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This lecture: relations between

Linear programming with large coefficients, Smale
Problem # 9

Convex programming over nonarchimedean fields (LP,
SDP)

Mean payoff (deterministic, stochastic) games (one of
the problems in NP ∩ coNP not known to be in P)

application: geometry of the central path in LP

via tropical geometry
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Part I.

Some open problems concerning zero-sum games

and linear / SDP programming
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The mean payoff problem
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Mean payoff games

G = (V ,E ) bipartite graph. rij ∈ Z price of the arc
(i , j) ∈ E .

MAX and MIN move a token, alternatively (square states:
MAX plays; circle states: MIN plays). n MIN nodes, m
MAX nodes.

MIN always pays to MAX the price of the arc (having a
negative fortune is allowed)
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v k
i value of MAX, initial state (i ,MIN).
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Problem (Gurvich, Karzanov, Khachyan 88)

Can we solve mean payoff games in polynomial time?

I.e., time 6 poly(L)? where L is the bitlength of the input

L =
∑
ij

log2(1 + |rij |)

Mean payoff games in NP ∩ coNP, not known to be in P.

Zwick and Paterson [1996] showed that value iteration solves MPG in

pseudo polynomial time O((n + m)5W ) where W = maxij |rij | = O(2L).
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Complexity issues in linear programming
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A linear program is an optimization problem:

min c · x ; Ax 6 b, x ∈ Rn ,

where c ∈ Qn, A ∈ Qm×n, b ∈ Qm.

opt
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Question (9th problem of Smale)

Can linear programming be solved in strongly polynomial
time?

polynomial time (Turing model): = execution time
bounded by poly(L) or equivalently poly(n,m, L), L =
number of bits to code the Aij , bi , cj

6= strongly polynomial (arithmetic model): number of
arithmetic operations bounded by poly(m, n), and the
size of operands of arithmetic operations is bounded by
poly(L).

[Smale, 2000], more on strongly polynomial algo. in [Grötschel, Lovász, and Schrijver, 1993]
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Consider the simplex and interior point methods

in the light of Smale problem 9?
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The simplex method (Dantzig, 1947)

Iterate over adjacent vertices (basic points) of the
polyhedron while improving the objective function

c>v 1 > c>v 2 > . . . > c>vN

the algorithm is parametrized by a pivoting rule,
which selects the next edge to be followed.
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Complexity of pivoting algorithms?

Every iteration (pivoting from a basic point to the
next one) can be done with a strongly polynomial
complexity (linear system over Q).

is there a pivoting rule ensuring that the number of
iterations in the worst case is polynomially bounded?

It is not even known that the graph of the polyhedron
has polynomial diameter (polynomial Hirsch
conjecture), ie that the perfectly lucid pivoting rule
makes a polynomial number of steps.
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Interior points

For all µ > 0, consider the barrier problem

minµ−1c · x −
m∑

i=1

log(bi − Ai x), bi − Ai x > 0 i ∈ [m]

µ 7→ x(µ) optimal solution, is the central path. branch of an
algebraic curve. x(0) is the solution of the LP.

x(0)

x(∞)
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Inductive step of interior points:

x ← NewtonStep(x , µ);

reduce µ so that x remains in an attraction bassin of Newton’s
method.

x(0)

x(∞)

“the good convergence properties of Karmarkar’s algorithm arise
from good geometric properties of the set of trajectories”, Bayer and
Lagarias, 89.
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Dedieu, Malajovich, and Shub considered the total curvature, an
idealized complexity measure of the central path. . .
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Total curvature

The total curvature of a path γ, parametrized by arc length, so that
‖γ′(s)‖ = 1, is given by

κ :=

∫ L

0

‖γ′′(s)‖ds

or
κ = sup

q>2
sup

06λ0<···<λq6L
∠γ(λk−1)γ(λk)γ(λk+1)

α1

α2

α3

α4

α5

κ > α1 + · · ·+ α5
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Continuous analogue of Hirsch’s conjecture

Dedieu and Shub (2005) initially conjectured that the total curvature
of the central path is O(n) (n number of variables).

This was motivated by a theorem of Dedieu-Malajovich-Shub (2005):
total curvature is O(n), averaged over all 2n+m LP’s (cells of the
arrangement of hyperplanes), εi Ai x 6 bi , ηj xj > 0, εi , ηj = ±1.

Illustration from Benchimol’s Phd
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Deza, Terlaky and Zinchenko (2008) constructed a redundant
Klee-Minty cube, showing that a total curvature exponential in n is
possible, and revised the conjecture of Dedieu and Shub:

Conjecture (Continuous analogue of Hirsch conjecture, [Deza,
Terlaky, and Zinchenko, 2008])

The total curvature of the central path is O(m), where m is the
number of constraints.
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Theorem (Allamigeon, Benchimol, SG, Joswig, arXiv:1405.4161)

There is a LP with 2r + 2 variables and 3r + 4 inequalities such that
the central path has a total curvature in Ω(2r ).

This disproves the conjecture of Deza, Terlaky and Zinchenko.

Theorem (Allamigeon, Benchimol, SG, Joswig, MPG is “not more
difficult” than LP)

A strongly polynomial pivoting rule for LP would solve MPG in
polynomial time (SIAM Opt, arXiv:1309.5925)

The pivoting rule must satisfy mild technical conditions, in particular,
combinatorial rules, depending on signs of minors of ( A b

c 0 ) work.
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Although the word “tropical” appears in none of

these statements, the proofs rely on tropical

geometry in an essential way, through linear and

semidefinite programming over non-archimedean

fields.
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Part II.

Operator approach to mean payoff games
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v k
i value of MAX, initial state (i ,MIN).

v k
1 = min(−2 + 1 + v k−1

1 ,−8 + max(−3 + v k−1
1 ,−12 + v k−1

2 ))

v k
2 = 0 + max(−9 + v k−1

1 , 5 + v k−1
2 )
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v 1 = (0, 0)
v 2 = (−11, 5)
v 3 = (−15, 10)
v 4 = (−16, 15)
limk v k/k = (−1, 5)
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Theorem (Shapley)

v k = T (v k−1), v 0 = 0 .

The map T : Rn → Rn is called Shapley operator.

[T (v)]j = min
i∈[m], j→i

(
rji + max

k∈[n], i→k
(rik + vk)

)
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[T k(0)]i is the value of the original game in horizon k with initial
state i .

[T k(u)]i

is the value of a modified game in horizon k with initial state i , in
which MAX receives an additional payment of uj in the terminal state
j
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Shapley operators of games are
monotone (or order preserving)

(M) : x 6 y =⇒ T (x) 6 T (y)

Undiscounted implies additively homogeneous

(AH) : T (se + x) = se + T (x), ∀s ∈ R

where e = (1, . . . , 1) is the unit vector.

AH and MH implies nonexpansive in the sup-norm

(N) : ‖T (x)− T (y)‖∞ 6 ‖x − y‖∞, ∀s ∈ R

Known axioms in non-linear Markov semigroup / PDE viscosity
solutions theory, eg Crandall and Tartar, PAMS 80
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Theorem (Bewley, Kohlerg 76, Neyman 03)

The mean payoff vector

lim
k→∞

T k(0)/k

does exist if T : Rn → Rn is semi-algebraic and nonexpansive in any
norm.

Same is true if T definable in a o-minimal structure, eg log-exp (risk
sensitive) Bolte, SG, Vigeral, MOR 14.

Finite action space and perfect information implies T piecewise linear.
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Theorem (Akian, SG, Guterman, “subharmonic vectors” IJAC 2012,
arXiv:0912.2462)

Let T be the Shapley operator of a deterministic game. The
following are equivalent.

initial state j is winning, meaning that

0 6 lim
k→∞

[T k(0)]j/k

there exists u ∈ (R ∪ {−∞})n, uj 6= −∞, and

u 6 T (u)

T : Rn → Rn extends continuously (R ∪ {−∞})n → (R ∪ {−∞})n.
(Burbanks, Nussbaum, Sparrow).
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Proof idea

Assume that u ∈ Rn is such that u 6 T (u).

u 6 T (u) 6 T 2(u) 6 · · ·
u/k 6 T k(u)/k

0 6 limk→∞ T k(u)/k

‖T k(u)− T k(0)‖∞ 6 ‖u − 0‖∞ = ‖u‖∞
0 6 limk→∞ T k(0)/k

all states are winning.

The converse follows from a fixed point theorem of Kohlberg (a
nonexpansive piecewise linear map has an invariant half-line).
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Part III.

Tropical geometry
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In the tropical world

“a + b” = max(a, b) “a × b” = a + b

The semifield of scalars is the max-plus semifield, Rmax = R∪{−∞}.

“2 + 3” =

“2× 3” =

“0” = −∞, “1” = 0.

For any totally ordered abelian group (G ,+,6), one can define Gmax.
G = (RN ,+,6lex) specially useful.

These structures are said to be idempotent (a + a = a) or of
characteristic one (Connes, Consani),
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These algebras were invented by various schools in the world
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Cuninghame-Green ∼ 60 Vorobyev ∼65 . . . Zimmerman, Butkovic;
scheduling, combinatorital optimization

Maslov ∼ 80’- . . . Kolokoltsov, Litvinov, Samborskii, Shpiz. . . Quasi-classic
analysis, variations calculus

Simon ∼ 78- . . . Hashiguchi, Pin, Krob (Schützenberger’s school)
. . . Automata theory

Gondran, Minoux ∼ 77 Operations research

Cohen, Quadrat, Viot ∼ 83-, “Max Plus ’’, Olsder, Baccelli, S.G., Akian
discrete event systems, optimal control, idempotent probabilities.

Nussbaum 86- Nonlinear analysis, dynamical systems, also related work in
linear algebra, Friedland 88, Bapat ˜94

Kim, Roush 84 Incline algebras

Fleming, McEneaney ∼00- max-plus approximation of HJB

Del Moral ∼95 Puhalskii ∼99, idempotent probabilities.

Since 2000’ in pure maths, tropical geometry: Viro, Kapranov, Mikhalkin,
Passare, Sturmfels . . . , recent work by Connes, Consani
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Tropical convex cones

Scalars act on vectors by “λx” = λe + x .

V ⊂ Rn
max is a submodule, aka tropical convex cone, if for all

x , y ∈ V , λ, µ ∈ Rmax,

“λx + µy” = sup(λe + x , µe + y) ∈ V .

Since “λ > 0” is automatic tropically, modules = cones.

V is a tropical convex set if the same is true conditionnally to
“λ + µ = 1”, i.e., max(λ, µ) = 0.
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By the subharmonic certificates theorem, the game is winning for
MAX, i.e., ∃j , limk→∞[T k(0)]j/k > 0, iff

V = {v ∈ Rn
max | T (v) > v} 6≡ “0” = (−∞, . . . ,−∞) .

Proposition

If T is a Shapley operator, then V is a tropical convex cone of Rn
max,

closed in the Euclidean topology.

Proof.

T M, u, v ∈ V implies T (sup(u, v)) > sup(T (u),T (v)) > sup(u, v).
T AH, v ∈ V implies T (λe + v) = λe + T (v) > λe + v .

All closed tropical convex cones of Rn
max arise from a Shapley operator T (infinite

number of actions on one side allowed).
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Tropical adjoints

Let A ∈ Rm×n
max , x ∈ Rn

max, y ∈ Rn
max

(Ax)i = max
j∈[n]

(Aij + xj ), i ∈ [m]

Ax 6 y ⇐⇒ x 6 A]y

(A]y)j = min
i∈[m]

(−Aij + yi ), j ∈ [n]

The adjoint A] is a priori defined as a self-map of the completion
(R ∪ {±∞})n of Rn

max, but it does preserve Rn as soon as the game
has no states without actions.

More on adjoints: Cohen, SG, Quadrat, LAA 04
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The Shapley operator of a MPG can be written as

[T (v)]j = min
i∈[m], j→i

(
−Aij + max

k∈[n], i→k
(Bik + vk)

)

T (v) = A]Bv

v 6 T (v) ⇐⇒ Av 6 Bv

v 6 T (v) ⇐⇒ max
j∈[n]

(Aij + vj ) 6 max
j∈[n]

(Bij + vj ), i ∈ [m]

The set of subharmonic certificates {v | Av 6 Bv} is a tropical
convex polyhedral cone.
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Modules of subharmonic vectors

x1 x2

x3

x1 x2

x3

states 1,2,3 winning states 2,3 winning
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Part VI.

Tropical convexity
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Tropical half-spaces

Given a, b ∈ Rn
max, a, b 6≡ −∞,

H := {x ∈ Rn
max | “ax 6 bx”}
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max, a, b 6≡ −∞,

H := {x ∈ Rn
max | max

16i6n
ai + xi 6 max

16i6n
bi + xi}

x2x1

x3
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Tropical polyhedral cones

can be defined as intersections of finitely many half-spaces

x2
x1

V

x3
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Tropical polyhedral cones

can be defined as intersections of finitely many half-spaces

x2
x1

V

x3

x2
x1

x3

2 + x1 6 max(x2, 3 + x3)
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Tropical polyhedral cones

can be defined as intersections of finitely many half-spaces

V
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A tropical polytope with four vertices

Structure of the polyhedral complex: Develin, Sturmfels
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Tropical objects arise by considering non-archimedean valuations.

There is a convenient choice of non-archimedean field in tropical
geometry . . .
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Puiseux series with real exponents C{{t−R}},

f (t) =
∑
k∈N

aktbk

were ak ∈ C, and the sequence bk ∈ R tends to −∞.

The subfield of series that converge absolutely for |t| large enough is
the field of generalized Dirichlet series of Hardy and Riesz.

Dirichlet series
∑

k>1 akk−s correspond to bk = − log k , t = exp(s).

Real coefficients: totally ordered field wrt pointwise order near
t = +∞, i.e. lexicographic order on coeffs.

K := R{{t−R}}cvg, absolutely convergent real generalized Puiseux
series constitute a real closed field, van den Dries and Speissegger
(TAMS) (definable functions in a variant of the o-minimal structure
Ran,∗).
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t = +∞, i.e. lexicographic order on coeffs.

K := R{{t−R}}cvg, absolutely convergent real generalized Puiseux
series constitute a real closed field, van den Dries and Speissegger
(TAMS) (definable functions in a variant of the o-minimal structure
Ran,∗).
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Non-archimedean valuation of

f (t) =
∑
k∈N

aktbk

val f = max
k,ak 6=0

bk = lim
t→∞

| log f (t)|
log t

val(f + g) 6 max(val f , val g), and = holds if f , g > 0

val(fg) = val f + val g .
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Theorem (Combines Develin and Yu and Allamigeon, Benchimol, SG,
Joswig arXiv:1405.4161)

1 Every tropical polyhedron P can be written as P = valP where
P is a polyhedron in Kn

+, here K = R{{t−R}}cvg.

2 Moreover, P is the uniform (Hausdorff) limit of

logt P := { log z

log t
| z ∈ P}

as t →∞.

Related deformation in Briec and Horvath.
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Tropical linear program

min“c>x”; “A+x + b+ > A−x + b−”

min max
j

cj + xj

max(max
j

(A+
ij + xj ), b

+
i ) > max(max

j
(A−ij + xj ), b

−
i ) .

x1

x2

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

Stephane Gaubert (INRIA and CMAP) Non archimedean convexity. . . HKU 47 / 73



Correspondence classical ↔ tropical LP

Theorem (Allamigeon, Benchimol, SG, Joswig, arXiv:1308.0454,
SIAM J. Disc. Math)

Suppose that P = {x ∈ Kn | Ax + b > 0} is included in the positive
orthant of Kn and that the tropicalization of (A,b) is sign generic
(to be defined soon). Then,

val(P) = {x ∈ Rn
max | “A+x + b+ > A−x + b−”} ,

where (A+ b+) = val(A+b+) and (A− b−) = val(A− b−). Moreover
the classical and tropical polyhedron have the same combinatorics:
valuation sends basic points to basic points, edges to edges, etc.

A point of a tropical polyhedron is basic if it saturates n inequalities.
A tropically extreme point (member of a minimal generating family)
is basic, but not vice versa.
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(0, 0, 0)

(0, 0, 4)

(4, 0, 0)

(4, 4, 0)

(4, 4, 4)

Picture from [Allamigeon, Benchimol, Gaubert, and Joswig, 2015a].
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(t0, t0, t4)
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(t4, t4, t4)

Picture from [Allamigeon, Benchimol, Gaubert, and Joswig, 2015a].
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Tropical sign genericity and optimal assignments

Let M ∈ Rn×n
max and ε ∈ {±1, 0}n×n. M ∈ Kn×n is a lift of

(ε,M) if valM = M and sgnM = ε. We have

val
∑
σ∈Sn

sgn(σ)
∏

16i6n

Miσ(i) 6 max
σ∈Sn

∑
16i6n

Miσ(i)

with = if (ε,M) is tropically sign generic, meaning that all
optimal permutations yield the same sgn(σ)

∏
16i6n εiσ(i).

It is generic if there is only one optimal permutation.
Sign-genericity is related to even cycle problem and Polya’s permanent problem.
Checkable in polynomial time, as well as genericity (simpler).
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LP tropically sign generic means that every minor of
“(A+ − A−, b+ − b−)” is sign generic.
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sign generic condition not satisfied, valuation does not
commute with the external representation.

x1 + x2 6 1, t1x1 + x2 > 1, x1 + t1x2 > 1

Xi = log xi/ log t, t → 0.

max(X1,X2) 6 0, max(1 + X1,X2) > 0, max(X1, 1 + X2) > 0 .
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sign generic condition satisfied, valuation does commute
with the external representation.

x1 + x2 6 tε, t1x1 + x2 > 1, x1 + t1x2 > 1, t2x1 > 1, t2x2 > 1

Xi = log xi/ log t, t → 0.

max(X1,X2)6ε, max(1+X1,X2)>0, max(X1, 1+X2)>0, X1>2,X2>2 .
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Assume that the data are tropically in general position.

Theorem (Allamigeon, Benchimol, SG, Joswig arXiv:1308.0454,
SIAM J. Disc. Math)

The valuation of the path of the simplex algorithm over K can be
computed tropically (with a compatible pivoting rule). One iteration
takes O(n(m + n)) time.

Tropical Cramer determinants = opt. assignment used to compute
reduce costs.

Pivoting is more subttle tropically. Tropical general position assumption (only one optimal

permutation) stronger than sign general position (all optimal permutations yield monomials

with the same sign). The O(n(n + m)) bound arises by tracking the deformations of a

hypergraph along a tropical edge. We can still pivot tropically if the data are only in sign

general position, but then we (currently) loose a factor n in time.
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Example of compatible pivoting rule. A rule is combinatorial if any
entering/leaving inequalities are functions of the history (sequence of
bases) and of the signs of the minors of the matrix

M =
( A b
c> 0

)
.

(eg signs of reduced costs).
Most known pivoting rules are combinatorial.
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Mean payoff games reduce to tropical LP

Theorem (Allamigeon, Benchimol, SG, Joswig arXiv:1309.5925,
SIAM J. Opt, + refinement in Benchimol’s PhD)

If any combinatorial (or even “semialgebraic”) rule in classical linear
programming would run in strongly polynomial time, then, mean
payoff games could be solved in strongly polynomial time.

The “semialgebraic” rule must satisfy a mild technical assumption
(polynomial time solvability of LP’s over Newton polytopes).
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Sketch of Proof

1 Mean payoff games are equivalent to feasibility problems in
tropical linear programming (Akian, SG, Guterman)

2 Tropical linear programs can be lifted to a subclass of classical
linear programs over K.

3 The set of runs (sequences of bases) of the classical simplex
algorithm equipped with a combinatorial (or even semialgebraic)
pivoting rule is independent of the real closed field. Being a run
is a first order property, apply Tarski’s theorem. So, number of
iterations of classical simplex over K is the same as over R.

4 Can simulate the classical simplex on K tropically, every pivot
being strongly polynomial.
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Technicalities were hidden here.
Instead of K, we eventually use a field of formal Hahn series

R[[tR
N

]], the value group RN is equipped with lex order

to encode a symbolic perturbation scheme (needs to encode a MPG
by a LP in general position).
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Part V
Tropicalization of the central path
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Primal-dual central path

minimize
c>x

µ
−

n∑
j=1

log(xj )−
m∑

i=1

log(wi )

subject to Ax + w = b, x > 0,w > 0.

(1)

Ax + w = b

−A>y + s = c

wi yi = µ for all i ∈ [m]

xj sj = µ for all j ∈ [n]

x ,w , y , s > 0 .

(2)

For any µ > 0, ∃! (xµ,wµ, yµ, sµ) ∈ Rn × Rm × Rm × Rn. The
central path is the image of the map C : R>0 → R2m+2n which sends
µ > 0 to the vector (xµ,wµ, yµ, sµ).
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The tropical central path

Assume now that A(t),b(t), c(t) have entries in K
(absolutely converging Puiseux series with real exponents,
t →∞).

The tropical central path is the log-limit:

Ctrop : λ 7→ lim
t→∞

log C(tλ)

log t
. (3)

The pointwise limit does exist since C(·) is definable in a
polynomially bounded o-minimal structure.
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Theorem

The family of maps (logt C(t, ·))t converges uniformly on
any closed interval [a, b] ⊂ R to the tropical central path
Ctrop.

Proof of uniformity uses

max(a, b) 6 logt(ta + tb) 6 logt 2 + max(a, b) .
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Computing the tropical central path

P := {(x,w) ∈ Kn+m | Ax + w = b, x > 0, w > 0}

Theorem (Allamigeon, Benchimol, SG, Joswig arXiv:1405.4161)

Assume that b, c > 0. Then, for µ = tλ,

val(xµ,wµ) = max
(

valP ∩ {(x ,w) ∈ Rm+n
max | c>x 6 λ}

)
.

In particular, the valuation of the analytic center (take λ =∞) is the
maximal element of valP .
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x1 + x2 6 2

t1x1 6 1 + t2x2

t1x2 6 1 + t3x1

x1 6 t2x2

x1, x2 > 0 .

(4)

Its value val(P t) is the tropical set described by the
inequalities:

max(x1, x2) 6 0

1 + x1 6 max(0, 2 + x2)

1 + x2 6 max(0, 3 + x1)

x1 6 2 + x2 .

(5)
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Figure : Tropical central paths on the Puiseux polyhedron (4) for the
objective function min x2 (left) and min t1x1 + x2 (right).
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The counter example . . .

Stephane Gaubert (INRIA and CMAP) Non archimedean convexity. . . HKU 66 / 73



min v0

s.t. u0 6 t1

v0 6 t2

vi 6 t(1− 1

2i )(ui−1 + vi−1) for 1 6 i 6 r

ui 6 t1ui−1 for 1 6 i 6 r

ui 6 t1vi−1 for 1 6 i 6 r

ur > 0, vr > 0

LPr

Theorem (Allamigeon, Benchimol, SG, Joswig arXiv:1405.4161)

For t large enough, the total curvature of the central path is
> (2r−1 − 1)π/2.

Large enough: log2 t = Ω(2r ). Need an exponential number of bits.
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u0 6 t1 u0 6 1

v0 6 t2 v0 6 2

vi 6 t(1− 1

2i )(ui−1 + vi−1) vi 6 1− 1

2i
+ max(ui−1, vi−1)

ui 6 t1ui−1 ui 6 1 + ui−1

ui 6 t1vi−1 ui 6 1 + vi−1

ur > 0, vr > 0 c>x = v0 6 λ

The tropical central path is given by

u0 = 1

v0 = min(2, λ)

vi = 1− 1

2i
+ max(ui−1, vi−1)

ui = 1 + min(ui−1, vi−1)
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Figure : A tropical central path with many segments
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How the counter example was found

Bezem, Nieuwenhuis and Rodŕıguez-Carbonell (2008) constructed a
class of tropical linear programs for which an algorithm of Butkovič
and Zimmermann (2006) exhibits an exponential running time.

Their algorithm is, loosely speaking, in the family of tropical simplex
algorithms.

There is a class of tropical LP for which the tropical central path
degenerates to a simplex path (moves only on the edges).

This is the case on this example. The tropical central path passes
through an exponential number of basic points.

The central path of P t converges to the tropical central path as
t → 0 (dequantization).
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How we bound the classical curvature

Can define tropical angle ∠t ∈ {0, π/2, π},
∠tPQR := inf ∠PQR, P,Q,R ∈ Kn, valP = P , valQ = Q, valR = R

Can define tropical total curvature

κt := sup
k−1∑
i=0

∠tPi−1Pi Pi+1, P0, . . . ,Pk points on the path .

π/2

π/2

Total curvature of the classical path is > than the tropical total
curvature of its valuation, which is Ω(2r ) here.
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Concluding remarks

Mean payoff games are not harder than “pivoting for LP”

The central path can degenerate to a tropical simplex path and
make an exponential number of turns → current log-barrier path
following methods are not strongly polynomial.

Got polynomial time solvability result for MPG in average as a
consequence of the approach and of the polynomial time average
result for the shadow vertex rule of Adler, Karp, and Shamir
(Allamigeon, Benchimol, SG, ICALP).

Is the inequality MPG 6 LP strict?

Further work with Allamigeon, Skomra: tropicalization of SDP
→ stochastic mean payoff games (ISSAC 2016), solves generic
SDP over real nonarchimedean fields.

Can we make “an archimedean” version of the game algorithms
which apply to generic nonarchimedean LP/SDP ?
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The tentative conclusion of the story is that “detropicalization” yields
unusual instances, combinatorially tractable: tropicalization is a
formidable machine to find counter-examples.

Thank you !

Stephane Gaubert (INRIA and CMAP) Non archimedean convexity. . . HKU 73 / 73



References

M. Akian, S. Gaubert, and A. Guterman. Tropical polyhedra are equivalent to mean payoff games. International Journal of
Algebra and Computation, 22(1):125001 (43 pages), 2012. doi: 10.1142/S0218196711006674.

X. Allamigeon, P. Benchimol, S. Gaubert, and M. Joswig. Long and winding central paths, 2014a. arXiv:1405.4161.

X. Allamigeon, P. Benchimol, S. Gaubert, and M. Joswig. Tropicalizing the simplex algorithm. SIAM J. Disc. Math., 29(2):
751–795, 2015a. doi: 10.1137/130936464.
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