A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Cher G. Ding and W. Zang

Introduction

Structural Characterization Forbidden Structures Structure of Mobius-free tournament

Main Theorem

Future Work

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen, G. Ding and W. Zang

The University of Hong Kong

August 2016

Background

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen G. Ding and W. Zang

Introduction

Structural Characterization Forbidden Structures Structure of Mobius-free tournament

Main Theorem

Future Work

Ranking Tournament Problem:

Consider a sports tournament in which n players meet pairwise in games, and assume that each game ends with a win or a loss (no ties). Use the results to find a ranking of all n players such that the number of upsets is minimized, where an upset occurs if a player ranked lower on the ranking beats a player ranked higher.

• n players, $\binom{n}{2}$ games, n! possible rankings.

Example

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen G. Ding and W. Zang

Introduction

- Structural Characterization Forbidden Structures Structure of Mobius-free
- Main Theorem
- Future Work

Vertex : player Arc : game $(v_i, v_j) : v_i$ defeats v_j

Ranking : (v_4, v_2, v_3, v_1) Blue : 3 upsets

• An optimal ranking

• A bad ranking

Ranking : (v_3, v_1, v_4, v_2) Blue : 1 upset

Background

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen G. Ding and W. Zang

Introduction

Structural Characterization Forbidden Structures Structure of Mobius-free tournament

Main Theorem

Future Work

• In combinatorial optimization, this problem is equivalent to finding *a feedback arc set* with minimum size on *tournaments* (the un-weighted feedback arc set problem on tournaments).

Theorem 1.1 (Alon, 2006)

The un-weighted feedback arc set problem is NP-hard.

Question 1.1

Which tournaments can be ranked with no errors ?

Preliminary

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen G. Ding and W. Zang

Introduction

Structural Characterization Forbidden Structures Structure of Mobius-free tournament

Main Theorem

Future Work

• A tournament is an orientation of a complete graph.

An orientation of K4 (F_0)

• <u>A feedback arc set</u> in a digraph is a subset of arcs whose removal makes the digraph acyclic.

 $S = \{(v_1, v_2), (v_1, v_3), (v_5, v_2)\}$ is a feedback arc set.

The (Fractional) Feedback Arc Set Problem

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen G. Ding and W. Zang

Introduction

Structural Characteriza tion Forbidden Structures Structure of Mobius-free tournament

Main Theorem

Future Work

Let ${\cal G}=(V,A)$ be a digraph with a nonnegative integral weight w(e) on each arc e.

Definition 1.1

The problem of finding a feedback arc set with minimum total weight is called *the feedback arc set problem* (FASP).

- Let C_G be the set of all directed cycles of G.
- Let M_G be the C_G -A incidence matrix.

Then FASP can be represented as an integer program:

$$\min\{\boldsymbol{w}^T\boldsymbol{x}: M_G\boldsymbol{x} \ge \boldsymbol{1}; \ \boldsymbol{x} \ge \boldsymbol{0} \text{ integral}\}$$
(1)

The (Fractional) Feedback Arc Set Problem

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen G. Ding and W. Zang

Introduction

Structural Characterization Forbidden Structures Structure of Mobius-free tournament

Main Theorem

Future Work

The fractional FASP P(G, w) is given by the linear relaxation of (1):

$$\min\{\boldsymbol{w}^T\boldsymbol{x}: M_G\boldsymbol{x} \ge \boldsymbol{1}; \ \boldsymbol{x} \ge \boldsymbol{0}\}.$$
 (2)

• Ranking tournament problem is the un-weighted (or w = 1) FASP on tournaments.

The (Fractional) Cycle Packing Problem

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen G. Ding and W. Zang

Introduction

Structural Characteriza tion Forbidden Structures Structure of Mobius-free

Main Theorem

Future Work

• A collection C of directed cycles (repetition is allowed) of G is called a <u>cycle packing</u> if each arc e is used at most w(e) times by members of C.

Definition 1.2

The problem of finding a cycle packing with the maximum size is called *the cycle packing problem*(CPP).

The LP formulation of CPP is as follows:

$$\max\{\boldsymbol{y}^T \boldsymbol{1} : \boldsymbol{y}^T M_G \leq \boldsymbol{w}^T; \ \boldsymbol{y} \geq \boldsymbol{0} \text{ integral}\}$$
(3)

The fractional CPP D(G, w) is given by the linear relaxation of (3):

$$\max\{\boldsymbol{y}^T \boldsymbol{1} : \boldsymbol{y}^T M_G \leq \boldsymbol{w}^T; \ \boldsymbol{y} \geq \boldsymbol{0}\}.$$
 (4)

A Primal-Dual Pair of Linear Programs

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen G. Ding and W. Zang

Introduction

Structural Characterization Forbidden Structures Structure of Mobius-free tournament

Main Theorem

Future Work

Note that P(G, w) and D(G, w) forms a primal-dual pair of linear programs:

 $\min\{\boldsymbol{w}^T\boldsymbol{x}: M_G\boldsymbol{x} \geq \boldsymbol{1}; \ \boldsymbol{x} \geq \boldsymbol{0}\} = \max\{\boldsymbol{y}^T\boldsymbol{1}: \boldsymbol{y}^TM_G \leq \boldsymbol{w}^T; \ \boldsymbol{y} \geq \boldsymbol{0}\}$

- Let $\tau^*_{\boldsymbol{w}}(G)$ and $\nu^*_{\boldsymbol{w}}(G)$ denote the optimal values of $P(G, \boldsymbol{w})$ and $D(G, \boldsymbol{w})$ respectively.
- \blacksquare Let $\tau_{\pmb{w}}(G)$ denote the minimum total weight of a feedback arc set.
- Let $\nu_{\boldsymbol{w}}(G)$ denote the maximum size of a cycle packing.

From the LP duality theorem, the following inequalities hold.

$$\nu_{\boldsymbol{w}}(G) \le \nu_{\boldsymbol{w}}^*(G) = \tau_{\boldsymbol{w}}^*(G) \le \tau_{\boldsymbol{w}}(G).$$
(5)

• If $\nu_{w}(G) = \tau_{w}(G)$, then all inequalities in (5) hold with equations.

Cycle Mengerian Digraphs

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen G. Ding and W. Zang

Introduction

Structural Characterization Forbidden Structures Structure of Mobius-free tournament

Main Theorem

Future Work

Definition 1.3

 $G = (V, A) \text{ is called } \underbrace{\text{cycle Mengerian}}_{\text{weight function } \boldsymbol{w} \in \overline{\mathbb{Z}_+^A}.$ if $\nu_{\boldsymbol{w}}(G) = \tau_{\boldsymbol{w}}(G)$ for all

■ For a cycle Mengerian digraph G, FASP → the fractional FASP and CPP → the fractional CPP, and hence both are solvable in polynomial time.

Known Cycle Mengerian Digraphs

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen G. Ding and W. Zang

Introduction

Structural Characterization Forbidden Structures Structure of Mobius-free tournament

Main Theorem

Future Work

Theorem 1.2 (Lucchesi and Younger Theorem, 1978)

Planar digraphs are cycle Mengerian.

• An extension of Lucchesi-Younger theorem is given by Applegate et al. in 1991 and by Barahona et al. in 1994.

Theorem 1.3 (Applegate et al., 1991 and Barahona et al., 1994)

Any digraph without $K_{3,3}$ minor is cycle Mengerian.

• If G is a digraph without $K_{3,3}$ minor, then G is obtained from a planar digraph and a tournament on 5 vertices by identifying at most two vertices.

TDI System

Definition 1.4

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen, G. Ding and W. Zang

Introduction

Structural Characterization Forbidden Structures Structure of Mobius-free tournament

Main Theorem

Future Work

A rational system $Ax \ge b$, $x \ge 0$ is called <u>totally dual integral</u> (TDI) if the maximum in the LP-duality equation $\min\{w^Tx : Ax \ge b, x \ge 0\} = \max\{y^Tb : y^TA \le w^T, y \ge 0\}$ has an integral optimal solution, for every integral vector w for which the minimum is finite.

Theorem 1.4 (Edmonds and Giles, 1977)

If $Ax \ge b, x \ge 0$ is TDI and b is integral, then both programs in the LP-duality equation $\min\{w^Tx : Ax \ge b, x \ge 0\} = \max\{y^Tb : y^TA \le w^T, y \ge 0\}$ have integral optimal solutions.

Equivalence of Cycle Mengerian and TDI System

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen G. Ding and W. Zang

Introduction

Structural Characterization Forbidden Structures Structure of Mobius-free

Main Theorem

Future Work

From the definition of cycle Mengerian and Edmonds and Giles' theorem, the following three statements are equivalent.

- *G* is cycle Mengerian.
- Both P(G, w) and D(G, w) have integral optimal solutions for any $w \in \mathbb{Z}_+^A$.
- System $M_G x \ge 1$, $x \ge 0$ is TDI.

Our Problem

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen G. Ding and W. Zang

Introduction

Structural Characterization Forbidden Structures Structure of Mobius-free tournament

Main Theorem

Future Work

• In this work, we study the feedback arc set problem (FASPT) and the cycle packing problem on tournaments (CPPT) and we will present a complete characterization of all cycle Mengerian tournaments.

Main Result

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen G. Ding and W. Zang

Introduction

Structural Characterization Forbidden Structures Structure of Mobius-free tournament

Main Theorem

Future Work

We prove that a tournament T = (V, A) is cycle Mengerian iff it is Möbius-free iff system $M_T x \ge 1$, $x \ge 0$ is TDI.

• Our result implies that both FASP and CPP on Möbius-free tournaments are solvable in polynomial time.

Forbidden Structures

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen G. Ding and W. Zang

Introduction

Structural Characteriza tion

Forbidden Structures

Structure of Mobius-free tournament

Main Theorem

Future Work

Definition 2.1

A tournament is called <u>*Möbius-free*</u> if it contains none of $K_{3,3}$, $K'_{3,3}$, M_5 and M_5^* as a subdigraph.

 M_5^*

Why Möbius-free tournaments ?

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen G. Ding and W. Zang

Introduction

Structural Characteriza tion

Forbidden Structures

Structure of Mobius-free tournament

Main Theorem

Future Work

Theorem 2.1

Let T be a cycle Mengerian tournament. Then T must be Möbius-free.

Proof Sketch of Theorem 2.1

- None of $K_{3,3}$, $K'_{3,3}$, M_5 and M_5^* is cycle Mengerian.
- If T is cycle Mengerian, then any subdigraph of T is also cycle Mengerian.

Example

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen G. Ding and W. Zang

Introduction

Structural Characteriza tion

Forbidden Structures Structure of

Mobius-free tournament

Main Theorem

Future Work

We will demonstrate why $K_{3,3}$ is not cycle Mengerian.

The weight of each arc is 1.

Set $x(e) = \frac{1}{2}$ for $e = (v_4, v_1), (v_2, v_5), \text{or}(v_6, v_3),$ and otherwise x(e) = 0.Set $y(C) = \frac{1}{2}$ for $C = v_1 v_2 v_5 v_4, v_3 v_2 v_5 v_6,$

or $v_1v_6v_3v_4$, and otherwise y(C) = 0.

• \boldsymbol{x} , \boldsymbol{y} are optimal solutions to $P(K_{3,3}, 1)$ and $D(K_{3,3}, 1)$ respectively, with common optimal value 3/2.

• So $K_{3,3}$ is not cycle Mengerian.

Internally 2-strong Tournaments

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen G. Ding and W. Zang

Introduction

Structural Characteriza tion

Forbidden Structures

Structure of Mobius-free tournament

Main Theorem

Future Work

A <u>dicut</u> of T is a partition (X, Y) of V such that all arcs between X and Y are directed from X to Y.

A dicut (X, Y) is <u>trivial</u> if $|X| \leq 1$ or $|Y| \leq 1$.

Definition 2.2

T is called *internally strong* if every dicut of T is trivial, and is called *internally 2-strong* (i2s) if T is strong and $T \setminus v$ is internally strong for every $v \in V$.

Internally 2-strong Tournaments

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Cher G. Ding and W. Zang

Introduction

Structural Characteriza tion

Structures

Structure of Mobius-free tournament

Main Theorem

Future Work

Let T = (V, A) be i2s. Then one of the following statements holds: • $|V| \le 4$;

• |V| = 5 and $T \in \{F_1, F_2, F_3\}$;

Lemma 2.1

- |V| = 6 and either T has a vertex v with $T \setminus v \in \{F_1, F_2, F_3\}$ or $T \in \{F_4, F_5\}$;
 - $|V| \ge 7$ and T has a vertex v such that $T \setminus v$ is i2s.

Remark: $(1, 2), (5, 1) \in F_1; (2, 1), (1, 5) \in F_2; (2, 1), (5, 1) \in F_3.$ $(6, 2) \in F_4, (2, 6) \in F_5.$

i2s and Möbius-free Tournaments

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen G. Ding and W. Zang

Introduction

Structural Characteriza tion

Forbidden Structures

Structure of Mobius-free tournament

Main Theorem

Future Work

Lemma 2.2

An i2s tournament T = (V, A) is Möbius-free if and only if one of the following holds:

•
$$|V| \le 5;$$

• $T = G_1, G_2, G_3 \text{ or } F_4$

Structure of Möbius-free Tournaments

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen G. Ding and W. Zang

Introduction

Structural Characteriza tion Forbidden

Structures Structure of Mobius-free

tournament Main Theoren

Future Work

Definition 2.3

An arc e = (u, v) of T is called <u>special</u> if e is the only arc in T leaving u or the only arc entering v.

Definition 2.4 (1-sum operation)

Let T_1 and T_2 be two tournaments. Suppose that T_1 and T_2 have special arcs (u_1, v_1) and (v_2, u_2) , respectively, such that u_1 has out-degree one in T_1 and u_2 has in-degree one in T_2 . Then the <u>1-sum</u> of T_1 and T_2 over (u_1, v_1) and (v_2, u_2) is obtained from the disjoint union of $T_1 \setminus u_1$ and $T_2 \setminus u_2$ by identifying v_1 with v_2 and then adding all arcs from $T_1 \setminus \{v_1, u_1\}$ to $T_2 \setminus \{v_2, u_2\}$.

Example of 1-sum

- (u_1, v_1) and (v_2, u_2) are special arcs.
 - T is the 1-sum of T_1 and T_2 over (u_1, v_1) and (v_2, u_2) .
 - v is obtained by identifying v_1 and v_2 .

Structure of Möbius-free Tournaments

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen G. Ding and W. Zang

Introduction

Structural Characteriza tion

Forbidden Structures

Structure of Mobius-free tournament

Main Theorem

Future Work

Let F_6 be the tournament as shown below, which is not i2s. Let $\mathcal{T} = \{F_0, F_2, F_3, F_4, G_2, G_3, F_6\}.$

Lemma 2.3

Any Möbius-free tournament T with $|V| \ge 4$ can be decomposed into the 1-sum of two tournaments T_1, T_2 such that T_2 is a member in T, unless $T = F_1$ or G_1 .

Main Theorem

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Cher G. Ding and W. Zang

Introduction

Structural Characterization Forbidden Structures Structure of Mobius-free tournament

Main Theorem

Future Work

Theorem 3.1

A tournament T is cycle Mengerian iff it is Möbius-free.

Proof Outline of Main Theorem

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen G. Ding and W. Zang

Introduction

Structural Characteriza tion Forbidden Structures Structure of Mobius-free tournament

Main Theorem

Future Work

- Necessity follows from Theorem 2.1.
- For the Sufficiency, it remains to show that every Möbius-free tournament T = (V, A) is cycle Mengerian.
- Recall that C_T is the set of all cycles and M_T is the C_T -A incidence matrix.
- To prove T is cycle Mengerian, it suffices to show that
 - $M_T x \geq 1, \ x \geq 0$ is TDI; or equivalently
 - The fractional CPP D(T, w): $\max\{y^T \mathbf{1} : y^T M_T \leq w^T; y \geq \mathbf{0}\}$ has an integral optimal solution for any weight function $w \in \mathbb{Z}_+^A$.

Proof Outline of Main Theorem

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen G. Ding and W. Zang

Introduction

Structural Characterization Forbidden Structures Structure of Mobius-free tournament

Main Theorem

Future Work

When $|V|=3,\,T$ is a triangle which is cycle Mengerian. So we may assume that $|V|\geq 4.\,$ By Lemma 2.3,

(i) $T = F_1$, G_1 . Since F_1 is a sub-digraph of G_1 , it suffices to show G_1 is cycle Mengerian.

We first prove that P(G₁, w) has an integral optimal solution x and then use the integrality of x to show that D(G₁, w) has an integral optimal solution.

(ii) $T \neq F_1$, G_1 and T can be decomposed into the 1-sum of T_1 and T_2 such that $T_2 \in \mathcal{T}$.

Proof Outline of Main Theorem

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen G. Ding and W. Zang

Introduction

Structural Characteriza tion Forbidden Structures Structure of Mobius-free

Main Theorem

Future Work

Recall that $C_{T_2 \setminus u_2}$ is the set of all cycles in $T_2 \setminus u_2$. Let l be the length of a longest cycle in $T_2 \setminus u_2$. To prove (ii),

• Let \boldsymbol{y} be an optimal solution of $D(T, \boldsymbol{w})$ satisfying

(a) $y(\mathcal{C}_{T_2 \setminus u_2}) = \sum_{C \in \mathcal{C}_{T_2 \setminus u_2}} y(C)$ is maximized;

- (b) subject to (a), $(\sum_{\substack{|C|=l\\C\in\mathcal{C}_{T_2\setminus u_2}}} y(C), \sum_{\substack{|C|=l-1\\C\in\mathcal{C}_{T_2\setminus u_2}}} y(C), ..., \sum_{\substack{|C|=3\\C\in\mathcal{C}_{T_2\setminus u_2}}} y(C)) \text{ is }$ lexicographically minimum.
- For each member $T_2 \in \mathcal{T}$, we first show that either the optimal value $\nu_{\boldsymbol{w}}^*(T) = \boldsymbol{y}^T \boldsymbol{1}$ is an integer or the restriction of \boldsymbol{y} on $\mathcal{C}_{T_2 \setminus u_2}$ is optimal and integral. Based on this, we can further show that in either case there exists an integral optimal solution of $D(T, \boldsymbol{w})$.

Future Work

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Chen G. Ding and W. Zang

Introduction

Structural Characterization Forbidden Structures Structure of Mobius-free tournament

Main Theorem

Future Work

We show that FASP and CPP on Möbius-free tournaments are solvable in polynomial time. However, this result relies on the fact that there exists a polynomial-time algorithm for linear programs.

Problem 1

Give a strongly polynomial-time combinatorial algorithm for finding a feedback arc set with minimum total weight and a maximum cycle packing on Möbius-free tournaments.

A Min-Max Relation on Tournaments

Zhao Qiulan

Joint work with X. Cher G. Ding and W. Zang

Introduction

Structural Characterization Forbidden Structures Structure of Mobius-free tournament

Main Theorem

Future Work

Thank you!