tilde{\mathbf{X}}_{N}^{*}\right)=(1+\theta)\left(1+\frac{c}{\theta}\right)>(1+\sqrt{c})^{2}
$$

Above the threshold $\sqrt{c}, \lambda_{\max }\left(\frac{1}{n} \tilde{\mathbf{X}}_{N} \tilde{\mathbf{X}}_{N}^{*}\right)$ asymptotically separates from the bulk.

Outline

```
Quick introduction to random matrix theory
Large Covariance Matrices
```

Spiked models
Introduction and objective
The limiting spectral measure
The largest eigenvalue
Spiked models: Summary

```
Statistical Test for Single-Source Detection
```

Applications to the MIMO channel

Summary I

Summary I

Spiked model
Let
$-\Pi_{N}$ a small perturbation of the identity [Example: $\boldsymbol{\Pi}_{N}=\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}$]

Summary I

Spiked model
Let

- $\boldsymbol{\Pi}_{N}$ a small perturbation of the identity [Example: $\boldsymbol{\Pi}_{N}=\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}$]
- \mathbf{X}_{N} a $N \times n$ matrix with i.i.d. entries

Summary I

Spiked model

Let

- $\boldsymbol{\Pi}_{N}$ a small perturbation of the identity [Example: $\boldsymbol{\Pi}_{N}=\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}$]
- \mathbf{X}_{N} a $N \times n$ matrix with i.i.d. entries
then $\widetilde{\mathbf{X}}_{N}=\boldsymbol{\Pi}_{N}^{1 / 2} \mathbf{X}_{N}$ is a (multiplicative) spiked model

Summary I

Spiked model

Let

- $\boldsymbol{\Pi}_{N}$ a small perturbation of the identity [Example: $\boldsymbol{\Pi}_{N}=\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}$]
- \mathbf{X}_{N} a $N \times n$ matrix with i.i.d. entries
then $\widetilde{\mathbf{X}}_{N}=\boldsymbol{\Pi}_{N}^{1 / 2} \mathbf{X}_{N}$ is a (multiplicative) spiked model

Global regime

The spectral measure $L_{N}\left(\frac{1}{N} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)$ converges to Marčenko-Pastur distribution:

$$
\text { almost surely, } L_{N}\left(\frac{1}{N} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{\mathcal{L}} \mu_{\mathrm{MP}}
$$

Summary I

Spiked model
Let

- $\boldsymbol{\Pi}_{N}$ a small perturbation of the identity [Example: $\boldsymbol{\Pi}_{N}=\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}$]
- \mathbf{X}_{N} a $N \times n$ matrix with i.i.d. entries
then $\widetilde{\mathbf{X}}_{N}=\boldsymbol{\Pi}_{N}^{1 / 2} \mathbf{X}_{N}$ is a (multiplicative) spiked model

Global regime

The spectral measure $L_{N}\left(\frac{1}{N} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)$ converges to Marčenko-Pastur distribution:

$$
\text { almost surely, } L_{N}\left(\frac{1}{N} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{\mathcal{L}} \mu_{\mathrm{MP}}
$$

Largest eigenvalue

- if $\theta \leq \sqrt{c}$, then $\lambda_{\max }\left(\frac{1}{N} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)$ converges to the right edge of the bulk

Summary I

Spiked model

Let

- $\boldsymbol{\Pi}_{N}$ a small perturbation of the identity [Example: $\boldsymbol{\Pi}_{N}=\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}$]
- \mathbf{X}_{N} a $N \times n$ matrix with i.i.d. entries
then $\widetilde{\mathbf{X}}_{N}=\boldsymbol{\Pi}_{N}^{1 / 2} \mathbf{X}_{N}$ is a (multiplicative) spiked model

Global regime

The spectral measure $L_{N}\left(\frac{1}{N} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)$ converges to Marčenko-Pastur distribution:

$$
\text { almost surely, } L_{N}\left(\frac{1}{N} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{\mathcal{L}} \mu_{\mathrm{MP}}
$$

Largest eigenvalue

- if $\theta \leq \sqrt{c}$, then $\lambda_{\max }\left(\frac{1}{N} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)$ converges to the right edge of the bulk
- if $\theta>\sqrt{c}$, then $\lambda_{\max }\left(\frac{1}{N} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)$ separates from the bulk

Summary I

Spiked model
Let

- $\boldsymbol{\Pi}_{N}$ a small perturbation of the identity [Example: $\boldsymbol{\Pi}_{N}=\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}$]
- \mathbf{X}_{N} a $N \times n$ matrix with i.i.d. entries
then $\widetilde{\mathbf{X}}_{N}=\boldsymbol{\Pi}_{N}^{1 / 2} \mathbf{X}_{N}$ is a (multiplicative) spiked model

Global regime

The spectral measure $L_{N}\left(\frac{1}{N} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)$ converges to Marčenko-Pastur distribution:

$$
\text { almost surely, } L_{N}\left(\frac{1}{N} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{\mathcal{L}} \mu_{\mathrm{MP}}
$$

Largest eigenvalue

- if $\theta \leq \sqrt{c}$, then $\lambda_{\max }\left(\frac{1}{N} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)$ converges to the right edge of the bulk
- if $\theta>\sqrt{c}$, then $\lambda_{\max }\left(\frac{1}{N} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)$ separates from the bulk

$$
\lambda_{\max }\left(\frac{1}{N} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right) \rightarrow(1+\theta)\left(1+\frac{c}{\theta}\right)
$$

Summary I

Spiked model
Let

- $\boldsymbol{\Pi}_{N}$ a small perturbation of the identity [Example: $\boldsymbol{\Pi}_{N}=\mathbf{I}_{N}+\theta \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}$]
- \mathbf{X}_{N} a $N \times n$ matrix with i.i.d. entries
then $\widetilde{\mathbf{X}}_{N}=\boldsymbol{\Pi}_{N}^{1 / 2} \mathbf{X}_{N}$ is a (multiplicative) spiked model

Global regime

The spectral measure $L_{N}\left(\frac{1}{N} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)$ converges to Marčenko-Pastur distribution:

$$
\text { almost surely, } L_{N}\left(\frac{1}{N} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right) \xrightarrow[N, n \rightarrow \infty]{\mathcal{L}} \mu_{\mathrm{MP}}
$$

Largest eigenvalue

- if $\theta \leq \sqrt{c}$, then $\lambda_{\max }\left(\frac{1}{N} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)$ converges to the right edge of the bulk
- if $\theta>\sqrt{c}$, then $\lambda_{\text {max }}\left(\frac{1}{N} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right)$ separates from the bulk

$$
\lambda_{\max }\left(\frac{1}{N} \widetilde{\mathbf{X}}_{N} \widetilde{\mathbf{X}}_{N}^{*}\right) \rightarrow(1+\theta)\left(1+\frac{c}{\theta}\right)>(1+\sqrt{c})^{2}
$$

Outline

```
Quick introduction to random matrix theory
Large Covariance Matrices
Spiked models
```

Statistical Test for Single-Source Detection

 The setup

 Asymptotics of the GLRT

 Fluctuations of the GLRT statistic

 The GLRT: Summary
 Applications to the MIMO channel

The hypothesis testing problem

Statistical Setup

let

$$
\overrightarrow{\mathbf{y}}(k)=\left\{\begin{array}{ll}
\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} s(k)+\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{1}
\end{array} \quad \text { for } k=1: n\right.
$$

The $\overrightarrow{\boldsymbol{y}}(k)$'s are n observations all either drawn under H_{0} or H_{1}. Here,

The hypothesis testing problem

Statistical Setup

let

$$
\overrightarrow{\mathbf{y}}(k)=\left\{\begin{array}{ll}
\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} s(k)+\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{1}
\end{array} \quad \text { for } k=1: n\right.
$$

The $\overrightarrow{\mathbf{y}}(k)$'s are n observations all either drawn under H_{0} or H_{1}. Here,

- $\overrightarrow{\mathbf{w}}(k)$ is a $N \times 1$ complex gaussian white noise process:

$$
\overrightarrow{\mathrm{w}}(k) \sim \mathcal{C} N\left(0, \mathbf{I}_{N}\right)
$$

The hypothesis testing problem

Statistical Setup

let

$$
\overrightarrow{\mathbf{y}}(k)=\left\{\begin{array}{ll}
\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} s(k)+\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{1}
\end{array} \quad \text { for } k=1: n\right.
$$

The $\overrightarrow{\mathbf{y}}(k)$'s are n observations all either drawn under H_{0} or H_{1}. Here,

- $\overrightarrow{\mathbf{w}}(k)$ is a $N \times 1$ complex gaussian white noise process:

$$
\overrightarrow{\mathrm{w}}(k) \sim \mathcal{C} N\left(0, \mathbf{I}_{N}\right)
$$

- $\overrightarrow{\mathrm{h}}$ is a $N \times 1$ deterministic and unknown vector representing the characteristics of the propagation channel

The hypothesis testing problem

Statistical Setup

let

$$
\overrightarrow{\mathbf{y}}(k)=\left\{\begin{array}{ll}
\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} s(k)+\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{1}
\end{array} \quad \text { for } k=1: n\right.
$$

The $\overrightarrow{\mathbf{y}}(k)$'s are n observations all either drawn under H_{0} or H_{1}. Here,

- $\overrightarrow{\mathbf{w}}(k)$ is a $N \times 1$ complex gaussian white noise process:

$$
\overrightarrow{\mathbf{w}}(k) \sim \mathcal{C} N\left(0, \mathbf{I}_{N}\right)
$$

- $\overrightarrow{\mathrm{h}}$ is a $N \times 1$ deterministic and unknown vector representing the characteristics of the propagation channel
- $s(k)$ represent the signal; it is a scalar complex Gaussian i.i.d. process

The hypothesis testing problem

Statistical Setup

let

$$
\overrightarrow{\mathbf{y}}(k)=\left\{\begin{array}{ll}
\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} s(k)+\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{1}
\end{array} \quad \text { for } k=1: n\right.
$$

The $\overrightarrow{\mathbf{y}}(k)$'s are n observations all either drawn under H_{0} or H_{1}. Here,

- $\overrightarrow{\mathbf{w}}(k)$ is a $N \times 1$ complex gaussian white noise process:

$$
\overrightarrow{\mathrm{w}}(k) \sim \mathcal{C} N\left(0, \mathbf{I}_{N}\right)
$$

- $\overrightarrow{\mathrm{h}}$ is a $N \times 1$ deterministic and unknown vector representing the characteristics of the propagation channel
- $s(k)$ represent the signal; it is a scalar complex Gaussian i.i.d. process

Objective

Given n observations $(\overrightarrow{\mathbf{y}}(k), 1 \leq k \leq n)$, and the associated sample covariance matrix

$$
\hat{\mathbf{R}}_{n}=\frac{1}{n} \mathbf{Y}_{n} \mathbf{Y}_{n}^{*} \quad \text { where } \quad \mathbf{Y}_{n}=[\overrightarrow{\mathbf{y}}(1), \cdots, \overrightarrow{\mathbf{y}}(n)] \quad \text { is } N \times n,
$$

The hypothesis testing problem

Statistical Setup

let

$$
\overrightarrow{\mathbf{y}}(k)=\left\{\begin{array}{ll}
\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} s(k)+\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{1}
\end{array} \quad \text { for } k=1: n\right.
$$

The $\overrightarrow{\mathbf{y}}(k)$'s are n observations all either drawn under H_{0} or H_{1}. Here,

- $\overrightarrow{\mathbf{w}}(k)$ is a $N \times 1$ complex gaussian white noise process:

$$
\overrightarrow{\mathbf{w}}(k) \sim \mathcal{C} N\left(0, \mathbf{I}_{N}\right)
$$

- $\overrightarrow{\mathrm{h}}$ is a $N \times 1$ deterministic and unknown vector representing the characteristics of the propagation channel
- $s(k)$ represent the signal; it is a scalar complex Gaussian i.i.d. process

Objective

Given n observations $(\overrightarrow{\mathbf{y}}(k), 1 \leq k \leq n)$, and the associated sample covariance matrix

$$
\hat{\mathbf{R}}_{n}=\frac{1}{n} \mathbf{Y}_{n} \mathbf{Y}_{n}^{*} \quad \text { where } \quad \mathbf{Y}_{n}=[\overrightarrow{\mathbf{y}}(1), \cdots, \overrightarrow{\mathbf{y}}(n)] \quad \text { is } N \times n,
$$

the aim is to decide H_{0} (no signal) or H_{1} (single-source detection) in the case where

$$
\frac{N}{n} \rightarrow c \in(0,1) \quad \text { i.e. }
$$

The hypothesis testing problem

Statistical Setup

let

$$
\overrightarrow{\mathbf{y}}(k)=\left\{\begin{array}{ll}
\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} s(k)+\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{1}
\end{array} \quad \text { for } k=1: n\right.
$$

The $\overrightarrow{\mathbf{y}}(k)$'s are n observations all either drawn under H_{0} or H_{1}. Here,

- $\overrightarrow{\mathbf{w}}(k)$ is a $N \times 1$ complex gaussian white noise process:

$$
\overrightarrow{\mathbf{w}}(k) \sim \mathcal{C} N\left(0, \mathbf{I}_{N}\right)
$$

- $\overrightarrow{\mathrm{h}}$ is a $N \times 1$ deterministic and unknown vector representing the characteristics of the propagation channel
- $s(k)$ represent the signal; it is a scalar complex Gaussian i.i.d. process

Objective

Given n observations $(\overrightarrow{\mathbf{y}}(k), 1 \leq k \leq n)$, and the associated sample covariance matrix

$$
\hat{\mathbf{R}}_{n}=\frac{1}{n} \mathbf{Y}_{n} \mathbf{Y}_{n}^{*} \quad \text { where } \quad \mathbf{Y}_{n}=[\overrightarrow{\mathbf{y}}(1), \cdots, \overrightarrow{\mathbf{y}}(n)] \quad \text { is } N \times n,
$$

the aim is to decide H_{0} (no signal) or H_{1} (single-source detection) in the case where

$$
\frac{N}{n} \rightarrow c \in(0,1) \quad \text { i.e. } \quad \text { Dimension } N \text { of observations } \propto \text { size } n \text { of sample }
$$

Neyman-Pearson procedure
Likelihood functions

Neyman-Pearson procedure

Likelihood functions

Notice that \mathbf{Y}_{n} is a $N \times n$ matrix whose columns are i.i.d. vectors with covariance matrix defined by

$$
\boldsymbol{\Sigma}_{N}=\left\{\begin{array}{cc}
\mathbf{I}_{N} & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} \overrightarrow{\mathbf{h}}^{*}+\sigma^{2} \mathbf{I}_{N} & \text { under } H_{1}
\end{array}\right.
$$

Neyman-Pearson procedure

Likelihood functions

Notice that \mathbf{Y}_{n} is a $N \times n$ matrix whose columns are i.i.d. vectors with covariance matrix defined by

$$
\boldsymbol{\Sigma}_{N}=\left\{\begin{array}{cc}
\mathbf{I}_{N} & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} \overrightarrow{\mathbf{h}}^{*}+\sigma^{2} \mathbf{I}_{N} & \text { under } H_{1}
\end{array}\right.
$$

hence the likelihood functions write

$$
\begin{aligned}
p_{0}\left(\mathbf{Y}_{N} ; \sigma^{2}\right) & =\frac{1}{\left(\pi \sigma^{2}\right)^{N n}} \exp \left(-\frac{n}{\sigma^{2}} \operatorname{tr} \hat{\mathbf{R}}_{N}\right) \\
p_{1}\left(\mathbf{Y}_{N} ; \overrightarrow{\mathbf{h}} ; \sigma^{2}\right) & =\frac{1}{\left[\pi^{N} \operatorname{det}\left(\overrightarrow{\mathbf{h}} \overrightarrow{\mathbf{h}}^{*}+\sigma^{2} \mathbf{I}_{N}\right)\right]^{n}} \exp \left(-\frac{n}{\sigma^{2}} \operatorname{tr} \hat{\mathbf{R}}_{N}\left(\overrightarrow{\mathbf{h}} \overrightarrow{\mathbf{h}}^{*}+\sigma^{2} \mathbf{I}_{N}\right)^{-1}\right)
\end{aligned}
$$

Neyman-Pearson procedure

Likelihood functions

Notice that \mathbf{Y}_{n} is a $N \times n$ matrix whose columns are i.i.d. vectors with covariance matrix defined by

$$
\boldsymbol{\Sigma}_{N}=\left\{\begin{array}{cc}
\mathbf{I}_{N} & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} \overrightarrow{\mathbf{h}}^{*}+\sigma^{2} \mathbf{I}_{N} & \text { under } H_{1}
\end{array}\right.
$$

hence the likelihood functions write

$$
\begin{aligned}
p_{0}\left(\mathbf{Y}_{N} ; \sigma^{2}\right) & =\frac{1}{\left(\pi \sigma^{2}\right)^{N n}} \exp \left(-\frac{n}{\sigma^{2}} \operatorname{tr} \hat{\mathbf{R}}_{N}\right) \\
p_{1}\left(\mathbf{Y}_{N} ; \overrightarrow{\mathbf{h}} ; \sigma^{2}\right) & =\frac{1}{\left[\pi^{N} \operatorname{det}\left(\overrightarrow{\mathbf{h}} \overrightarrow{\mathbf{h}}^{*}+\sigma^{2} \mathbf{I}_{N}\right)\right]^{n}} \exp \left(-\frac{n}{\sigma^{2}} \operatorname{tr} \hat{\mathbf{R}}_{N}\left(\overrightarrow{\mathbf{h}} \overrightarrow{\mathbf{h}}^{*}+\sigma^{2} \mathbf{I}_{N}\right)^{-1}\right)
\end{aligned}
$$

Neyman-Pearson

In case where σ^{2} and $\overrightarrow{\mathbf{h}}$ are known, the

Likelihood Ratio Statistics

$$
\frac{p_{1}\left(\mathbf{Y}_{N} ; \overrightarrow{\mathbf{h}} ; \sigma^{2}\right)}{p_{0}\left(\mathbf{Y}_{N} ; \sigma^{2}\right)}
$$

provides a uniformly most powerful test:

Neyman-Pearson procedure

Likelihood functions

Notice that \mathbf{Y}_{n} is a $N \times n$ matrix whose columns are i.i.d. vectors with covariance matrix defined by

$$
\boldsymbol{\Sigma}_{N}=\left\{\begin{array}{cc}
\mathbf{I}_{N} & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} \overrightarrow{\mathbf{h}}^{*}+\sigma^{2} \mathbf{I}_{N} & \text { under } H_{1}
\end{array}\right.
$$

hence the likelihood functions write

$$
\begin{aligned}
p_{0}\left(\mathbf{Y}_{N} ; \sigma^{2}\right) & =\frac{1}{\left(\pi \sigma^{2}\right)^{N n}} \exp \left(-\frac{n}{\sigma^{2}} \operatorname{tr} \hat{\mathbf{R}}_{N}\right) \\
p_{1}\left(\mathbf{Y}_{N} ; \overrightarrow{\mathbf{h}} ; \sigma^{2}\right) & =\frac{1}{\left[\pi^{N} \operatorname{det}\left(\overrightarrow{\mathbf{h}} \overrightarrow{\mathbf{h}}^{*}+\sigma^{2} \mathbf{I}_{N}\right)\right]^{n}} \exp \left(-\frac{n}{\sigma^{2}} \operatorname{tr} \hat{\mathbf{R}}_{N}\left(\overrightarrow{\mathbf{h}} \overrightarrow{\mathbf{h}}^{*}+\sigma^{2} \mathbf{I}_{N}\right)^{-1}\right)
\end{aligned}
$$

Neyman-Pearson

- Fix a given level $\alpha \in(0,1)$

In case where σ^{2} and $\overrightarrow{\mathrm{h}}$ are known, the

Likelihood Ratio Statistics

$$
\frac{p_{1}\left(\mathbf{Y}_{N} ; \overrightarrow{\mathbf{h}} ; \sigma^{2}\right)}{p_{0}\left(\mathbf{Y}_{N} ; \sigma^{2}\right)}
$$

provides a uniformly most powerful test:

Neyman-Pearson procedure

Likelihood functions

Notice that \mathbf{Y}_{n} is a $N \times n$ matrix whose columns are i.i.d. vectors with covariance matrix defined by

$$
\boldsymbol{\Sigma}_{N}=\left\{\begin{array}{cc}
\mathbf{I}_{N} & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} \overrightarrow{\mathbf{h}}^{*}+\sigma^{2} \mathbf{I}_{N} & \text { under } H_{1}
\end{array}\right.
$$

hence the likelihood functions write

$$
\begin{aligned}
p_{0}\left(\mathbf{Y}_{N} ; \sigma^{2}\right) & =\frac{1}{\left(\pi \sigma^{2}\right)^{N n}} \exp \left(-\frac{n}{\sigma^{2}} \operatorname{tr} \hat{\mathbf{R}}_{N}\right) \\
p_{1}\left(\mathbf{Y}_{N} ; \overrightarrow{\mathbf{h}} ; \sigma^{2}\right) & =\frac{1}{\left[\pi^{N} \operatorname{det}\left(\overrightarrow{\mathbf{h}} \overrightarrow{\mathbf{h}}^{*}+\sigma^{2} \mathbf{I}_{N}\right)\right]^{n}} \exp \left(-\frac{n}{\sigma^{2}} \operatorname{tr} \hat{\mathbf{R}}_{N}\left(\overrightarrow{\mathbf{h}} \overrightarrow{\mathbf{h}}^{*}+\sigma^{2} \mathbf{I}_{N}\right)^{-1}\right)
\end{aligned}
$$

Neyman-Pearson

In case where σ^{2} and $\overrightarrow{\mathbf{h}}$ are known, the Likelihood Ratio Statistics

$$
\frac{p_{1}\left(\mathbf{Y}_{N} ; \overrightarrow{\mathbf{h}} ; \sigma^{2}\right)}{p_{0}\left(\mathbf{Y}_{N} ; \sigma^{2}\right)}
$$

provides a uniformly most powerful test:

- Fix a given level $\alpha \in(0,1)$
- The condition over the Probability of False Alarm $\mathbb{P}\left(H_{1} \mid H_{0}\right) \leq \alpha$ sets the threshold

Neyman-Pearson procedure

Likelihood functions

Notice that \mathbf{Y}_{n} is a $N \times n$ matrix whose columns are i.i.d. vectors with covariance matrix defined by

$$
\boldsymbol{\Sigma}_{N}=\left\{\begin{array}{cc}
\mathbf{I}_{N} & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} \overrightarrow{\mathbf{h}}^{*}+\sigma^{2} \mathbf{I}_{N} & \text { under } H_{1}
\end{array}\right.
$$

hence the likelihood functions write

$$
\begin{aligned}
p_{0}\left(\mathbf{Y}_{N} ; \sigma^{2}\right) & =\frac{1}{\left(\pi \sigma^{2}\right)^{N n}} \exp \left(-\frac{n}{\sigma^{2}} \operatorname{tr} \hat{\mathbf{R}}_{N}\right) \\
p_{1}\left(\mathbf{Y}_{N} ; \overrightarrow{\mathbf{h}} ; \sigma^{2}\right) & =\frac{1}{\left[\pi^{N} \operatorname{det}\left(\overrightarrow{\mathbf{h}} \overrightarrow{\mathbf{h}}^{*}+\sigma^{2} \mathbf{I}_{N}\right)\right]^{n}} \exp \left(-\frac{n}{\sigma^{2}} \operatorname{tr} \hat{\mathbf{R}}_{N}\left(\overrightarrow{\mathbf{h}} \overrightarrow{\mathbf{h}}^{*}+\sigma^{2} \mathbf{I}_{N}\right)^{-1}\right)
\end{aligned}
$$

Neyman-Pearson

In case where σ^{2} and $\overrightarrow{\mathbf{h}}$ are known, the Likelihood Ratio Statistics

$$
\frac{p_{1}\left(\mathbf{Y}_{N} ; \overrightarrow{\mathbf{h}} ; \sigma^{2}\right)}{p_{0}\left(\mathbf{Y}_{N} ; \sigma^{2}\right)}
$$

provides a uniformly most powerful test:

- Fix a given level $\alpha \in(0,1)$
- The condition over the Probability of False Alarm $\mathbb{P}\left(H_{1} \mid H_{0}\right) \leq \alpha$ sets the threshold
- the maximum achievable power

$$
1-\mathbb{P}\left(H_{0} \mid H_{1}\right)
$$

is guaranteed by Neyman-Pearson.

The GLRT

The Generalized Likelihood Ratio Test

In the case where $\overrightarrow{\mathrm{h}}$ and σ^{2} are unknown, we use instead:

$$
L_{n}=\frac{\sup _{\sigma^{2}, \overrightarrow{\mathbf{h}}} p_{1}\left(\mathbf{Y}_{n}, \sigma^{2}, \overrightarrow{\mathbf{h}}\right)}{\sup _{\sigma^{2}} p_{0}\left(\mathbf{Y}_{n}, \sigma^{2}\right)}
$$

which is no longer uniformily most powerful.

The GLRT

The Generalized Likelihood Ratio Test

In the case where $\overrightarrow{\mathrm{h}}$ and σ^{2} are unknown, we use instead:

$$
L_{n}=\frac{\sup _{\sigma^{2}, \overrightarrow{\mathbf{h}}} p_{1}\left(\mathbf{Y}_{n}, \sigma^{2}, \overrightarrow{\mathbf{h}}\right)}{\sup _{\sigma^{2}} p_{0}\left(\mathbf{Y}_{n}, \sigma^{2}\right)}
$$

which is no longer uniformily most powerful.

Expression of the GLRT

The GLRT statistics writes

$$
L_{n}=\frac{\left(1-\frac{1}{N}\right)^{(1-N) n}}{\left(\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_{n}}\right)^{n}\left(1-\frac{1}{N} \frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_{n}}\right)^{(N-1) n}}
$$

and is a deterministic function of $T_{n}=\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_{n}}$

Outline

Quick introduction to random matrix theory
Large Covariance Matrices
Spiked models
Statistical Test for Single-Source Detection
The setup
Asymptotics of the GLRT
Fluctuations of the GLRT statistic
The GLRT: Summary
Applications to the MIMO channel

Limit of the test statistics T_{n} - I

Under H_{0}
Recall $T_{n}=\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} t r \mathbf{R}_{n}}$.

Limit of the test statistics T_{n} - I

Under H_{0}
Recall $T_{n}=\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_{n}}$. We have:

$$
\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right) \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }} \quad \sigma^{2}(1+\sqrt{c})^{2}
$$

Limit of the test statistics T_{n} - I

Under H_{0}
Recall $T_{n}=\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_{n}}$. We have:

$$
\begin{aligned}
\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right) & \begin{array}{r}
\text { a.s. } \\
N, n \rightarrow \infty
\end{array} \\
\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_{n}=\frac{1}{N n} \sum_{i, j}\left|Y_{i j}\right|^{2} & \stackrel{\text { a.s. }}{c})^{2} \\
N, n \rightarrow \infty & \sigma^{2}
\end{aligned}
$$

Limit of the test statistics T_{n} - I

Under H_{0}
Recall $T_{n}=\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_{n}}$. We have:

$$
\begin{array}{rll}
\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right) & \begin{array}{r}
\text { a.s. } \\
N, n \rightarrow \infty
\end{array} & \sigma^{2}(1+\sqrt{c})^{2} \\
\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_{n}=\frac{1}{N n} \sum_{i, j}\left|Y_{i j}\right|^{2} & \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }} & \sigma^{2}
\end{array}
$$

hence

$$
T_{n}=\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_{n}} \quad \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }} \quad(1+\sqrt{c})^{2}
$$

Limit of the test statistics T_{n} - II

Under H_{1}
Let

$$
\mathbf{s n r}=\frac{\|\overrightarrow{\mathbf{h}}\|^{2}}{\sigma^{2}}
$$

the Signal-to-Noise (SNR) ratio.

Limit of the test statistics T_{n} - II

Under H_{1}
Let

$$
\mathbf{s n r}=\frac{\|\overrightarrow{\mathbf{h}}\|^{2}}{\sigma^{2}}
$$

the Signal-to-Noise (SNR) ratio.

- if $\mathrm{snr}>\sqrt{c}$ then

$$
T_{n} \xrightarrow[N, n \rightarrow \infty]{a . s .}(1+\mathbf{s n r})\left(1+\frac{c}{\mathbf{s n r}}\right)
$$

Limit of the test statistics T_{n} - II

Under H_{1}
Let

$$
\operatorname{snr}=\frac{\|\overrightarrow{\mathbf{h}}\|^{2}}{\sigma^{2}}
$$

the Signal-to-Noise (SNR) ratio.

- if $\mathrm{snr}>\sqrt{c}$ then

$$
T_{n} \xrightarrow[N, n \rightarrow \infty]{a . s .}(1+\mathbf{s n r})\left(1+\frac{c}{\mathbf{s n r}}\right)>(1+\sqrt{c})^{2}
$$

Limit of the test statistics T_{n} - II

Under H_{1}
Let

$$
\mathbf{s n r}=\frac{\|\overrightarrow{\mathbf{h}}\|^{2}}{\sigma^{2}}
$$

the Signal-to-Noise (SNR) ratio.

- if $\mathrm{snr}>\sqrt{c}$ then

$$
T_{n} \xrightarrow[N, n \rightarrow \infty]{a . s .}(1+\mathbf{s n r})\left(1+\frac{c}{\mathbf{s n r}}\right)>(1+\sqrt{c})^{2}
$$

- if $\mathrm{snr} \leq \sqrt{c}$ then

$$
T_{n} \xrightarrow[N, n \rightarrow \infty]{a . s .}(1+\sqrt{c})^{2}
$$

(Phase transition)

Limit of the test statistics T_{n} - III

Remarks

- Condition $\mathrm{snr}>\sqrt{c}$ is automatically fulfilled in the classical regime where

$$
N \text { fixed and } \quad n \rightarrow \infty \quad \text { as } \quad c=\lim _{n \rightarrow \infty} \frac{N}{n}=0
$$

Limit of the test statistics T_{n} - III

Remarks

- Condition $\mathrm{snr}>\sqrt{c}$ is automatically fulfilled in the classical regime where

$$
N \text { fixed and } \quad n \rightarrow \infty \quad \text { as } \quad c=\lim _{n \rightarrow \infty} \frac{N}{n}=0
$$

- In the case $N, n \rightarrow \infty$, recall that the support of Marčenko-Pastur distribution is

$$
\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]
$$

Limit of the test statistics T_{n} - III

Remarks

- Condition $\mathrm{snr}>\sqrt{c}$ is automatically fulfilled in the classical regime where

$$
N \text { fixed and } \quad n \rightarrow \infty \quad \text { as } \quad c=\lim _{n \rightarrow \infty} \frac{N}{n}=0
$$

- In the case $N, n \rightarrow \infty$, recall that the support of Marčenko-Pastur distribution is

$$
\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]
$$

i.e.

$$
\text { The higher } \sqrt{c} \text {, the larger the support }
$$

Limit of the test statistics T_{n} - III

Remarks

- Condition $\mathrm{snr}>\sqrt{c}$ is automatically fulfilled in the classical regime where

$$
N \text { fixed and } \quad n \rightarrow \infty \quad \text { as } \quad c=\lim _{n \rightarrow \infty} \frac{N}{n}=0
$$

- In the case $N, n \rightarrow \infty$, recall that the support of Marčenko-Pastur distribution is

$$
\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]
$$

i.e.

$$
\text { The higher } \sqrt{c} \text {, the larger the support }
$$

One can interpret \sqrt{c} as a level of the asymptotic noise induced by the data dimension (=asymptotic data noise).

Limit of the test statistics T_{n} - III

Remarks

- Condition $\mathrm{snr}>\sqrt{c}$ is automatically fulfilled in the classical regime where

$$
N \text { fixed and } \quad n \rightarrow \infty \quad \text { as } \quad c=\lim _{n \rightarrow \infty} \frac{N}{n}=0 .
$$

- In the case $N, n \rightarrow \infty$, recall that the support of Marčenko-Pastur distribution is

$$
\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]
$$

i.e.

$$
\text { The higher } \sqrt{c} \text {, the larger the support }
$$

One can interpret \sqrt{c} as a level of the asymptotic noise induced by the data dimension (=asymptotic data noise).
Hence the rule of thumb
Detection occurs if snr higher than asymptotic data noise.

Simulations

$\mathrm{N}=50, \mathrm{n}=2000$, sqrt(c)=0.158113883008419

Figure: Influence of asymptotic data noise as \sqrt{c} increases

Simulations

$$
N=100, n=2000, \text { sqrt(c) }=0.223606797749979
$$

Figure: Influence of asymptotic data noise as \sqrt{c} increases

Simulations

$$
N=200, n=2000, \operatorname{sqrt}(c)=0.316227766016838
$$

Figure: Influence of asymptotic data noise as \sqrt{c} increases

Simulations

$$
\mathrm{N}=500, \mathrm{n}=2000, \text { sqrt(c) }=0.5
$$

Figure: Influence of asymptotic data noise as \sqrt{c} increases

Simulations

$$
N=1000, n=2000, \text { sqrt(c) }=0.707106781186548
$$

Figure: Influence of asymptotic data noise as \sqrt{c} increases

Sketched proof - I

- We are interested in the largest eigenvalue of the matrix model

$$
\frac{\frac{1}{n} \mathbf{Y}_{n} \mathbf{Y}_{n}^{*}}{\frac{1}{N} \operatorname{tr}\left(\hat{\mathbf{R}}_{n}\right)}
$$

Sketched proof - I

- We are interested in the largest eigenvalue of the matrix model

$$
\frac{\frac{1}{n} \mathbf{Y}_{n} \mathbf{Y}_{n}^{*}}{\frac{1}{N} \operatorname{tr}\left(\hat{\mathbf{R}}_{n}\right)}
$$

asymptotically equivalent to

$$
\frac{1}{n} \frac{\mathbf{Y}_{n} \mathbf{Y}_{n}^{*}}{\sigma^{2}} \quad \text { as } \quad \frac{1}{N} \operatorname{tr}\left(\hat{\mathbf{R}}_{n}\right) \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }} \sigma^{2}
$$

Sketched proof - I

- We are interested in the largest eigenvalue of the matrix model

$$
\frac{\frac{1}{n} \mathbf{Y}_{n} \mathbf{Y}_{n}^{*}}{\frac{1}{N} \operatorname{tr}\left(\hat{\mathbf{R}}_{n}\right)}
$$

asymptotically equivalent to

$$
\frac{1}{n} \frac{\mathbf{Y}_{n} \mathbf{Y}_{n}^{*}}{\sigma^{2}} \quad \text { as } \quad \frac{1}{N} \operatorname{tr}\left(\hat{\mathbf{R}}_{n}\right) \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }} \sigma^{2}
$$

- Notice that

$$
\mathbf{Y}_{n}=\left[\overrightarrow{\mathbf{y}}_{1}, \cdots, \overrightarrow{\mathbf{y}}_{n}\right] \quad \text { with } \quad \overrightarrow{\mathbf{y}}_{i} \sim \mathcal{C} N\left(0, \overrightarrow{\mathbf{h}}^{*}+\sigma^{2} \mathbf{I}_{N}\right)
$$

Sketched proof - I

- We are interested in the largest eigenvalue of the matrix model

$$
\frac{\frac{1}{n} \mathbf{Y}_{n} \mathbf{Y}_{n}^{*}}{\frac{1}{N} \operatorname{tr}\left(\hat{\mathbf{R}}_{n}\right)}
$$

asymptotically equivalent to

$$
\frac{1}{n} \frac{\mathbf{Y}_{n} \mathbf{Y}_{n}^{*}}{\sigma^{2}} \quad \text { as } \quad \frac{1}{N} \operatorname{tr}\left(\hat{\mathbf{R}}_{n}\right) \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }} \sigma^{2}
$$

- Notice that

$$
\mathbf{Y}_{n}=\left[\overrightarrow{\mathbf{y}}_{1}, \cdots, \overrightarrow{\mathbf{y}}_{n}\right] \quad \text { with } \quad \overrightarrow{\mathbf{y}}_{i} \sim \mathcal{C} N\left(0, \overrightarrow{\mathbf{h}}^{*}+\sigma^{2} \mathbf{I}_{N}\right)
$$

Hence

$$
\mathbf{Y}_{N}=\left(\overrightarrow{\mathbf{h}} \overrightarrow{\mathbf{h}}^{*}+\sigma^{2} \mathbf{I}_{N}\right)^{1 / 2} \mathbf{X}_{N}
$$

Sketched proof - I

- We are interested in the largest eigenvalue of the matrix model

$$
\frac{\frac{1}{n} \mathbf{Y}_{n} \mathbf{Y}_{n}^{*}}{\frac{1}{N} \operatorname{tr}\left(\hat{\mathbf{R}}_{n}\right)}
$$

asymptotically equivalent to

$$
\frac{1}{n} \frac{\mathbf{Y}_{n} \mathbf{Y}_{n}^{*}}{\sigma^{2}} \quad \text { as } \quad \frac{1}{N} \operatorname{tr}\left(\hat{\mathbf{R}}_{n}\right) \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }} \sigma^{2}
$$

- Notice that

$$
\mathbf{Y}_{n}=\left[\overrightarrow{\mathbf{y}}_{1}, \cdots, \overrightarrow{\mathbf{y}}_{n}\right] \quad \text { with } \quad \overrightarrow{\mathbf{y}}_{i} \sim \mathcal{C} N\left(0, \overrightarrow{\mathbf{h}}^{*}+\sigma^{2} \mathbf{I}_{N}\right)
$$

Hence

$$
\mathbf{Y}_{N}=\left(\overrightarrow{\mathbf{h}} \overrightarrow{\mathbf{h}}^{*}+\sigma^{2} \mathbf{I}_{N}\right)^{1 / 2} \mathbf{X}_{N} \Rightarrow \frac{\mathbf{Y}_{N}}{\sigma}=\left(\mathbf{I}_{N}+\frac{\overrightarrow{\mathbf{h}} \overrightarrow{\mathbf{h}}^{*}}{\sigma^{2}}\right)^{1 / 2} \mathbf{X}_{N}
$$

Sketched proof - I

- We are interested in the largest eigenvalue of the matrix model

$$
\frac{\frac{1}{n} \mathbf{Y}_{n} \mathbf{Y}_{n}^{*}}{\frac{1}{N} \operatorname{tr}\left(\hat{\mathbf{R}}_{n}\right)}
$$

asymptotically equivalent to

$$
\frac{1}{n} \frac{\mathbf{Y}_{n} \mathbf{Y}_{n}^{*}}{\sigma^{2}} \quad \text { as } \quad \frac{1}{N} \operatorname{tr}\left(\hat{\mathbf{R}}_{n}\right) \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }} \sigma^{2}
$$

- Notice that

$$
\mathbf{Y}_{n}=\left[\overrightarrow{\mathbf{y}}_{1}, \cdots, \overrightarrow{\mathbf{y}}_{n}\right] \quad \text { with } \quad \overrightarrow{\mathbf{y}}_{i} \sim \mathcal{C} N\left(0, \overrightarrow{\mathbf{h}}^{*}+\sigma^{2} \mathbf{I}_{N}\right)
$$

Hence

$$
\begin{aligned}
\mathbf{Y}_{N}=\left(\overrightarrow{\mathbf{h}} \overrightarrow{\mathbf{h}}^{*}+\sigma^{2} \mathbf{I}_{N}\right)^{1 / 2} \mathbf{X}_{N} \Rightarrow \frac{\mathbf{Y}_{N}}{\sigma} & =\left(\mathbf{I}_{N}+\frac{\overrightarrow{\mathbf{h}} \overrightarrow{\mathbf{h}}^{*}}{\sigma^{2}}\right)^{1 / 2} \mathbf{X}_{N} \\
& =\left(\mathbf{I}_{N}+\frac{\|\overrightarrow{\mathbf{h}}\|^{2}}{\sigma^{2}} \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}\right)^{1 / 2} \mathbf{X}_{N}
\end{aligned}
$$

with \mathbf{X}_{N} a $N \times n$ matrix having i.i.d. entries $\mathcal{C} N(0,1)$ and $\overrightarrow{\mathbf{u}}=\frac{\overrightarrow{\mathbf{h}}}{\|\overrightarrow{\mathbf{h}}\|}$

Sketched proof - I

- We are interested in the largest eigenvalue of the matrix model

$$
\frac{\frac{1}{n} \mathbf{Y}_{n} \mathbf{Y}_{n}^{*}}{\frac{1}{N} \operatorname{tr}\left(\hat{\mathbf{R}}_{n}\right)}
$$

asymptotically equivalent to

$$
\frac{1}{n} \frac{\mathbf{Y}_{n} \mathbf{Y}_{n}^{*}}{\sigma^{2}} \quad \text { as } \quad \frac{1}{N} \operatorname{tr}\left(\hat{\mathbf{R}}_{n}\right) \xrightarrow[N, n \rightarrow \infty]{\text { a.s. }} \sigma^{2}
$$

- Notice that

$$
\mathbf{Y}_{n}=\left[\overrightarrow{\mathbf{y}}_{1}, \cdots, \overrightarrow{\mathbf{y}}_{n}\right] \quad \text { with } \quad \overrightarrow{\mathbf{y}}_{i} \sim \mathcal{C} N\left(0, \overrightarrow{\mathbf{h}}^{*}+\sigma^{2} \mathbf{I}_{N}\right)
$$

Hence

$$
\begin{aligned}
\mathbf{Y}_{N}=\left(\overrightarrow{\mathbf{h}} \overrightarrow{\mathbf{h}}^{*}+\sigma^{2} \mathbf{I}_{N}\right)^{1 / 2} \mathbf{X}_{N} \Rightarrow \frac{\mathbf{Y}_{N}}{\sigma} & =\left(\mathbf{I}_{N}+\frac{\overrightarrow{\mathbf{h}} \overrightarrow{\mathbf{h}}^{*}}{\sigma^{2}}\right)^{1 / 2} \mathbf{X}_{N} \\
& =\left(\mathbf{I}_{N}+\frac{\|\overrightarrow{\mathbf{h}}\|^{2}}{\sigma^{2}} \overrightarrow{\mathbf{u}} \overrightarrow{\mathbf{u}}^{*}\right)^{1 / 2} \mathbf{X}_{N}
\end{aligned}
$$

with \mathbf{X}_{N} a $N \times n$ matrix having i.i.d. entries $\mathcal{C} N(0,1)$ and $\overrightarrow{\mathbf{u}}=\frac{\overrightarrow{\mathbf{h}}}{\|\mathbf{h}\|}$

Conclusion

Spectrum of $\frac{1}{n} \mathbf{Y}_{n} \mathbf{Y}_{n}^{*}$ follows a spiked model with rank-one perturbation

Elements of proof - II

We can now conclude:

Elements of proof - II

We can now conclude:

- If $\mathrm{snr}>\sqrt{c}$ then

$$
\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{tr}\left(\hat{\mathbf{R}}_{n}\right)} \xrightarrow[N, n \rightarrow \infty]{\left(H_{1}\right)}(1+\mathbf{s n r})\left(1+\frac{c}{\mathbf{s n r}}\right)>(1+\sqrt{c})^{2}
$$

and the test statistics discriminates between the hypotheses H_{0} and H_{1}.

Elements of proof - II

We can now conclude:

- If $\mathrm{snr}>\sqrt{c}$ then

$$
\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{tr}\left(\hat{\mathbf{R}}_{n}\right)} \xrightarrow[N, n \rightarrow \infty]{\left(H_{1}\right)}(1+\mathbf{s n r})\left(1+\frac{c}{\operatorname{snr}}\right)>(1+\sqrt{c})^{2}
$$

and the test statistics discriminates between the hypotheses H_{0} and H_{1}.

- If $\mathrm{snr} \leq \sqrt{c}$ then

$$
\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{tr}\left(\hat{\mathbf{R}}_{n}\right)} \xrightarrow[N, n \rightarrow \infty]{\left(H_{1}\right)}(1+\sqrt{c})^{2}
$$

Same limit as under H_{0}. The test statistics does not discriminate between the two hypotheses.

Outline

Quick introduction to random matrix theory

Large Covariance Matrices

Spiked models

Statistical Test for Single-Source Detection
The setup
Asymptotics of the GLRT
Fluctuations of the GLRT statistic
The GLRT: Summary

Applications to the MIMO channel

Fluctuations of the GLRT under H_{0} - I

- The exact distribution of the statistics

$$
L_{n}=\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_{n}}
$$

is needed to set the threshold of the test fo a given confidence level $\alpha \in(0,1)$:

$$
\mathbb{P}_{H_{0}}\left(L_{N}>\boldsymbol{t}_{\boldsymbol{\alpha}}\right)=\alpha,
$$

Fluctuations of the GLRT under H_{0} - I

- The exact distribution of the statistics

$$
L_{n}=\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_{n}}
$$

is needed to set the threshold of the test fo a given confidence level $\alpha \in(0,1)$:

$$
\mathbb{P}_{H_{0}}\left(L_{N}>\boldsymbol{t}_{\boldsymbol{\alpha}}\right)=\alpha,
$$

but hard to obtain.

Fluctuations of the GLRT under H_{0} - I

- The exact distribution of the statistics

$$
L_{n}=\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_{n}}
$$

is needed to set the threshold of the test fo a given confidence level $\alpha \in(0,1)$:

$$
\mathbb{P}_{H_{0}}\left(L_{N}>\boldsymbol{t}_{\boldsymbol{\alpha}}\right)=\alpha,
$$

but hard to obtain.

- We rather study the asymptotic fluctuations of L_{n} under the regime

$$
N, n \rightarrow \infty, \quad \frac{N}{n} \rightarrow c \in(0,1)
$$

Fluctuations of the GLRT under H_{0} - I

- The exact distribution of the statistics

$$
L_{n}=\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_{n}}
$$

is needed to set the threshold of the test fo a given confidence level $\alpha \in(0,1)$:

$$
\mathbb{P}_{H_{0}}\left(L_{N}>\boldsymbol{t}_{\boldsymbol{\alpha}}\right)=\alpha,
$$

but hard to obtain.

- We rather study the asymptotic fluctuations of L_{n} under the regime

$$
N, n \rightarrow \infty, \quad \frac{N}{n} \rightarrow c \in(0,1)
$$

- L_{N} is the ratio of two random variables. We need to understand

Fluctuations of the GLRT under H_{0} - I

- The exact distribution of the statistics

$$
L_{n}=\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_{n}}
$$

is needed to set the threshold of the test fo a given confidence level $\alpha \in(0,1)$:

$$
\mathbb{P}_{H_{0}}\left(L_{N}>\boldsymbol{t}_{\boldsymbol{\alpha}}\right)=\alpha,
$$

but hard to obtain.

- We rather study the asymptotic fluctuations of L_{n} under the regime

$$
N, n \rightarrow \infty, \quad \frac{N}{n} \rightarrow c \in(0,1)
$$

- L_{N} is the ratio of two random variables. We need to understand
- the fluctuations of $\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)$ under H_{0},

Fluctuations of the GLRT under H_{0} - I

- The exact distribution of the statistics

$$
L_{n}=\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_{n}}
$$

is needed to set the threshold of the test fo a given confidence level $\alpha \in(0,1)$:

$$
\mathbb{P}_{H_{0}}\left(L_{N}>\boldsymbol{t}_{\boldsymbol{\alpha}}\right)=\alpha,
$$

but hard to obtain.

- We rather study the asymptotic fluctuations of L_{n} under the regime

$$
N, n \rightarrow \infty, \quad \frac{N}{n} \rightarrow c \in(0,1)
$$

- L_{N} is the ratio of two random variables. We need to understand
- the fluctuations of $\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)$ under H_{0},
- the fluctuations of $\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_{n}$ under H_{0}.

Fluctuations of the GLRT under H_{0} - II

Fluctuations of $\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)$: Tracy-Widom distribution at rate $\boldsymbol{N}^{2 / 3}$

Fluctuations of the GLRT under H_{0} - II

Fluctuations of $\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)$: Tracy-Widom distribution at rate $N^{2 / 3}$

$$
\frac{N^{2 / 3}}{\Theta_{N}}\left\{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)-\sigma^{2}\left(1+\sqrt{c_{n}}\right)^{2}\right\} \xrightarrow[N, n \rightarrow \infty]{\mathcal{L}} \mathbb{P}_{\mathrm{TW}}
$$

Fluctuations of the GLRT under H_{0} - II

Fluctuations of $\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)$: Tracy-Widom distribution at rate $\boldsymbol{N}^{\mathbf{2 / 3}}$

$$
\frac{N^{2 / 3}}{\Theta_{N}}\left\{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)-\sigma^{2}\left(1+\sqrt{c_{n}}\right)^{2}\right\} \xrightarrow[N, n \rightarrow \infty]{\mathcal{L}} \mathbb{P}_{\mathrm{TW}}
$$

where

$$
c_{n}=\frac{N}{n} \quad \text { and } \quad \Theta_{N}=\sigma^{2}\left(1+\sqrt{c_{n}}\right)\left(\frac{1}{\sqrt{c_{n}}}+1\right)^{1 / 3}
$$

Fluctuations of the GLRT under H_{0} - II

Fluctuations of $\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)$: Tracy-Widom distribution at rate $\boldsymbol{N}^{\mathbf{2 / 3}}$

$$
\frac{N^{2 / 3}}{\Theta_{N}}\left\{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)-\sigma^{2}\left(1+\sqrt{c_{n}}\right)^{2}\right\} \xrightarrow[N, n \rightarrow \infty]{\mathcal{L}} \mathbb{P}_{\mathrm{TW}}
$$

where

$$
c_{n}=\frac{N}{n} \quad \text { and } \quad \Theta_{N}=\sigma^{2}\left(1+\sqrt{c_{n}}\right)\left(\frac{1}{\sqrt{c_{n}}}+1\right)^{1 / 3}
$$

Otherwise stated,

$$
\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)=\sigma^{2}\left(1+\sqrt{c_{n}}\right)^{2}+\frac{\Theta_{N}}{N^{2 / 3}} \boldsymbol{X}_{T W}+o_{P}\left(N^{-2 / 3}\right)
$$

where $\boldsymbol{X}_{T W}$ is a random variable with Tracy-Widom distribution.

Details on Tracy-Widom distribution

Tracy-Widom distribution is defined by

- its cumulative distribution function

$$
F_{T W}(x)=\exp \left\{-\int_{x}^{\infty}(u-x)^{2} q^{2}(u) d u\right\}
$$

- where

$$
q^{\prime \prime}(x)=x q(x)+2 q^{3}(x) \quad \text { and } \quad q(x) \sim \mathrm{Ai}(x) \text { as } x \rightarrow \infty .
$$

$x \mapsto \operatorname{Ai}(x)$ being the Airy function.

Details on Tracy-Widom distribution

Tracy-Widom distribution is defined by

- its cumulative distribution function

$$
F_{T W}(x)=\exp \left\{-\int_{x}^{\infty}(u-x)^{2} q^{2}(u) d u\right\}
$$

- where

$$
q^{\prime \prime}(x)=x q(x)+2 q^{3}(x) \quad \text { and } \quad q(x) \sim \mathrm{Ai}(x) \text { as } x \rightarrow \infty .
$$

$x \mapsto \operatorname{Ai}(x)$ being the Airy function.

Don't bother .. just download it

- For simulations, cf. R Package 'RMTstat', by Johnstone et al.
- Also, Folkmar Bornemann (TU München) has developed fast matlab code

Tracy-Widom curve

Figure: Tracy-Widom density

Tracy-Widom curve

Marchenko-Pastur and Tracy-Widom Distributions

Figure: Fluctuations of the largest eigenvalue $\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)$ under H_{0}

Fluctuations of the GLRT under H_{0} - III

Fluctuations of $\frac{1}{N} \operatorname{tr}\left(\hat{\mathbf{R}}_{n}\right)$: Gaussian distributions at rate N

$$
N\left\{\frac{1}{N} \sum_{i=1}^{N} \lambda_{i}\left(\hat{\mathbf{R}}_{n}\right)-\sigma^{2}\right\} \underset{N, n \rightarrow \infty}{\mathcal{L}} \mathcal{N}(0, \Gamma)
$$

Fluctuations of the GLRT under H_{0} - III

Fluctuations of $\frac{1}{N} \operatorname{tr}\left(\hat{\mathbf{R}}_{n}\right)$: Gaussian distributions at rate \boldsymbol{N}

$$
N\left\{\frac{1}{N} \sum_{i=1}^{N} \lambda_{i}\left(\hat{\mathbf{R}}_{n}\right)-\sigma^{2}\right\} \underset{N, n \rightarrow \infty}{\mathcal{L}} \mathcal{N}(0, \Gamma)
$$

Otherwise stated:

$$
\frac{1}{N} \operatorname{tr}\left(\hat{\mathbf{R}}_{n}\right)=\frac{1}{N} \sum_{i=1}^{N} \lambda_{i}\left(\hat{\mathbf{R}}_{n}\right)=\sigma^{2}+\frac{\sqrt{\Gamma}}{N} \boldsymbol{Z}+o_{P}\left(N^{-1}\right)
$$

where Z is a random variable with distribution $\mathcal{N}(0,1)$.

Fluctuations of the GLRT under H_{0} - IV

Conclusion

- Fluctuations of $L_{n}=\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_{n}}$ are driven by $\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)$:

$$
\frac{N^{2 / 3}}{\widetilde{\Theta}_{N}}\left\{L_{N}-\left(1+\sqrt{c_{n}}\right)^{2}\right\} \xrightarrow[N, n \rightarrow \infty]{\mathcal{L}} \mathbb{P}_{\mathrm{TW}} \quad \text { with } \quad \widetilde{\Theta}_{N}=\left(1+\sqrt{c_{n}}\right)\left(\frac{1}{\sqrt{c_{n}}}+1\right)^{1 / 3}
$$

Fluctuations of the GLRT under H_{0} - IV

Conclusion

- Fluctuations of $L_{n}=\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_{n}}$ are driven by $\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)$:

$$
\frac{N^{2 / 3}}{\widetilde{\Theta}_{N}}\left\{L_{N}-\left(1+\sqrt{c_{n}}\right)^{2}\right\} \xrightarrow[N, n \rightarrow \infty]{\mathcal{L}} \mathbb{P}_{\mathrm{TW}} \quad \text { with } \quad \widetilde{\Theta}_{N}=\left(1+\sqrt{c_{n}}\right)\left(\frac{1}{\sqrt{c_{n}}}+1\right)^{1 / 3}
$$

- In order to set the threshold α, we choose t_{α}^{n} as

$$
\boldsymbol{t}_{\boldsymbol{\alpha}}^{\boldsymbol{n}}=\left(1+\sqrt{c_{n}}\right)^{2}+\frac{\widetilde{\Theta}_{N}}{N^{2 / 3}} \boldsymbol{t}_{\boldsymbol{\alpha}}^{\text {Tracy-Widom }}
$$

where $t_{\alpha}^{\text {Tracy-Widom }}$ is the corresponding quantile for a Tracy-Widom random variable:

$$
\mathbb{P}\left\{\boldsymbol{X}_{T W}>\boldsymbol{t}_{\boldsymbol{\alpha}}^{\text {Tracy-Widom }}\right\} \leq \alpha .
$$

Outline

```
Quick introduction to random matrix theory
Large Covariance Matrices
Spiked models
```

Statistical Test for Single-Source Detection
The setup
Asymptotics of the GLRT
Fluctuations of the GLRT statistic
The GLRT: Summary

Applications to the MIMO channel

Summary

- Consider the following hypothesis

$$
\overrightarrow{\mathbf{y}}(k)=\left\{\begin{array}{ll}
\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} s(k)+\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{1}
\end{array} \quad \text { for } k=1: n\right.
$$

Summary

- Consider the following hypothesis

$$
\overrightarrow{\mathbf{y}}(k)=\left\{\begin{array}{ll}
\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} s(k)+\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{1}
\end{array} \quad \text { for } k=1: n\right.
$$

then the GLRT amounts to study

$$
T_{n}=\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_{n}}
$$

Summary

- Consider the following hypothesis

$$
\overrightarrow{\mathbf{y}}(k)=\left\{\begin{array}{ll}
\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} s(k)+\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{1}
\end{array} \quad \text { for } k=1: n\right.
$$

then the GLRT amounts to study

$$
T_{n}=\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_{n}}
$$

- The test statistics T_{n} discriminates between H_{0} and H_{1} if $\operatorname{snr}=\frac{\|\overrightarrow{\mathbf{h}}\|^{2}}{\sigma^{2}}>\sqrt{c}$

Summary

- Consider the following hypothesis

$$
\overrightarrow{\mathbf{y}}(k)=\left\{\begin{array}{ll}
\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} s(k)+\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{1}
\end{array} \quad \text { for } k=1: n\right.
$$

then the GLRT amounts to study

$$
T_{n}=\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_{n}}
$$

- The test statistics T_{n} discriminates between H_{0} and H_{1} if $\operatorname{snr}=\frac{\|\overrightarrow{\mathbf{h}}\|^{2}}{\sigma^{2}}>\sqrt{c}$
- The threshold can be asymptotically determined by Tracy-Widom quantiles.
- Consider the following hypothesis

$$
\overrightarrow{\mathbf{y}}(k)=\left\{\begin{array}{ll}
\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{0} \\
\overrightarrow{\mathbf{h}} s(k)+\sigma \overrightarrow{\mathbf{w}}(k) & \text { under } H_{1}
\end{array} \quad \text { for } k=1: n\right.
$$

then the GLRT amounts to study

$$
T_{n}=\frac{\lambda_{\max }\left(\hat{\mathbf{R}}_{n}\right)}{\frac{1}{N} \operatorname{tr} \hat{\mathbf{R}}_{n}}
$$

- The test statistics T_{n} discriminates between H_{0} and H_{1} if $\operatorname{snr}=\frac{\|\overrightarrow{\mathbf{h}}\|^{2}}{\sigma^{2}}>\sqrt{c}$
- The threshold can be asymptotically determined by Tracy-Widom quantiles.
- The type II error (equivalentlty power of the test) can be analyzed via the error exponent of the test

$$
\mathcal{E}=\lim _{N, n \rightarrow \infty}-\frac{1}{n} \log \mathbb{P}_{H_{1}}\left(L_{N}<\boldsymbol{t}_{\boldsymbol{\alpha}}\right)
$$

Outline

```
Quick introduction to random matrix theory
Large Covariance Matrices
Spiked models
Statistical Test for Single-Source Detection
```

Applications to the MIMO channel

MIMO channel

MIMO = Multiple Input Multiple Output

It is a channel with multiple antennas at the emission and reception

- The received signal writes: $\overrightarrow{\mathrm{y}}=\mathbf{H} \overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{v}}$ where
$\triangleright \overrightarrow{\mathrm{x}}$ is the signal that is sent,
$\triangleright \overrightarrow{\mathrm{v}}$ is an additive gaussian white noise with variance σ^{2},
$\triangleright \mathrm{H}$ is the random gain matrix. Its distribution is associated to the features of the channel.
$\triangleright \vec{y}$ is the received signal.

Features of the Gain matrix \mathbf{H}

- The entry $[\mathbf{H}]_{i j}$ represents the gain between emitting antenna j and receiving antenna i.
- The gain matrix \mathbf{H} is random.
- The distribuon of \mathbf{H} depends on the nature of the channel:
\triangleright Absence of correlation between antennas

$$
\mathbf{H}=\frac{1}{\sqrt{K}} \mathbf{X} \quad[\mathbf{X}]_{i j} \text { à entrées i.i.d., variance } \theta^{2}
$$

\triangleright Correlation between emitting antennas $\left(\tilde{\mathrm{D}}^{1 / 2}\right)$ and receiving antennas $\left(\mathrm{D}^{1 / 2}\right)$

$$
\mathbf{H}=\frac{1}{\sqrt{K}} \mathbf{D}^{1 / 2} \mathbf{X} \tilde{\mathbf{D}}^{1 / 2} \quad \text { (Rayleigh channel) }
$$

\triangleright Existence of a line-of-sight component (matrix A deterministic) + correlations

$$
\mathbf{H}=\frac{1}{\sqrt{K}} \mathbf{D}^{1 / 2} \mathbf{X} \tilde{\mathbf{D}}^{1 / 2}+\mathbf{A} \quad \text { (Rice channel) }
$$

Performances

- Shannon's mutual information (per antenna)

$$
\mathcal{I}=\frac{1}{N} \log \operatorname{det}\left(\mathbf{I}+\frac{\mathbf{H H}^{*}}{\sigma^{2}}\right)=\frac{1}{N} \sum_{i=1}^{N} \log \left(1+\frac{\lambda_{i}\left(\mathbf{H H}^{*}\right)}{\sigma^{2}}\right)
$$

\Rightarrow depends on the spectrum of matrix $\mathbf{H H}^{*}$.

- Ergodic Mutual Information:

$$
\mathcal{I}^{\mathrm{e}}=\mathbb{E} \mathcal{I}
$$

- Ergodic capacity:

$$
\sup _{\mathbf{Q} \geq 0, \frac{1}{K} \operatorname{tr} \mathbf{Q} \leq 1} \mathbb{E} \log \operatorname{det}\left(I+\frac{\mathbf{H Q H}^{*}}{\sigma^{2}}\right)
$$

\triangleright Regime of interest:
$\{\#$ emitting antennas $\} \propto\{\#$ receiving antennas $\}$

Questions

\triangleright Behaviour of the empirical measure of the eigenvalues:

$$
L_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i}\left(\mathbf{H H}^{*}\right)}
$$

\triangleright Explicit expression for the logdet:

$$
\frac{1}{N} \log \operatorname{det}\left(I+\frac{\mathbf{H H}^{*}}{\sigma^{2}}\right)=\frac{1}{N} \sum_{i=1}^{N} \log \left(1+\frac{\lambda_{i} \mathbf{H} \mathbf{H}^{*}}{\sigma^{2}}\right)
$$

\triangleright Fluctuations?
\triangleright Ergodic capacity \Rightarrow Optimisation?

- Asymptotic regime: $N \propto K$. Formally

$$
N, K \rightarrow \infty, \quad \frac{N}{K} \rightarrow c \in(0, \infty)
$$

It's the asymptotic regime of large random matrices.

Empirical measure: the white case

Channel \mathbf{H} with i.i.d. entries

- Marčenko-Pastur Stieltjes transform $g(z)=\int \frac{\mu_{\mathrm{MP}}(d \lambda)}{\lambda-z}$ satisfies:

$$
z c \theta^{2} g^{2}(z)+\left(z+(c-1) \theta^{2}\right) g(z)+1=0 .
$$

- Convergence of the mutual information:

$$
\begin{aligned}
& \mathcal{I} \quad \frac{1}{N} \log \operatorname{det}\left(I+\frac{\mathbf{H H}^{*}}{\sigma^{2}}\right)=\frac{1}{N} \sum_{i=1}^{N} \log \left(1+\frac{\lambda_{i}\left(\mathbf{H H}^{*}\right)}{\sigma^{2}}\right) \\
& \longrightarrow \quad \mathcal{I}_{\text {approx }} \triangleq \int \log \left(1+\frac{x}{\sigma^{2}}\right) \mu_{\mathrm{MP}}(d x) \\
&=\int_{\sigma^{2}}^{\infty}\left(\frac{1}{w}-g(-w)\right) d w
\end{aligned}
$$

- Explicit formula for the limit:

$$
\mathcal{I}_{\text {approx }}=-\log \sigma^{2} g\left(-\sigma^{2}\right)+\frac{1}{c} \log \left(\frac{1+c \theta^{2} g\left(-\sigma^{2}\right)}{\sigma^{2}}\right)-\frac{\theta^{2} g\left(-\sigma^{2}\right)}{1+c \theta^{2} g\left(-\sigma^{2}\right)}
$$

- Important results:

1. $\mathbb{E} \log \operatorname{det}\left(I+\frac{\mathbf{H H}^{*}}{\sigma^{2}}\right) \propto \min (N, K)$
2. Speed of convergence [for Gaussian entries]: $\mathcal{I}^{\mathrm{e}}-\mathcal{I}_{\text {approx }}=\mathcal{O}\left(\frac{1}{N^{2}}\right)$

Rice channel

The gain matrix writes in this case:

$$
\mathbf{H}=\frac{1}{\sqrt{K}} \mathbf{D}^{1 / 2} \mathbf{X} \tilde{\mathbf{D}}^{1 / 2}+\mathbf{A}
$$

- We have again $\mathcal{I}^{\mathrm{e}}-\mathcal{I}_{\text {approx }}^{\mathrm{e}} \rightarrow 0$ where

$$
\begin{aligned}
\mathcal{I}_{\text {approx }}^{\mathrm{e}}=\frac{1}{N} \log \operatorname{det}\left[\mathbf{I}+\tilde{\delta} \mathbf{D}+\frac{\mathbf{1}}{\sigma^{2}} \mathbf{A}(\mathbf{I}+\right. & \left.\delta \tilde{\mathbf{D}})^{-\mathbf{1}} \mathbf{A}^{*}\right] \\
& +\frac{1}{N} \log \operatorname{det}(\mathbf{I}+\delta \tilde{\mathbf{D}})-\frac{\sigma^{2} n}{N} \delta \tilde{\delta}
\end{aligned}
$$

and $\left(\delta_{n}, \tilde{\delta}_{n}\right)$ unique solutions of the system:

$$
\begin{aligned}
\delta & =\frac{1}{n} \operatorname{tr}\left[\mathbf{D}\left(-z(\mathbf{I}+\tilde{\delta} \mathbf{D})+\mathbf{A}(\mathbf{I}+\delta \tilde{\mathbf{D}})^{-\mathbf{1}} \mathbf{A}^{*}\right)^{-1}\right] \\
\tilde{\delta} & =\frac{1}{n} \operatorname{tr}\left[\tilde{\mathbf{D}}\left(-z(\mathbf{I}+\delta \tilde{\mathbf{D}})+\mathbf{A}^{*}(\mathbf{I}+\tilde{\delta} \mathbf{D})^{-\mathbf{1}} \mathbf{A}\right)^{-1}\right]
\end{aligned}
$$

- moreover, $\mathcal{I}-\mathcal{I}_{\text {approx }}=\mathcal{O}\left(\frac{1}{N^{2}}\right)$ for Gaussian entries

Ergodic capacity and precoding

MIMO channel with precoding
\triangleright The channel becomes $\mathrm{HQ}^{1 / 2}$, mutual information becomes

$$
\mathcal{I}^{\mathrm{e}}(\mathbf{Q})=\frac{1}{N} \mathbb{E} \log \operatorname{det}\left(\mathbf{I}_{N}+\frac{\mathbf{H Q H}^{*}}{\sigma^{2}}\right)
$$

\triangleright We can still compute a "large random matrix" approximation

$$
\begin{aligned}
\mathcal{I}_{\text {approx }}^{\mathrm{e}}= & \mathcal{I}_{\text {approx }}^{\mathrm{e}}(\mathbf{Q}) \\
= & \frac{1}{N} \log \operatorname{det}\left[\mathbf{I}+\tilde{\delta} \mathbf{D}+\frac{\mathbf{1}}{\sigma^{\mathbf{2}}} \mathbf{A} \mathbf{Q}^{\mathbf{1 / 2}}(\mathbf{I}+\delta \tilde{\mathbf{D}} \mathbf{Q})^{-\mathbf{1}} \mathbf{Q}^{\mathbf{1 / 2}} \mathbf{A}^{*}\right] \\
& +\frac{1}{N} \log \operatorname{det}(\mathbf{I}+\delta \tilde{\mathbf{D}} \mathbf{Q})-\frac{\sigma^{2} n}{N} \delta \tilde{\delta}
\end{aligned}
$$

Ergodic capacity

The ergodic capacity is obtained by optimizing the mutual information with respect to linear precoders $Q^{1 / 2}$ with finite energy:

$$
C=\sup _{\mathbf{Q} \geq 0 ; \frac{1}{K} \operatorname{Tr} \mathbf{Q} \leq 1} \frac{1}{K} \mathbb{E} \log \operatorname{det}\left(\mathbf{I}_{N}+\frac{\mathbf{H Q H}^{*}}{\sigma^{2}}\right)
$$

Approximating problem

Consider the following approximating problem:

$$
C_{\text {approx }}=\sup _{\mathbf{Q} \geq 0 ; \frac{1}{K} \operatorname{Tr} \mathbf{Q} \leq 1} \mathcal{I}_{\text {approx }}^{\mathrm{e}}(\mathbf{Q})
$$

Results

1. We have $C-C_{\text {approx }} \rightarrow 0$
2. $\mathbf{Q}^{*}=\arg \max \mathcal{I}^{\mathbf{e}}(\mathbf{Q})$ close to $\mathbf{Q}_{\text {approx }}^{*}=\arg \max \mathcal{I}_{\text {approx }}^{\mathbf{e}}(\mathbf{Q})$
3. Exists an iterative algorithm (i.e. quick) to compute $C_{\text {approx }}$ and $\mathbf{Q}^{*}{ }_{\text {approx }}$

Simulations

- The iterative algorithm outperforms Paulraj \& Vu algorithm with respect to the complexity (average time per iterations - in s):

	$N=n=2$	$N=n=4$	$N=n=8$
Paulraj-Vu	0.75	8.2	138
iterative algo.	10^{-2}	3.10^{-2}	7.10^{-2}

Figure : Comparing with Vu \& Paulraj algorithm

