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To begin
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Cover and Thomas, 2nd Edition, Problem 4.16

Consider binary strings constrained to have at least one 0
and at most two 0s between any pair of 1s.
What is the growth rate of the number of such sequences
(assuming we start with a 1, for instance)?
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Cover and Thomas, 2nd Edition, Problem 4.16

Let X (n) =

 X1(n)
X2(n)
X3(n)

, where Xi(n) is the number of paths

of length n ending in state i .
Then

X (n) = AX (n−1) = A2X (n−2) = . . . = An−1X (1) = An

 1
0
0

 ,

where

A :=

 0 1 1
1 0 0
0 1 0

 .

Solution :
log ρ, where ρ is the Perron-Frobenius eigenvalue of A.

4 / 47



Perron-Frobenius eigenvalue

Every irreducible nonnegative square matrix A has an
eigenvalue ρ, called its Perron-Frobenius eigenvalue such that:

ρ > 0 (in particular ρ is real);

ρ is at least as big as the absolute value of any eigenvalue
of A;

ρ admits left and right eigenvectors that are unique up to
scaling and can be chosen to have strictly positive
coordinates;

log ρ is the “growth rate” of An.
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Courant-Fischer formula

Let A ∈ Rd×d be a positive definite matrix.
Its largest eigenvalue is given by

ρ = max
x∈Rd ,x 6=0

xT Ax
xT x

.

Is there an analogous characterization of the
Perron-Frobenius eigenvalue of an irreducible nonnegative
matrix?
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Collatz-Wielandt formula

Let A be an irreducible nonnegative d × d matrix. Then its
Perron-Frobenius eigenvalue ρ satisfies:

ρ = sup
x : x(i)>0∀i

min
1≤i≤d

∑d
j=1 a(i , j)x(j)

x(i)
,

and

ρ = inf
x : x(i)>0∀i

max
1≤i≤d

∑d
j=1 a(i , j)x(j)

x(i)
.

But Problem 4.16 goes on a different tack.
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Entropy and Problem 4.16 of Cover and Thomas

Consider all Markov chains compatible with the directed
graph giving rise to A with Perron-Frobenius eigenvalue λ.

Transition probability matrix

 0 1 0
α 0 1− α
1 0 0

 for some

0 ≤ α ≤ 1.
Maximize the entropy rate of this Markov chain over all α.
Problem 4.16 asks you to verify that this equals log ρ.
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Entropy and relative entropy

Entropy:
H(P) := −

∑
i

P(i) log P(i) .

Properties: H(P) ≥ 0, concave in P, maximized at the
uniform distribution.

Relative entropy:

D(Q‖P) =
∑

i

Q(i) log
Q(i)
P(i)

.

Properties: D(Q‖P) ≥ 0, jointly convex in (Q,P), equal to
0 iff Q = P.
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Entropy rate of a Markov chain

Consider an irreducible finite state Markov chain with
transition probabilities p(j |i) and stationary distribution π(·).
The entropy rate of the Markov chain is∑

i,j

π(i)p(j |i) log
1

p(j |i)
.

Example:

Entropy rate =
β

α+ β
h(α) +

α

α+ β
h(β) ,

where h(p) := p log 1
p + (1− p) log 1

1−p .
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Some notation

Given A, an irreducible nonnegative d × d matrix, with
Perron-Frobenius eigenvalue ρ, we will choose to write it
as

a(i , j) = er(i,j)p(j |i), for all i , j ,

where p(j |i) are transition probabilities.

Pd : probability distributions on {1, . . . ,d}.

Pd×d : probability distributions on {1, . . . ,d} × {1, . . . ,d}.
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Donsker-Varadhan characterization of the Perron-Frobenius eigenvalue

A, irreducible nonnegative d × d with P-F eigenvalue ρ.

Then

log ρ = sup
η∈G̃

∑
i,j

η(i , j)r(i , j)−
∑

i

η0(i)
∑

j

η1(j |i) log
η1(j |i)
p(j |i)

 ,

where η(i , j) = η0(i)η1(j |i) is a probability distribution, and
G̃ denotes the set of such probability distributions for which∑

i η(i , j) = η0(j).

Taking p(j |i) = 1
deg(i)

for all j such that i → j solves

Problem 4.16.
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Cumulant generating function and conjugate duality

Let Q = (Q(i),1 ≤ i ≤ d) be a probability distribution.
Let θ = (θ(1), . . . , θ(d))T be a real vector.
Then

log(
∑

i

Q(i)eθ(i)) = sup
P

(∑
i

θ(i)P(i)−
∑

i

P(i) log
P(i)
Q(i)

)
.

There is an iceberg below the little tip of this formula:

log(
∑

i Q(i)eθ(i)) is log E [eθ
T X ], where P(X = ei) = Q(i).

Given a convex function f (z) for z ∈ Rd ,

f̂ (θ) := sup
z

(
θT z − f (z)

)
is convex, and

f (z) = sup
θ

(
zT θ − f̂ (θ)

)
.
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Minimax theorem

Let f (x , y) be a function on X × Y, where:

X is a compact convex subset of some Euclidean space.
Y is a convex subset of some Euclidean space.
f is concave in x for each fixed y .
f is convex in y for each fixed x .

Then
sup

x
inf
y

f (x , y) = inf
y

sup
x

f (x , y) .
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Donsker-Varadhan from Collatz-Wielandt (1)

ρ = inf
x : x(i)>0∀i

max
1≤i≤d

∑d
j=1 a(i , j)x(j)

x(i)
,

= inf
x : x(i)>0∀i

sup
γ∈Pd

d∑
i=1

γ(i)

∑d
j=1 er(i,j)p(j |i)x(j)

x(i)

= inf
x : x(i)>0∀i

sup
γ∈Pd

d∑
i=1

d∑
j=1

γ(i)p(j |i)er(i,j)+log x(j)−log x(i)

So

log ρ = inf
u∈Rd

sup
γ∈Pd

log(
d∑

i=1

d∑
j=1

γ(i)p(j |i)er(i,j)+u(j)−u(i)) .
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Donsker-Varadhan from Collatz-Wielandt (2)

log ρ = inf
u∈Rd

sup
γ∈Pd

log(
d∑

i=1

d∑
j=1

γ(i)p(j |i)er(i,j)+u(j)−u(i)) .

= inf
u∈Rd

sup
γ∈Pd

sup
η∈Pd×d

∑
i,j

η(i , j)(r(i , j) + u(j)− u(i))

−
∑
i,j

η(i , j) log
η(i , j)

γ(i)p(j |i)


= sup

γ∈Pd

sup
η∈Pd×d

inf
u∈Rd

∑
i,j

η(i , j)(r(i , j) + u(j)− u(i))

−
∑

i

η0(i) log
η0(i)
γ(i)

−
∑

i

η0(i)
∑

j

η1(j |i) log
η1(j |i)
p(j |i)
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Donsker-Varadhan from Collatz-Wielandt (3)

log ρ = sup
η∈Pd×d

inf
u∈Rd

∑
i,j

η(i , j)(r(i , j) + u(j)− u(i))

−
∑

i

η0(i)
∑

j

η1(j |i) log
η1(j |i)
p(j |i)


= sup

η∈G̃

∑
i,j

η(i , j)r(i , j)−
∑

i

η0(i)
∑

j

η1(j |i) log
η1(j |i)
p(j |i)

 .
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Average reward Markov decision problem

Let S := {1, . . . ,d} and let U be a finite set.

[p(j |i ,u)]: transition probabilities from S to S for u ∈ U.

Assume irreducibility for convenience.

r(i ,u, j): one-step reward for transition from i to j under u.

Aim:

sup
A

lim inf
N→∞

1
N

N−1∑
m=0

r(Xm,Zm,Xm+1) ,

where A is the set of causal randomized control strategies.

Call this growth rate λ.
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Ergodic characterization of the optimal reward

Write probability distributions η(i ,u, j) as

η(i ,u, j) = η0(i)η1(u|i)η2(j |i ,u) .

Let G denote the set of η satisfying∑
i,u

η(i ,u, j) = η0(j) , for all j .

Then
λ = sup

η∈G

∑
i,u,j

η(i ,u, j)r(i ,u, j) .

This is based on linear programming duality, starting from
the average cost dynamic programming equation:

λ+ h(i) = max
u∈U

∑
j

p(j |i ,u) (r(i ,u, j) + h(j)) .
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Risk-sensitivity (1)

Consider a random reward R, whose distribution depends
on some choices.

One can incorporate sensitivity to risk by posing the
problem of maximizing E [R]− 1

2θVar(R).

θ > 0⇔ Risk-averse
θ < 0⇔ Risk-seeking

In a framework with Markovian dynamics, it is easier to
work with a criterion more aligned to large deviations
theory than the variance.
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Risk-sensitivity (2)

Write

E [e−θR] = e−θE [R]E [e−θ(R−E [R])] ' e−θE [R]

(
1 +

θ2

2
Var(R)

)
.

Hence

−1
θ

log E [e−θR] ' E [R]− 1
θ

log(1 +
θ2

2
Var(R))

' E [R]− θ

2
Var(R) .

Risk-averse ⇔ θ > 0 =⇒ Minimize E [e−θR]

Risk-seeking ⇔ θ < 0 =⇒ Maximize E [e−θR] .

The risk-seeking case corresponds to portfolio growth rate
maximization.
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Risk-sensitive control problem

Let S := {1, . . . ,d} and let U be a finite set.

[p(j |i ,u)]: transition probabilities from S to S for u ∈ U.

Assume irreducibility for convenience.

r(i ,u, j): one-step reward for transition from i to j under u.

Aim:

max
i

sup
A

lim inf
N→∞

1
N

log E
[
e
∑N−1

m=0 r(Xm,Zm,Xm+1)|X0 = i
]
,

where A is the set of causal randomized control strategies.

Call this growth rate λ.
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Statement of the problem
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Formal problem statement

Let S and U be compact metric spaces.

Let p(dy |x ,u) : S × U 7→ P(S) be a prescribed kernel.
Here P(S) is the set of probability distributions on S with
the topology of weak convergence.

Let r(x ,u, y) : S × U × S → [−∞,∞). This is the
per-stage reward function.

Causal control strategies are defined in terms of kernels
φ0(du|x0) and

φn+1(du|(x0,u0), . . . , (xn,un), xn+1) , n ≥ 0 .
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Aim:

sup
x

sup
A

lim inf
N→∞

1
N

log E
[
e
∑N−1

m=0 r(Xm,Zm,Xm+1)|X0 = x
]
,

where A is the set of causal randomized control strategies.

Call this growth rate λ.
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Technical assumptions

(A0): er(x ,u,y) ∈ C(S × U × S).

(A1): The maps (x ,u)→
∫

f (y)p(dy |x ,u), f ∈ C(S) with
‖f‖ ≤ 1, are equicontinuous.

This case where (A0) and (A1) hold is developed by a limiting
argument starting with the case with the stronger assumptions:

(A0+): Condition (A0) holds and we also have er(x ,u,y) > 0
for all (x ,u, y).

(A1+): Condition (A1) holds and we also have p(dy |x ,u)
having full support for all (x ,u).
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The first main result (1)

Define the operator T : C(S)→ C(S) by

Tf (x) := sup
φ∈P(U)

∫ ∫
p(dy |x ,u)φ(du)er(x ,u,y)f (y) .

Let C+(S) := {f ∈ C(S) : f (x) > 0 ∀x} denote the cone of
nonnegative functions in C(S).
Theorem: Under assumptions (A0+) and (A1+) there
exists a unique ρ > 0 and ψ ∈ int(C+(S)) such that

ρψ(x) = sup
φ∈P(U)

∫ ∫
p(dy |x ,u)φ(du)er(x ,u,y)ψ(y) .

Thus ρ may be considered the Perron-Frobenius
eigenvalue of T . Note that T is a nonlinear operator.
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The first main result (2)

LetM+(S) denote the set of positive measure on S. We have
the following characterizations of the Perron-Frobenius
eigenvalue.

ρ = inf
f∈int(C+(S)

sup
µ∈M+(S)

∫
Tf (x)µ(dx)∫
f (x)µ(dx)

.

ρ = sup
f∈int(C+(S)

inf
µ∈M+(S)

∫
Tf (x)µ(dx)∫
f (x)µ(dx)

.

These formulae can be viewed as a version of the
Collatz-Wielandt formula for the Perron-Frobenius
eigenvalue of the nonlinear operator T .
Finally, we have λ = log ρ.

32 / 47



33 / 47



The second main result

Theorem: Under assumptions (A0) and (A1) we have

λ = sup
η∈G

(∫ ∫ ∫
η(dx ,du,dy)r(x ,u, y)

−
∫ ∫

η̃(dx ,du)D(η2(dy |x ,u)‖p(dy |x ,u))
)
,

where η̃(dx ,du) := η0(dx)η1(du|x).

This is a generalization of the Donsker-Varadhan formula
to characterize the growth rate of reward in risk-sensitive
control.
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Structure of the proof

The Collatz-Wielandt formula for the Perron-Frobenius
eigenvalue ρ of the nonlinear operator T comes from an
application of the nonlinear Krein-Rutman theorem of
Ogiwara.
The identification of log ρ with λ comes from observing that
iterates of T form the Bellman-Nisio semigroup , so that
the eigenvalue problem for T expresses the abstract
dynamic programming principle.
The generalized Donsker-Varadhan formula under the
assumptions (A0+) and (A1+) comes from a calculation
analogous to the one giving the usual Donsker-Varadhan
formula from the usual Collatz-Wielandt formula.
The generalized Donsker-Varadhan formula under the
assumptions (A0) and (A1) comes from taking the limit in a
perturbation argument.
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Nonlinear Krein-Rutman theorem of Ogiwara Preliminaries

Let B be a real Banach space and B+ a closed convex
cone in B with vertex at 0, satisfying B+ ∩ (−B+) = {0},
and having nonempty interior.

For x , y ∈ B, write x ≥ y if x − y ∈ B+, x > y if
x − y ∈ B+ − {0}, and x � y if x − y ∈ int(B+).

T : B 7→ B, mapping B+ into itself is called:
strongly positive if x > y =⇒ Tx � Ty ;
positively homogeneous if T (αx) = αTx if x ∈ B+ and
α > 0.

Let T (n) denote the n-fold iteration of T .
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Nonlinear Krein-Rutman theorem of Ogiwara

Theorem (Ogiwara) : For a compact, strongly positive,
positively homogeneous map T from an ordered Banach
space (B,B+) to itself, limn→∞ ‖T (n)‖

1
n exists, and is

strictly positive, is an eigenvalue of T , is the only positive
eigenvalue of T , and admits an eigenvector in the interior
of B+ that is unique up to multiplication by a positive
constant.
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An application

For each u ∈ U, a finite set, let Gu be a directed graph on
S := {1, . . . ,d}, with each vertex having positive outdegree
for each u.

We wish to maximize the growth rate of the number of
paths, starting from 1 say, where we also get to choose
which graph to use at each time (possibly randomized).

Result :
Among all stationary S × U-valued Markov chains (Xn,Zn)
such that if the transition from (i ,u) to (j , v) has positive
probability then i → j is in Gu, maximize H(X1|X0,U0).

43 / 47



Another application (preliminaries)

Let S := {1, . . . ,d} and let U be a finite set.

[p(j |i ,u)]: transition probabilities from S to S for u ∈ U.

Let S0 ⊆ S and S1 := Sc
0 be nonempty.

Assume [p(j |i ,u)] is irreducible for each u.

Assume d(i ,u) :=
∑

j∈S1
p(j |i ,u) > 0 for all i ∈ S1.

Define

q(j |i ,u) := p(j |i ,u)
d(i ,u)

for i ∈ S1. u ∈ U .

44 / 47



Another application (result)

Aim:
max
i∈S1

sup
A

lim inf
N→∞

1
N

log P(τ > N) .

where τ is the first hitting time of S0.

Can be solved based on the observation that

P(τ > N) = E [e
∑N−1

m=0 log(d(Xm,Zm))] .
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The most obvious open questions

How does one remove the compactness assumptions on S
and U?

What about continuous time?

(There is a version of the generalized Collatz-Wielandt
formula for reflected controlled diffusions in a bounded
domain, due to Araposthasis, Borkar, and Suresh Kumar:
http://arxiv.org/abs/1312.5834 )
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The end
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