Partition-Symmetrical Entropy Functions

Qi Chen joint work with Raymond W. Yeung
Institute of Network Coding
The Chinese University of Hong Kong

CAM 2016, HKU
August 24, 2016

Entropy region Γ_{n}^{*}

Entropy function

- $\mathcal{N}=\{1,2, \cdots, n\}$
- $\mathcal{N}=\{1,2,3,4\}$,

Entropy region 「* ${ }_{n}^{*}$

Entropy function

- $\mathcal{N}=\{1,2, \cdots, n\}$
- $\mathbf{X}_{\mathcal{N}}=\left(X_{i}: i \in \mathcal{N}\right)$,
$X_{\mathcal{A}}=\left(X_{i}, i \in \mathcal{A}\right)$,
$\mathcal{A} \subset \mathcal{N}$
- $\mathcal{N}=\{1,2,3,4\}$,
- $\mathbf{X}_{\{1,2,3,4\}}=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$, $X_{23}=\left(X_{2}, X_{3}\right)$,

Entropy region Γ_{n}^{*}

Entropy function

- $\mathcal{N}=\{1,2, \cdots, n\}$
- $\mathbf{X}_{\mathcal{N}}=\left(X_{i}: i \in \mathcal{N}\right)$, $X_{\mathcal{A}}=\left(X_{i}, i \in \mathcal{A}\right)$, $\mathcal{A} \subset \mathcal{N}$
- entropy function h: $2^{\mathcal{N}} \rightarrow \mathbb{R}$, $\mathbf{h}(\mathcal{A}) \triangleq H\left(X_{\mathcal{A}}\right), \forall \mathcal{A} \subset$ \mathcal{N} with $H\left(X_{\emptyset}\right)=0$.
- $\mathcal{N}=\{1,2,3,4\}$,
- $\mathbf{X}_{\{1,2,3,4\}}=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$, $X_{23}=\left(X_{2}, X_{3}\right)$,
- $\mathbf{h}=$
$\left(0, H\left(X_{1}\right), \cdots, H\left(X_{4}\right), H\left(X_{12}\right)\right.$,
$\left.\cdots, H\left(X_{34}\right), \cdots, H\left(X_{1234}\right)\right)$

Entropy region Γ_{n}^{*}

Entropy function

- $\mathcal{N}=\{1,2, \cdots, n\}$
- $\mathbf{X}_{\mathcal{N}}=\left(X_{i}: i \in \mathcal{N}\right)$, $X_{\mathcal{A}}=\left(X_{i}, i \in \mathcal{A}\right)$, $\mathcal{A} \subset \mathcal{N}$
- entropy function h: $2^{\mathcal{N}} \rightarrow \mathbb{R}$, $\mathbf{h}(\mathcal{A}) \triangleq H\left(X_{\mathcal{A}}\right), \forall \mathcal{A} \subset$ \mathcal{N} with $H\left(X_{\emptyset}\right)=0$.
- entropy space

$$
\mathcal{H}_{n} \triangleq \mathbb{R}^{2^{\mathcal{N}}}
$$

- $\mathcal{N}=\{1,2,3,4\}$,
- $\mathbf{X}_{\{1,2,3,4\}}=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$, $X_{23}=\left(X_{2}, X_{3}\right)$,
- $\mathbf{h}=$
$\left(0, H\left(X_{1}\right), \cdots, H\left(X_{4}\right), H\left(X_{12}\right)\right.$,
$\left.\cdots, H\left(X_{34}\right), \cdots, H\left(X_{1234}\right)\right)$
- $\mathcal{H}_{4} \triangleq \mathbb{R}^{2^{\{1,2,3,4\}}}$

Entropy region Γ_{n}^{*}

Entropy function

- $\mathcal{N}=\{1,2, \cdots, n\}$
- $\mathbf{X}_{\mathcal{N}}=\left(X_{i}: i \in \mathcal{N}\right)$, $X_{\mathcal{A}}=\left(X_{i}, i \in \mathcal{A}\right)$,
$\mathcal{A} \subset \mathcal{N}$
- entropy function $\mathbf{h}: 2^{\mathcal{N}} \rightarrow \mathbb{R}$, $\mathbf{h}(\mathcal{A}) \triangleq H\left(X_{\mathcal{A}}\right), \forall \mathcal{A} \subset$ \mathcal{N} with $H\left(X_{\emptyset}\right)=0$.
- entropy space

$$
\mathcal{H}_{n} \triangleq \mathbb{R}^{2^{N}}
$$

- $\mathcal{N}=\{1,2,3,4\}$,
- $\mathbf{X}_{\{1,2,3,4\}}=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$, $X_{23}=\left(X_{2}, X_{3}\right)$,
- $\mathbf{h}=$
$\left(0, H\left(X_{1}\right), \cdots, H\left(X_{4}\right), H\left(X_{12}\right)\right.$,
$\left.\cdots, H\left(X_{34}\right), \cdots, H\left(X_{1234}\right)\right)$
- $\mathcal{H}_{4} \triangleq \mathbb{R}^{2^{\{1,2,3,4\}}}$

Entropy region: Γ_{n}^{*}
$\Gamma_{n}^{*} \triangleq\left\{\mathbf{h} \in \mathcal{H}_{n} \mid \exists \mathbf{X}_{\mathcal{N}}, \mathbf{h}\right.$ is the entropy function of $\left.\mathbf{X}_{\mathcal{N}}\right\}$.

Subjects Related to Γ_{n}^{*}

Γ_{n}^{*} and Γ_{n}

Shannon-type inequalities
For any $\mathcal{A}, \mathcal{B} \subset \mathcal{N}$,

$$
\begin{aligned}
H\left(X_{\mathcal{A}}\right) & \geq 0, \\
H\left(X_{\mathcal{A}}\right) & \leq H\left(X_{\mathcal{B}}\right) \text { if } \mathcal{A} \subset \mathcal{B}, \\
H\left(X_{\mathcal{A}}\right)+H\left(X_{\mathcal{B}}\right) & \geq H\left(X_{\mathcal{A} \cap \mathcal{B}}\right)+H\left(X_{\mathcal{A} \cup \mathcal{B}}\right) .
\end{aligned}
$$

Γ_{n}^{*} and Γ_{n}

Shannon-type inequalities
For any $\mathcal{A}, \mathcal{B} \subset \mathcal{N}$,

$$
\begin{aligned}
H\left(X_{\mathcal{A}}\right) & \geq 0 \\
H\left(X_{\mathcal{A}}\right) & \leq H\left(X_{\mathcal{B}}\right) \text { if } \mathcal{A} \subset \mathcal{B} \\
H\left(X_{\mathcal{A}}\right)+H\left(X_{\mathcal{B}}\right) & \geq H\left(X_{\mathcal{A} \cap \mathcal{B}}\right)+H\left(X_{\mathcal{A} \cup \mathcal{B}}\right) .
\end{aligned}
$$

Polymatroidal region: Γ_{n}

$$
\begin{aligned}
\Gamma_{n} \triangleq\left\{\mathbf{h} \in \mathcal{H}_{n}:\right. & \mathbf{h}(\mathcal{A}) \geq 0 \\
& \mathbf{h}(\mathcal{A}) \leq \mathbf{h}(\mathcal{B}), \quad \text { if } \mathcal{A} \subset \mathcal{B} \\
& \mathbf{h}(\mathcal{A})+\mathbf{h}(\mathcal{B}) \geq \mathbf{h}(\mathcal{A} \cap \mathcal{B})+\mathbf{h}(\mathcal{A} \cup \mathcal{B})\}
\end{aligned}
$$

Γ_{n}^{*} and Γ_{n}

Relations between Γ_{n}^{*} and Γ_{n}
$-\Gamma_{n}^{*} \subset \Gamma_{n},[$ Fujishige 78]

- $\Gamma_{2}^{*}=\Gamma_{2}$,
- $\Gamma_{3}^{*} \subsetneq \Gamma_{3}$, but $\overline{\Gamma_{3}^{*}}=\Gamma_{3}$, Zhhang and Yeung 97, Matúš 06, Chen and Yeung 12]
- $\overline{\Gamma_{n}^{*}}=\Gamma_{n}, n \leq 3$,
- $\overline{\Gamma_{n}^{*}} \subsetneq \Gamma_{n}, n \geq 4$, due to the existence of non-Shannon-type information inequalities.[Zhang and Yeung 98]

Γ_{n}^{*} and Γ_{n}

non-Shannon-type inequalities

- Z. Zhang and R. W. Yeung, On characterization of entropy function via information inequalities, IEEE Trans. Inform. Theory, vol. 44, pp. 1440-1452, Nov. 1998.

Γ_{n}^{*} and Γ_{n}

non-Shannon-type inequalities

- Z. Zhang and R. W. Yeung, On characterization of entropy function via information inequalities, IEEE Trans. Inform. Theory, vol. 44, pp. 1440-1452, Nov. 1998.
- X. Yan, R. W. Yeung and Z. Zhang, A class of non-Shannon type information inequalities and their applications, IEEE Int. Symp. Inf. Theory, Washington DC, June 2001.
- R. Doughterty, C. Freiling and K. Zeger, Six new non-Shannon information inequalities, IEEE Int. Symp. Inf. Theory, Seattle WA June 2006.

Γ_{n}^{*} and Γ_{n}

non-Shannon-type inequalities

- Z. Zhang and R. W. Yeung, On characterization of entropy function via information inequalities, IEEE Trans. Inform. Theory, vol. 44, pp. 1440-1452, Nov. 1998.
- X. Yan, R. W. Yeung and Z. Zhang, A class of non-Shannon type information inequalities and their applications, IEEE Int. Symp. Inf. Theory, Washington DC, June 2001.
- R. Doughterty, C. Freiling and K. Zeger, Six new non-Shannon information inequalities, IEEE Int. Symp. Inf. Theory, Seattle WA June 2006.
- F. Matúš, Infinitely many information inequalities, IEEE Int. Symp. Inf. Theory, Nice, France, June 2007.

Partition-symmetrical entropy functions and their applications to secrect-sharing ${ }^{1}$

${ }^{1}$ Q. Chen and R. W. Yeung, "Partition-Symmetrical Entropy functions," to appear in IEEE Transactions on Information Theory.

Permutation groups and partition groups

Permutation group

- Permutation σ : A bijection from $\mathcal{N}=\{1, \cdots, n\}$ to \mathcal{N} itself
- Symmetric group S_{n} :The set of all permutations with composition being the binary operation
- Permutation group Σ : Any subgroup of the symmetric group.

Permutation groups and partition groups

Permutation group

- Permutation σ : A bijection from $\mathcal{N}=\{1, \cdots, n\}$ to \mathcal{N} itself
- Symmetric group S_{n} :The set of all permutations with composition being the binary operation
- Permutation group Σ : Any subgroup of the symmetric group.

Partition group

- Partition p of \mathcal{N} : A set of disjoint subset $\left\{\mathcal{N}_{1}, \cdots, \mathcal{N}_{t}\right\}$ such that $\cup_{i=1}^{t} \mathcal{N}_{i}=\mathcal{N}$. Each \mathcal{N}_{i} is called a block of p.
- Partition group Σ_{p} : A permutation group whose members are all permutations that permute the members of \mathcal{N} within the same block of p, i.e.,

$$
\Sigma_{p}=\left\{\sigma \in \Sigma_{n}: \sigma(j) \in \mathcal{N}_{i}, j \in \mathcal{N}_{i}, i=1, \cdots, t\right\}
$$

Group actions

Definition (Group action)

For a set \mathcal{S}, a group Σ acts on \mathcal{S} if there exist a function
$\Sigma \times \mathcal{S} \rightarrow \mathcal{S}$, called an action, denoted by $(\sigma, s) \mapsto \sigma s$, such that

1. $\left(\sigma_{1} \sigma_{2}\right) s=\sigma_{1}\left(\sigma_{2} s\right)$ for all $\sigma_{1}, \sigma_{2} \in \Sigma$ and $s \in \mathcal{S}$;
2. $1 s=s$ for all $s \in \mathcal{S}$, where 1 is the identity of Σ.

Group actions

Definition (Group action)

For a set \mathcal{S}, a group Σ acts on \mathcal{S} if there exist a function
$\Sigma \times \mathcal{S} \rightarrow \mathcal{S}$, called an action, denoted by $(\sigma, s) \mapsto \sigma s$, such that

1. $\left(\sigma_{1} \sigma_{2}\right) s=\sigma_{1}\left(\sigma_{2} s\right)$ for all $\sigma_{1}, \sigma_{2} \in \Sigma$ and $s \in \mathcal{S}$;
2. $1 s=s$ for all $s \in \mathcal{S}$, where 1 is the identity of Σ.

Group action $\Sigma \times \mathcal{H}_{n} \rightarrow \mathcal{H}_{n}$
For any $\sigma \in S_{n}$, define $\sigma: \mathcal{H}_{n} \rightarrow \mathcal{H}_{n}$ by

$$
\sigma(\mathbf{h})(\mathcal{A})=\mathbf{h}(\sigma(\mathcal{A})), \mathcal{A} \subset \mathcal{N}
$$

- $\sigma \times \mathbf{h} \mapsto \sigma(\mathbf{h})$ defines a group action S_{n} on \mathcal{H}_{n}
- Restricted the on a subgroup Σ, it becomes a group action Σ on \mathcal{H}_{n}.

$$
\mathbf{h}(\{2\}) \uparrow \begin{aligned}
& S_{2}=\{e,(12)\} \\
& \mathbf{h}_{1} \\
& \bullet \\
& \bullet \mathbf{h}_{2}=\sigma\left(\mathbf{h}_{1}\right), \sigma=(12) \\
& \mathbf{h}(\{1\})
\end{aligned}
$$

Fixed set

Definition
If a group Σ acts on \mathcal{S}, the fixed set of the action is defined by

$$
\operatorname{fix}_{\Sigma}=\{s \in \mathcal{S}: \sigma s=s, \forall \sigma \in \Sigma\} .
$$

Fixed set

Definition

If a group Σ acts on \mathcal{S}, the fixed set of the action is defined by

$$
\operatorname{fix}_{\Sigma}=\{s \in \mathcal{S}: \sigma s=s, \forall \sigma \in \Sigma\} .
$$

Fix set of the partition group acting on \mathcal{H}_{n}

$$
\begin{aligned}
\operatorname{fix}_{p}=\operatorname{fix}_{\Sigma_{p}}= & \left\{\mathbf{h} \in \mathcal{H}_{n}: \mathbf{h}(\mathcal{A})=\mathbf{h}(\mathcal{B})\right. \\
& \text { if } \left.\left|\mathcal{A} \cap \mathcal{N}_{\boldsymbol{i}}\right|=\left|\mathcal{B} \cap \mathcal{N}_{i}\right|, \forall i=1, \cdots, t\right\} .
\end{aligned}
$$

Main theorem

Constraining Γ_{n}^{*} and Γ_{n} by fix ${ }_{p}$, we obtain the p-symmetrical entropy region

$$
\Psi_{p}^{*}=\Gamma_{n}^{*} \cap \mathrm{fix}_{p}
$$

and p-symmetrical polymatroidal region

$$
\Psi_{p}=\Gamma_{n} \cap \operatorname{fix}_{p}
$$

respectively.

Main theorem

Constraining Γ_{n}^{*} and Γ_{n} by fix ${ }_{p}$, we obtain the p-symmetrical entropy region

$$
\Psi_{p}^{*}=\Gamma_{n}^{*} \cap \mathrm{fix}_{p}
$$

and p-symmetrical polymatroidal region

$$
\Psi_{p}=\Gamma_{n} \cap \operatorname{fix}_{p}
$$

respectively.
Theorem
For $n \geq 4$ and any $p \in \mathcal{P}_{n}$,

$$
\overline{\Psi_{p}^{*}}=\Psi_{p},
$$

if and only if $p=\{\mathcal{N}\}$ or $p=\{\{i\}, \mathcal{N} \backslash\{i\}\}$.

Application to secret-sharing

Consider the secret be a random variable S on K, and each share be a random variable S_{j} on K_{j}, where $j \in \mathcal{P}$, the set of participants. Then the scheme $\mathbf{S}=\left(S, S_{j}\right)_{p_{j} \in \mathcal{P}}$ is a secret-sharing scheme realizing access structure \mathcal{A}, where $\mathcal{A} \subset 2^{\mathcal{P}}$ and \mathcal{A} is monotone, if the following two conditions hold:

1. (Correctness) For any $B \in \mathcal{A}$,

$$
H\left(S \mid S_{B}\right)=0
$$

2. (Perfect Privacy) For any $T \notin \mathcal{A}$,

$$
H\left(S \mid S_{T}\right)=H(S)
$$

Application to secret-sharing

Consider the secret be a random variable S on K, and each share be a random variable S_{j} on K_{j}, where $j \in \mathcal{P}$, the set of participants. Then the scheme $\mathbf{S}=\left(S, S_{j}\right)_{p_{j} \in \mathcal{P}}$ is a secret-sharing scheme realizing access structure \mathcal{A}, where $\mathcal{A} \subset 2^{\mathcal{P}}$ and \mathcal{A} is monotone, if the following two conditions hold:

1. (Correctness) For any $B \in \mathcal{A}$,

$$
H\left(S \mid S_{B}\right)=0
$$

2. (Perfect Privacy) For any $T \notin \mathcal{A}$,

$$
H\left(S \mid S_{T}\right)=H(S)
$$

Information ratio

$$
\rho_{\mathbf{S}} \triangleq \frac{\max _{1 \leq j \leq n} H\left(S_{j}\right)}{H(S)}
$$

The fundamental problem of secret sharing: optimal information ratio

Let $\mathcal{N}=\{s\} \cup \mathcal{P}$ and $\Gamma_{\mathcal{N}}^{*}$ be the entropy region on \mathcal{N}. Let \mathcal{A} be an access structure on \mathcal{P}. Then the optimal information ratio on \mathcal{A} is

$$
\rho_{\mathcal{A}} \triangleq \inf _{\mathbf{h} \in \Gamma_{\mathcal{N}}^{*} \cap \Phi_{\mathcal{A}}} \frac{\max _{1 \leq j \leq n} \mathbf{h}\left(\left\{p_{j}\right\}\right)}{\mathbf{h}(\{s\})}
$$

where

$$
\begin{aligned}
\Phi_{\mathcal{A}}=\{\mathbf{h}: \mathbf{h}(\{s\} \cup B) & =\mathbf{h}(B) \quad \forall B \in \mathcal{A}, \\
\mathbf{h}(\{s\} \cup T) & =\mathbf{h}(\{s\})+\mathbf{h}(T) \quad \forall T \notin \mathcal{A}\}
\end{aligned}
$$

Shamir's threshold scheme by entropy functions

For $1 \leq t \leq n$, let $\mathcal{A}_{t, n}=\{A \subset \mathcal{P}:|A| \geq t\}$. Then $\mathcal{A}_{t, n}$ is a access structure with threshold t.
For simplicity, let $\rho_{t, n}=\rho_{\mathcal{A}_{t, n}}$ and $\Phi_{t, n}=\Phi_{\mathcal{A}_{t, n}}$. Then

$$
\rho_{t, n}=\inf _{\mathbf{h} \in \Gamma_{\mathcal{N}}^{*} \cap \phi_{t, n}} \frac{\max _{1 \leq j \leq n} \mathbf{h}\left(\left\{p_{j}\right\}\right)}{\mathbf{h}(\{s\})}
$$

where

$$
\begin{aligned}
\Phi_{t, n}=\{\mathbf{h}: \mathbf{h}(\{s\} \cup B) & =\mathbf{h}(B) \quad \text { if }|B| \geq t \\
\mathbf{h}(\{s\} \cup B) & =\mathbf{h}(\{s\})+\mathbf{h}(B) \quad \text { if }|B|<t\}
\end{aligned}
$$

Shamir's threshold scheme by entropy functions

For $1 \leq t \leq n$, let $\mathcal{A}_{t, n}=\{A \subset \mathcal{P}:|A| \geq t\}$. Then $\mathcal{A}_{t, n}$ is a access structure with threshold t.
For simplicity, let $\rho_{t, n}=\rho_{\mathcal{A}_{t, n}}$ and $\Phi_{t, n}=\Phi_{\mathcal{A}_{t, n}}$. Then

$$
\rho_{t, n}=\inf _{\mathbf{h} \in \Gamma_{\mathcal{N}}^{*} \cap \Phi_{t, n}} \frac{\max _{1 \leq j \leq n} \mathbf{h}\left(\left\{p_{j}\right\}\right)}{\mathbf{h}(\{s\})}
$$

where

$$
\begin{aligned}
\Phi_{t, n}=\{\mathbf{h}: \mathbf{h}(\{s\} \cup B) & =\mathbf{h}(B) \quad \text { if }|B| \geq t, \\
\mathbf{h}(\{s\} \cup B) & =\mathbf{h}(\{s\})+\mathbf{h}(B) \quad \text { if }|B|<t\}
\end{aligned}
$$

Theorem

$$
\rho_{t, n}=\inf _{\mathbf{h} \in \Psi_{\rho}^{*} \cap \Phi_{t, n}} \frac{\max _{1 \leq j \leq n} \mathbf{h}\left(\left\{p_{j}\right\}\right)}{\mathbf{h}(\{s\})}
$$

where $p=\{\{s\}, \mathcal{P}\}$

Shamir's threshold scheme by entropy functions

Theorem

$$
\rho_{t, n}=\min _{\mathbf{h} \in \Psi_{p} \cap \Phi_{t, n}} \frac{\max _{1 \leq j \leq n} \mathbf{h}\left(\left\{p_{j}\right\}\right)}{\mathbf{h}(\{s\})}
$$

and the solution is

$$
\rho_{t, n}=1
$$

and

$$
\arg \min \rho_{t, n}=\left\{\mathbf{h}: a U_{t, n+1}, a>0\right\}
$$

Further research: group-symmetrical entropy functions and their applications to other areas

From partition-symmetrical entropy functions to group-symmetrical entropy functions

Fix set induced by a partition-group Σ_{p}

$$
\begin{aligned}
\operatorname{fix}_{p}= & \left\{\mathbf{h} \in \mathcal{H}_{n}: \mathbf{h}(\mathcal{A})=\mathbf{h}(\mathcal{B})\right. \\
& \text { if } \left.\left|\mathcal{A} \cap \mathcal{N}_{i}\right|=\left|\mathcal{B} \cap \mathcal{N}_{i}\right|, \forall i=1, \cdots, t\right\} .
\end{aligned}
$$

Note that \mathcal{A} and \mathcal{B} such that $\left|\mathcal{A} \cap \mathcal{N}_{i}\right|=\left|\mathcal{B} \cap \mathcal{N}_{i}\right|, \forall i=1, \cdots, t$ are in the same orbit of the action Σ_{p} on $2^{\mathcal{N}}$ for Σ_{p}.

From partition-symmetrical entropy functions to group-symmetrical entropy functions

Fix set induced by a partition-group Σ_{p}

$$
\begin{aligned}
\operatorname{fix}_{p}= & \left\{\mathbf{h} \in \mathcal{H}_{n}: \mathbf{h}(\mathcal{A})=\mathbf{h}(\mathcal{B})\right. \\
& \text { if } \left.\left|\mathcal{A} \cap \mathcal{N}_{i}\right|=\left|\mathcal{B} \cap \mathcal{N}_{i}\right|, \forall i=1, \cdots, t\right\} .
\end{aligned}
$$

Note that \mathcal{A} and \mathcal{B} such that $\left|\mathcal{A} \cap \mathcal{N}_{i}\right|=\left|\mathcal{B} \cap \mathcal{N}_{i}\right|, \forall i=1, \cdots, t$ are in the same orbit of the action Σ_{p} on $2^{\mathcal{N}}$ for Σ_{p}.

Fix set induced by an arbitary permutation group $\Sigma \leq S_{n}$ Let \mathfrak{O}_{Σ} be the set of all orbits of the action Σ on $2^{\mathcal{N}}$.

$$
\operatorname{fix}_{\Sigma}=\left\{\mathbf{h} \in \mathcal{H}_{n}: \mathbf{h}(\mathcal{A})=\mathbf{h}(\mathcal{B}) \text { if } \mathcal{A}, \mathcal{B} \in \mathcal{O}, \mathcal{O} \in \mathfrak{O}_{\Sigma}\right\}
$$

Thank you!

