Block Markov Superposition Transmission: A Simple and Flexible Method for Constructing Good Codes

Xiao Ma

School of Data and Computer Science Sun Yat-sen University

Email: maxiao@mail.sysu.edu.cn

CAM2016, Hong Kong August 25, 2016

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline

Existing Good Codes

- Principle of Block Markov Superposition Transmission (BMST)
- Performance Bounds of BMST
- 4 A General Procedure of Designing BMST
- 5 BMST over High-Order Constellations
- 6 BMST Codes over Other Scenarios
- Systematic BMST Codes
- 8 Conclusions

Image: A math the second se

Outline

Existing Good Codes

- 2 Principle of Block Markov Superposition Transmission (BMST)
- 3 Performance Bounds of BMST
- 4 A General Procedure of Designing BMST
- 5 BMST over High-Order Constellations
- 6 BMST Codes over Other Scenarios
- Systematic BMST Codes
- 8 Conclusions

Theorem (Shannon 1948)

- For a channel, all rates below capacity C are achievable. Specifically, for every rate R < C, there exists a sequence of (2^{nR}, n) codes with maximal probability of error λ⁽ⁿ⁾ → 0.
- **2** Conversely, any rate above capacity C cannot be achievable. Equivalently, any sequence of $(2^{nR}, n)$ codes with $\lambda^{(n)} \to 0$ must have $R \leq C$.

Capacity for AWGN Channels

A channel with additive white Gaussian noise (AWGN) is characterised by $y_t = x_t + w_t$, where x_t , y_t and w_t are input, output and noise, respectively. For AWGN channels, the capacity per dimension is given by [Shannon 1948]

$$C = \frac{1}{2} \log \left(1 + \text{SNR}\right),$$

where SNR is the signal-to-noise ratio (SNR).

イロト イヨト イヨト イヨ

Capacity curves for AWGN Channels

Figure: Capacity curves for AWGN channels and the i.u.d. capacity limits for several constellations (BPSK, 4-PAM, QPSK, 8-PSK, 16-QAM).

Image: A math the second se

Existing Good Codes

• Turbo codes:

parallel concatenated convolutional codes (PCCC) and serial concatenated convolutional codes (SCCC);

- Low-density parity-check (LDPC) codes (either random construction or algebraic construction): From decoding aspect, they can be viewed as serially concatenated repetition codes with single parity-check codes;
- Turbo/LDPC-like codes: (irregular) repeat-accumulate (RA) codes; accumulate-repeat-accumulate (ARA) codes; concatenated zigzag codes; precoded concatenated zigzag codes;
- Polar codes: Concatenation of a series of simple transformation;
- Spatially coupled codes: Convolutional LDPC codes; braided block/convolutional codes; stair-case codes;
- Non-binary, BICM, ···

• • • •

イロト イヨト イヨト イヨト

Question

Is there a universal procedure to construct codes with

- any given (rational) code rate R, say $\frac{119}{911}$;
- any given signal constellation \mathcal{R} (with moderate size);

• • • • • • • • • •

Outline

Existing Good Codes

Principle of Block Markov Superposition Transmission (BMST)

- 3 Performance Bounds of BMST
- 4 A General Procedure of Designing BMST
- 5 BMST over High-Order Constellations
- 6 BMST Codes over Other Scenarios
- Systematic BMST Codes
- 8 Conclusions

Repetition Increases Reliability

- Consider a basic code $\mathscr{C} = [N, K]^B$
 - B-fold Cartesian product of a short block code [N, K].
- The codeword is transmitted once.
 - Performance curve in terms of BER versus SNR is shown.

Repetition Increases Reliability

- The same codeword is transmitted twice.
- The performance curve shifts to the left by $10 \log_{10} 2 = 3 \text{ dB}$.

Repetition Increases Reliability

- The same codeword is transmitted m + 1 times.
- The performance curve shifts to the left by $10 \log_{10}(m+1) \text{ dB}$.
- Repetition increases reliability but decreases efficiency (code rate).

Superposition Increases Efficiency

• In the first transmission:

The transmitter sends a codeword $v^{(0)}$ from the code $\mathscr C$ that corresponds to the first data block.

Superposition Increases Efficiency

- In the second transmission:
 - The transmitter generates the codeword $v^{(0)}$ (interleaved version) one more time;

Superposition Increases Efficiency

- In the second transmission:
 - The transmitter generates the codeword v⁽⁰⁾ (interleaved version) one more time;
 - In the meanwhile, a fresh codeword $v^{(1)}$ from \mathscr{C} that corresponds to the second data block is superimposed on the interleaved version of $v^{(0)}$.

Superposition Increases Efficiency

• In the *t*-th transmission:

- The current codeword v^(t) is superimposed on ("mixed into") the previous codeword v^(t-1) and then transmitted.
- We obtain a BMST code with memory 1.

A B A B
 A B
 A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A

Superposition Increases Efficiency

- For a BMST code with memory *m*, the *t*-th transmission is a superposition of the current codeword and the *m* previous codewords, all randomly-interleaved.
- The high SNR performance can be predicted by shifting the BER curve to the left by $10 \log_{10}(m+1)$ dB.

A B A B
 A B
 A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A

Principle of BMST – Encoding Structure

- A serially concatenated code:
 - Outer code (the *basic code*) introduces redundancy;
 - Inner code (a rate-one block-oriented feedforward convolutional encoder) introduces memory between transmissions.
- Termination procedure:
 - A tail consisting of *m* blocks of the all-zero vector is added;
 - Much simpler than for spatially coupled LDPC codes.
- Can be viewed as a class of spatially coupled codes
 - Generator matrix instead of the parity-check matrix is coupled.

 $G_{\text{BMST}} = \begin{pmatrix} G\Pi_0 & G\Pi_1 & \cdots & G\Pi_m & & & \\ & G\Pi_0 & G\Pi_1 & \ddots & G\Pi_m & & \\ & & \ddots & \ddots & \ddots & \ddots & \\ & & & & G\Pi_0 & \cdots & G\Pi_{m-1} & G\Pi_m \end{pmatrix}_{Lk \times (L+m)n}$

- L: length (in terms of blocks) of the transmitted data (coupling length).
- *m*: encoding memory (coupling width).
- G: generator matrix of the basic code.
- $\Pi_i (0 \le i \le m)$: m + 1 randomly selected permutation matrices.
- Rate of the BMST code:

$$R_{\rm BMST} = \frac{Lk}{(L+m)n} = \frac{L}{L+m}R.$$

where R is the rate of the basic code.

(日) (四) (日) (日) (日)

Principle of BMST – Decoding Algorithm

Figure: The normal graph of a BMST system with L = 4 and m = 2.

- An iterative sliding-window decoding (SWD) algorithm is used;
- Four types of nodes: C, =, +, and \prod ;
- Messages are processed and passed through different decoding layers forward and backward over the normal graph.

A D > A B > A B

Outline

Existing Good Codes

- Principle of Block Markov Superposition Transmission (BMST)
- 3 Performance Bounds of BMST
- 4 A General Procedure of Designing BMST
- 5 BMST over High-Order Constellations
- 6 BMST Codes over Other Scenarios
- Systematic BMST Codes
- 8 Conclusions

Performance Bounds of BMST - Genie-Aided Lower Bound

Genie-Aided Lower Bound

- Imagine that $\mathbf{u}' = {\mathbf{u}^{(i)}, t m \le i \le t + m, i \ne t}$ are known at the receiver.
- This is equivalent to transmitting $u^{(t)}$ for m + 1 times.
- The coding gain of the BMST can not be larger than

 $10 \log_{10}(m+1) - 10 \log_{10}(1+m/L) \text{ dB}.$

• Noticing that $\Pr\{u'|y\} \approx 1$ in the low error rate region, we can expect that the maximal coding gain $10 \log_{10}(m+1) - 10 \log_{10}(1+m/L) \text{ dB}$.

Upper Bound

- The input-output weight enumerating function (IOWEF) of the BMST system can be computed from that of the basic code.
- The BER can be upper-bounded by an improved union bound.
- Notice that an incomplete (truncated) IOWEF is sufficient for upper bounds. (See Xiao Ma, Jia Liu and Baoming T-COMM 2013).

Performance Bounds of BMST - Example

Figure: Coding gain analysis of the BMST system. The basic code is a terminated convolutional code (CC) with the polynomial generator matrix $[1, \frac{1+D+D^2}{1+D^2}]$. The coding parameters of the BMST system are m = 1, L = 19, d = 19, and $I_{\text{max}} = 18$.

< D > < P > < P > < P >

Performance Bounds of BMST - Example

Figure: Coding gain analysis of the BMST system. The basic code is a terminated convolutional code (CC) with the polynomial generator matrix $[1, \frac{1+D+D^2}{1+D^2}]$. The coding parameters of the BMST system are m = 1, L = 19, d = 19, and $I_{\text{max}} = 18$.

Performance Bounds of BMST – Example

Figure: Coding gain analysis of the BMST system. The basic code is a terminated convolutional code (CC) with the polynomial generator matrix $[1, \frac{1+D+D^2}{1+D^2}]$. The coding parameters of the BMST system are m = 1, L = 19, d = 19, and $I_{\text{max}} = 18$.

Performance Bounds of BMST - Example

Figure: Coding gain analysis of the BMST system. The basic code is a terminated convolutional code (CC) with the polynomial generator matrix $[1, \frac{1+D+D^2}{1+D^2}]$. The coding parameters of the BMST system are m = 1, L = 19, d = 19, and $I_{\text{max}} = 18$.

Image: A match a ma

Outline

Existing Good Codes

- 2 Principle of Block Markov Superposition Transmission (BMST)
- 3 Performance Bounds of BMST
- 4 A General Procedure of Designing BMST
 - 5 BMST over High-Order Constellations
- 6 BMST Codes over Other Scenarios
- Systematic BMST Codes
- 8 Conclusions

A General Procedure of Designing BMST

With the genie-aided lower bound, to construct a BMST system of a given rate R with a target BER of p_{target} , we can perform the following steps.

- Take a code $[N, K]^B$ with the given rate R as the basic code. In order to approach the channel capacity, we set the code length $n = NB \ge 10000$ in our simulations;
- **②** Find the performance curve f_{basic} (γ_b) of the basic code. From this curve, find the required SNR ($\frac{1}{\sigma^2}$) to achieve the target BER. That is, find γ_{target} such that f_{basic}(γ_{target}) ≤ p_{target};
- § Find the Shannon limit for the code rate, denoted by $\gamma_{\rm lim}$;
- **③** Determine the encoding memory by $10 \log_{10}(m+1) \ge \gamma_{target} \gamma_{lim}$. That is,

$$m = \left\lfloor 10^{\frac{\gamma_{\text{target}} - \gamma_{\text{lim}}}{10}} - 1 \right\rfloor,$$

where $\lfloor x \rceil$ stands for the integer that is closest to x.

() Generate m + 1 interleavers randomly.

イロト イヨト イヨト イヨ

Construction Examples – BMST with Different Code Rates over Binary-Input AWGN Channels (BI-AWGNC)

Table: The encoding memories required to approach the corresponding Shannon limits using BMST systems for different code rates at given target BERs

Basic codes	p_{target}	γ_{target} (dB)	$\gamma_{\rm lim}$ (dB)	$\gamma_{\mathrm{target}} - \gamma_{\mathrm{lim}} \; (dB)$	m
RC [8,1] ¹²⁵⁰	10^{-3}	0.77	-7.23	8.00	6
RC [8,1] ¹²⁵⁰	10^{-6}	4.51	-7.23	11.74	14
RC [4,1] ²⁵⁰⁰	10^{-3}	3.78	-3.80	7.58	5
RC [4,1] ²⁵⁰⁰	10^{-6}	7.52	-3.80	11.32	13
RC [2,1] ⁵⁰⁰⁰	10^{-3}	6.79	0.19	6.60	4
RC [2,1] ⁵⁰⁰⁰	10^{-6}	10.53	0.19	10.34	10
SPC [4,3] ²⁵⁰⁰	10^{-3}	7.62	3.39	4.23	2
SPC [4,3] ²⁵⁰⁰	10^{-6}	10.91	3.39	7.52	5
SPC [8,7] ¹²⁵⁰	10^{-3}	8.18	5.27	2.91	1
SPC [8,7] ¹²⁵⁰	10^{-6}	11.20	5.27	5.93	3

A D F A A F F A

A Construction Example – BMST with Rate-1/2 over BI-AWGNC

Figure: Performance of the BMST systems with the RC $[2,1]^{5000}$ as the basic code. The target BERs are 10^{-3} and 10^{-6} . The systems encode L = 100000 sub-blocks of data and decode with the SWD algorithm of a maximum iteration $I_{max} = 18$.

Figure: Performance of the BMST systems with the RC $[8, 1]^{1250}$ as the basic code. The target BERs are 10^{-3} and 10^{-6} . The systems encode L = 100000 sub-blocks of data and decode with the SWD algorithm of a maximum iteration $I_{\text{max}} = 18$.

< □ > < 🗇 >

Figure: Performance of the BMST systems with the RC $[4, 1]^{2500}$ as the basic code. The target BERs are 10^{-3} and 10^{-6} . The systems encode L = 100000 sub-blocks of data and decode with the SWD algorithm of a maximum iteration $I_{\text{max}} = 18$.

Construction Examples – BMST with Rate-3/4 over BI-AWGNC

Figure: Performance of the BMST systems with the SPC $[4,3]^{2500}$ as the basic code. The target BERs are 10^{-3} and 10^{-6} . The systems encode L = 100000 sub-blocks of data and decode with the SWD algorithm of a maximum iteration $I_{\text{max}} = 18$.

Construction Examples - BMST with Rate-7/8 over BI-AWGNC

Figure: Performance of the BMST systems with the SPC $[8,7]^{1250}$ as the basic code. The target BERs are 10^{-3} and 10^{-6} . The systems encode L = 100000 sub-blocks of data and decode with the SWD algorithm of a maximum iteration $I_{\text{max}} = 18$.

Construction Examples – BMST with Different Code Rates over BI-AWGNC

Figure: The required SNRs $(1/\sigma^2)$ for the BMST system using repetition codes and single-parity-check codes to achieve the BER of 10^{-6} over the BI-AWGNC.

• • • • • • • • • • • •

イロト イヨト イヨト

・ロト ・ 日 ・ ・ 日 ・ ・

・ロト ・ 日 ・ ・ 日 ・

イロト イヨト イヨト イ

< ロ > < 四 > < 回 > < 回 > <</p>

・ロト ・ 日 ・ ・ 日 ト

イロト イロト イヨト

• What do we mean by short code?

イロト イヨト イヨト

- What do we mean by short code?
- Can a random-generated linear code [32,16] be the basic code?

- What do we mean by short code?
- Can a random-generated linear code [32,16] be the basic code?
- Is BMST an LDPC code or a convolutional LDPC code?

- What do we mean by short code?
- Can a random-generated linear code [32, 16] be the basic code?
- Is BMST an LDPC code or a convolutional LDPC code?
- Actually, we care about neither the generator matrix nor the parity-check matrix. The basic code can even be a *non-linear* code.

Image: A matrix

- What do we mean by short code?
- Can a random-generated linear code [32, 16] be the basic code?
- Is BMST an LDPC code or a convolutional LDPC code?
- Actually, we care about neither the generator matrix nor the parity-check matrix. The basic code can even be a *non-linear* code.
- What do we really care about?

What we really care about is whether or not the basic code has efficient encoding/decoding algorithms.

Figure: Sliding-window decoding over the normal graph.

Xiao Ma (SYSU)

Multiple-Rate Codes over BI-AWGNC – Hadamard Transform (HT) Coset Codes

Table: The Memory Required for Each Code Rate Using the BMST of HT-coset Codes with N = 8 to Approach the Shannon Limit at the BER of 10^{-5}

Rate $R = K/8$	1/8	2/8	3/8	4/8	5/8	6/8	7/8
γ_K^* (dB)	-7.2	-3.8	-1.5	0.2	1.8	3.4	5.3
γ_K (dB)	3.6	6.8	7.2	8.0	9.9	10.4	10.6
$Gap\; \gamma_K - \gamma_K^* \; (dB)$	10.8	10.6	8.7	7.8	8.1	7.0	5.3
Memory m_K	11	10	6	5	5	4	2

Image: A matrix

Multiple-Rate Codes over BI-AWGNC – BMST-HT Codes

Figure: The required SNR for the BMST-HT codes $[8, K]^{1250}(1 \le K \le 7)$ to achieve the BER of 10^{-5} with BPSK signalling over AWGN channels.

Image: A matrix

Binary Multiple-Rate Codes over BI-AWGNC – Time-Sharing Repetition (R) Codes And Single-Parity-Check (SPC) Codes

Figure: The form of a codeword in an RSPC code, where the locations for information bits are shaded. The code rate can be varied from 1/N to (N-1)/N by setting $\beta = 0, 1, \dots, N-2$.

Table: The Memories Required for the BMST-RSPC Codes with N=10 to Approach the Shannon Limit at the BER of 10^{-5}

Rate K/N	$\frac{1}{10}$	$\frac{2}{10}$	$\frac{3}{10}$	$\frac{4}{10}$	$\frac{5}{10}$	$\frac{6}{10}$	$\frac{7}{10}$	$\frac{8}{10}$	$\frac{9}{10}$
γ_K^*	-8.3	-4.9	-2.8	-1.2	0.2	1.5	2.7	4.1	5.8
γ_K	2.6	10.4	10.4	10.5	10.5	10.5	10.5	10.5	10.5
Memory m_K	11	33	20	14	10	7	5	3	2

Xiao Ma (SYSU)

Multiple-Rate Codes over BI-AWGNC – BMST-RSPC Codes

Figure: The required SNR for the BMST-RSPC codes with N = 10 to achieve the BER of 10^{-5} with BPSK signalling over AWGN channels.

Outline

Existing Good Codes

- 2 Principle of Block Markov Superposition Transmission (BMST)
- **3** Performance Bounds of BMST
- 4 A General Procedure of Designing BMST
- 5 BMST over High-Order Constellations
- 6 BMST Codes over Other Scenarios
- Systematic BMST Codes
- 8 Conclusions

BMST over High-Order Constellations - Binary Codes + Nonbinary

Constellations

Figure: Binary BMST with high-order constellations.

BMST over High-Order Constellations - Nonbinary Codes +

Nonbinary Constellations

• • • • • • • • • • •

BMST over High-Order Constellations - Nonbinary Codes +

Nonbinary Constellations

Table: Construction Examples with 8-PSK Constellations over AWGN Channels

Я	$\frac{P}{Q}$	$\left(\frac{1}{N+1}, \frac{1}{N}\right)$	α	p_{target}	$\gamma_{\rm lim}$ (dB)	m
8-PSK	$\frac{1}{5}$	$\left(\frac{1}{6}, \frac{1}{5}\right)$	0	10^{-4}	-2.8	19
8-PSK	$\frac{2}{5}$	$\left(\frac{1}{3}, \frac{1}{2}\right)$	$\frac{1}{2}$	10^{-4}	1.3	17
8-PSK	$\frac{3}{5}$	$(\frac{1}{2}, 1)$	$\frac{2}{3}$	10^{-4}	4.7	15
8-PSK	$\frac{4}{5}$	$(\frac{1}{2}, 1)$	$\frac{1}{4}$	10^{-4}	8.1	7

Image: A math the second se

Figure: Performance of the BMST-RUN codes with the codes $\mathscr{C}_{RUN}[Q, P]^{150}(\frac{P}{Q} = \frac{1}{5}, \cdots, \frac{4}{5})$ as basic codes defined with 8-PSK modulation over AWGN channels.

A D F A A F F A
Outline

Existing Good Codes

- 2 Principle of Block Markov Superposition Transmission (BMST)
- **3** Performance Bounds of BMST
- 4 A General Procedure of Designing BMST
- 5 BMST over High-Order Constellations
- 6 BMST Codes over Other Scenarios
- Systematic BMST Codes
- Conclusions

Image: A math a math

(CPM) over AWGN channels

Figure: The BMST combined with minimum shift keying (MSK) modulation.

Image: A matrix

(CPM) over AWGN channels

Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the polynomial generator matrix $G(D) = [1 + D^2, 1 + D + D^2]$ with k = 10000 and n = 20004. Signals are transmitted using non-recursive MSK modulation over AWGN channels. The system encodes L = 1000 sub-blocks of data and the iterative sliding-window decoding algorithm with d = 7 and $I_{\text{max}} = 18$ is performed, where the encoding memories are specified in the legends.

(CPM) over AWGN channels

Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the polynomial generator matrix $G(D) = [1 + D^2, 1 + D + D^2]$ with k = 10000 and n = 20004. Signals are transmitted using non-recursive MSK modulation over AWGN channels. The system encodes L = 1000 sub-blocks of data and the iterative sliding-window decoding algorithm with d = 7 and $I_{\text{max}} = 18$ is performed, where the encoding memories are specified in the legends.

(CPM) over AWGN channels

Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the polynomial generator matrix $G(D) = [1 + D^2, 1 + D + D^2]$ with k = 10000 and n = 20004. Signals are transmitted using non-recursive MSK modulation over AWGN channels. The system encodes L = 1000 sub-blocks of data and the iterative sliding-window decoding algorithm with d = 7 and $I_{\text{max}} = 18$ is performed, where the encoding memories are specified in the legends.

A B A B
 A B
 A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B

(CPM) over AWGN channels

Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the polynomial generator matrix $G(D) = [1 + D^2, 1 + D + D^2]$ with k = 10000 and n = 20004. Signals are transmitted using non-recursive MSK modulation over AWGN channels. The system encodes L = 1000 sub-blocks of data and the iterative sliding-window decoding algorithm with d = 7 and $I_{\text{max}} = 18$ is performed, where the encoding memories are specified in the legends.

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(CPM) over AWGN channels

Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the polynomial generator matrix $G(D) = [1 + D^2, 1 + D + D^2]$ with k = 10000 and n = 20004. Signals are transmitted using non-recursive MSK modulation over AWGN channels. The system encodes L = 1000 sub-blocks of data and the iterative sliding-window decoding algorithm with d = 7 and $I_{\text{max}} = 18$ is performed, where the encoding memories are specified in the legends.

A B A B A B A

(CPM) over AWGN channels

Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the polynomial generator matrix $G(D) = [1 + D^2, 1 + D + D^2]$ with k = 10000 and n = 20004. Signals are transmitted using non-recursive MSK modulation over AWGN channels. The system encodes L = 1000 sub-blocks of data and the iterative sliding-window decoding algorithm with d = 7 and $I_{\text{max}} = 18$ is performed, where the encoding memories are specified in the legends.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(CPM) over AWGN channels

Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the polynomial generator matrix $G(D) = [1 + D^2, 1 + D + D^2]$ with k = 10000 and n = 20004. Signals are transmitted using non-recursive MSK modulation over AWGN channels. The system encodes L = 1000 sub-blocks of data and the iterative sliding-window decoding algorithm with d = 7 and $I_{\text{max}} = 18$ is performed, where the encoding memories are specified in the legends.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

BMST Codes over Other Scenarios – Binary + Visible Light Communication (VLC)

Figure: The VLC transmission.

Figure: BMST combined in VLC transmission.

BMST Codes over Other Scenarios – Binary + Visible Light Communication (VLC)

Figure: Performances of BMST systems with and without iterative demapping over AWGN Channels

イロト イヨト イヨト イ

BMST Codes over Other Scenarios – Nonbinary + Visible Light Communication (VLC)

Figure: Block diagram of a VLC system.

Figure: The nonbinary BMST encoder for the VLC system.

Xiao Ma (SYSU)

BMST Codes over Other Scenarios - Nonbinary + Visible Light Communication (VLC)

Figure: Error performances of the nonbinary BMST scheme under different delay requirements and dimming targets: OOK modulation and the nonbinary LDPC code $C_{64}[20, 10]$.

BMST Codes over Other Scenarios - Spatial Modulation (SM) over

Rayleigh Fading Channels

Figure: The spatial modulation with 4 transmitter antennas and 4 receiver antennas using BPSK modulation. Only one antenna is active for each transmission.

BMST Codes over Other Scenarios - Spatial Modulation (SM) over

Rayleigh Fading Channels

Figure: The spatial modulation with 4 transmitter antennas and 4 receiver antennas using BPSK modulation. Only one antenna is active for each transmission.

Figure: The BMST combined with spatial modulation.

A B A B
 A B
 A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B

BMST Codes over Other Scenarios - Spatial Modulation (SM) over

Rayleigh Fading Channels

Figure: Comparison of the BMST-SM scheme with the BICSM scheme at 4 bits/s/Hz spectral efficiency.

Image: A math a math

BMST Codes over Other Scenarios - Two-Layer Coded Spatial

Modulation (SM) over Rayleigh Fading Channels

Figure: The block diagram of the two-layer coded spatial modulation system.

Image: A matrix

BMST Codes over Other Scenarios - Two-Layer Coded Spatial

Modulation (SM) over Rayleigh Fading Channels

Figure: The block diagram for the encoding and mapping of the two-layer scheme using BMST codes.

• • • • • • • • • •

BMST Codes over Other Scenarios - Two-Layer Coded Spatial

Modulation (SM) over Raleigh Fading Channels

Figure: Mutual information for the 4×4 , $n_a = 2$ BPSK setup.

・ロト ・回ト ・ヨト

$\mathsf{BMST}\ \mathsf{Codes}\ \mathsf{over}\ \mathsf{Other}\ \mathsf{Scenarios}\ -\ {}_{\mathsf{Two-Layer}\ \mathsf{Coded}\ \mathsf{Spatial}}$

Modulation (SM) over Rayleigh Fading Channels

Figure: BER performance of the BMST-SM scheme with $m_1 = m_2 = 1$ and $L_1 = L_2 = 100$ under the 4×4 , $n_a = 2$ BPSK setup, where the spectral efficiency is 2.75 bits/channel-use and I_{max} is the number of iterations between the two layers.

BMST Codes over Other Scenarios - Coded OFDM System over

High-Mobility Channels

Figure: The block diagram of the coded OFDM system.

The receive vector can be written as

$$\mathbf{y} = \mathbf{F}\mathbf{H}_t\mathbf{F}^H\mathbf{x} + \mathbf{F}\mathbf{w}.$$

Let the frequency-domain matrix $\mathbf{H}_f = \mathbf{F}\mathbf{H}_t\mathbf{F}^H$, then the receive vector can be rewritten as

$$\mathbf{y} = \mathbf{H}_f \mathbf{x} + \mathbf{w}_f.$$

Image: A matrix

BMST Codes over Other Scenarios - Coded OFDM System over

High-Mobility Channels

Figure: Comparison of the BMST scheme with the CC for OFDM system at 2 bits/symbol/carrier spectral efficiency. 16-QAM is used over the high-mobility channel with 360 km/h. The Shannon limit is based on ZF equalization.

BMST Codes over Other Scenarios - OFDM with Index Modulation

(OFDM-IM) System over High-Mobility Channels

Figure: The block diagram of the coded OFDM-IM system.

The receive vector can be written as

$$\mathbf{y} = \mathbf{F}\mathbf{H}_t\mathbf{F}^H\mathbf{x} + \mathbf{F}\mathbf{w}.$$

Let the frequency-domain matrix $\mathbf{H}_f = \mathbf{F}\mathbf{H}_t\mathbf{F}^H$, then the receive vector can be rewritten as

$$\mathbf{y} = \mathbf{H}_f \mathbf{x} + \mathbf{w}_f.$$

Image: A matrix

BMST Codes over Other Scenarios - OFDM with Index Modulation

(OFDM-IM) System over High-Mobility Channels

Table: Simulation Parameters

Number of Subcarriers (N)	128
Number of Occuppied Subcarriers	96
Subcarrier Spacing F_c	15 KHz
Carrier Frequency (f_c)	2 GHz
Number of Multipaths (N_{tap})	9
Cyclic Prefix Length (N_{cp})	8
Velocity	360 km/h
Speed of Light (c_0)	$3 \times 10^8 \text{ m/s}$

The power-delay profile (PDP) is $P_i = \alpha e^{-0.6i}, 0 \le i \le N_{tap} - 1$, where α is a normalization constant. For IM system, we assume that one group has 4 subcarriers, i.e., we have $\binom{4}{2} = 6$ possible combinations of the selected subcarriers, and we choose $\mathcal{I} = \{(1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1), (1, 0, 0, 1)\}$ as the *index constellation*.

BMST Codes over Other Scenarios - OFDM-IM System under BPSK

Figure: Comparison of the BMST-IM, BMST-OFDM scheme and the uncoded system under BPSK.

Image: A math a math

BMST Codes over Other Scenarios - OFDM-IM System under QPSK

Figure: Comparison of the BMST-IM, BMST-OFDM scheme at 1 bits/symbol/carrier spectral efficiency under QPSK.

イロト イポト イヨト イ

Outline

Existing Good Codes

- 2 Principle of Block Markov Superposition Transmission (BMST)
- **3** Performance Bounds of BMST
- 4 A General Procedure of Designing BMST
- 5 BMST over High-Order Constellations
- 6 BMST Codes over Other Scenarios
- Systematic BMST Codes
 - Conclusions

Image: A math a math

Drawbacks

• Neither rate-compatible nor systematic;

• Do not perform well over block fading channels due to error propagation.

Recent Focus

- Support a wide range of code rates;
- Maintain essentially the same encoding/decoding hardware structure.

Drawbacks

• Neither rate-compatible nor systematic;

• Do not perform well over block fading channels due to error propagation.

Recent Focus

- Support a wide range of code rates;
- Maintain essentially the same encoding/decoding hardware structure.

Drawbacks

• Neither rate-compatible nor systematic;

• Do not perform well over block fading channels due to error propagation.

Recent Focus

- Support a wide range of code rates;
- Maintain essentially the same encoding/decoding hardware structure.

Drawbacks

• Neither rate-compatible nor systematic;

• Do not perform well over block fading channels due to error propagation.

Recent Focus

- Support a wide range of code rates;
- Maintain essentially the same encoding/decoding hardware structure.

Drawbacks

• Neither rate-compatible nor systematic;

• Do not perform well over block fading channels due to error propagation.

Recent Focus

- Support a wide range of code rates;
- Maintain essentially the same encoding/decoding hardware structure.

Systematic BMST of Repetition (BMST-R) Codes

Figure: Encoder of a systematic BMST-R code with repetition degree N and encoding memory m.

Image: Image:

Systematic BMST-R Codes - Encoding Algorithm

Encoding of Systematic BMST-R Codes

1 Initialization: For t < 0 and $1 \le i \le N - 1$, set $v_i^{(t)} = \mathbf{0} \in \mathbb{F}_2^K$.

- **2** Loop: For $t \ge 0$,
 - Repeat $\boldsymbol{u}^{(t)} N$ times such that $\boldsymbol{c}_0^{(t)} = \boldsymbol{u}^{(t)} \in \mathbb{F}_2^K$ and $\boldsymbol{v}_i^{(t)} = \boldsymbol{u}^{(t)} \in \mathbb{F}_2^K$ for $1 \le i \le N-1$;
 - For $1 \le i \le N 1$,
 - $\begin{array}{l} \bullet \quad \text{For } 0 \leq j \leq m, \text{ interleave } \boldsymbol{v}_i^{(t-j)} \text{ into } \boldsymbol{w}_i^{(t,j)} \text{ using the } (i,j)\text{-th interleaver } \boldsymbol{\Pi}_{i,j}; \\ \bullet \quad \text{Compute } \boldsymbol{c}_i^{(t)} = \sum_{0 \leq j \leq m} \boldsymbol{w}_i^{(t,j)}. \end{array}$
 - Puncture randomly K_p of K bits in $c_{N-1}^{(t)}$, resulting in $\tilde{c}_{N-1}^{(t)}$;
 - Take $c^{(t)} = \{c_0^{(t)}, c_1^{(t)}, c_2^{(t)}, \cdots, \widetilde{c}_{N-1}^{(t)}\}$ as the *t*-th block of transmission.
- **3** Termination: For t = L, L + 1, \cdots , L + m 1,
 - Set $u^{(t)} = \mathbf{0} \in \mathbb{F}_2^K$, compute $c^{(t)}$ following Loop;
 - Take the redundant check part of $c^{(t)}$ as the *t*-th block of transmission.
 - Puncturing fraction $\theta \stackrel{\Delta}{=} \frac{K_p}{K}$;

• Rate:
$$R_L = \frac{1}{N - \theta + (N - 1 - \theta)m/L}$$
.

Systematic BMST-R Codes - Decoding Algorithm

Window Decoding

Figure: Window decoder with decoding delay d = 2 operating on the normal graph of a systematic BMST-R code with N = 4, m = 1 and L = 3.

Xiao Ma (SYSU)

Systematic BMST-R Codes - Decoding Algorithm

Window Decoding

Figure: Window decoder with decoding delay d = 2 operating on the normal graph of a systematic BMST-R code with N = 4, m = 1 and L = 3.

Xiao Ma (SYSU)
Systematic BMST-R Codes - Decoding Algorithm

Window Decoding

Figure: Window decoder with decoding delay d = 2 operating on the normal graph of a systematic BMST-R code with N = 4, m = 1 and L = 3.

Systematic BMST-R Codes - Decoding Algorithm

Window Decoding

Figure: Window decoder with decoding delay d = 2 operating on the normal graph of a systematic BMST-R code with N = 4, m = 1 and L = 3.

Systematic BMST-R Codes - Relations with Existing Codes

- Systematic BMST-R codes resemble the classical rate-compatible punctured convolutional (RCPC) codes
 - Start from a rate 1/N systematic BMST-R code, where N is as large as required;
 - By puncturing, one can obtain all code rates of interest from 1/N to 1.
- The encoding of systematic BMST-R codes is block-oriented.
- The decoding is typically not implementable by the Viterbi algorithm.
- Systematic BMST-R codes can be viewed as a special class of spatially coupled codes.
- Similar to SC-LDPC codes, systematic BMST-R codes are decodable with a sliding window decoding algorithm.
- The encoding procedure for systematic BMST-R codes is simpler than for SC-LDPC codes.
- Different from existing codes, systematic BMST-R codes have a simple lower bound on the BER performance.

Upper Bound on BER Performance

• Assuming that we know the truncated input-redundancy weight enumerating function (IRWEF) $\{A_{i,j}, 0 \le i \le T\}$ of systematic BMST-R codes, the bit-error probability under MAP decoding can be upper-bounded by

$$BER_{MAP} \leq \min_{0 \leq r^* \leq T/2} \left\{ \sum_{i \leq 2r^*} \frac{i}{k} \left(\sum_j A_{i,j} Q\left(\frac{\sqrt{i+j}}{\sigma}\right) \right) + \sum_{i=r^*+1}^k \frac{\min\{i+r^*,k\}}{k} \binom{k}{i} \varepsilon^i (1-\varepsilon)^{k-i} \right\},$$

where $\varepsilon \stackrel{\Delta}{=} Q\left(\frac{1}{\sigma}\right)$.

Lower Bound on BER Performance

• The bit-error probability of a systematic BMST-R code ensemble under MAP decoding can be lower-bounded by

$$\operatorname{BER}_{\operatorname{MAP}} \geq \sum_{\ell=0}^{m+1} \binom{m+1}{\ell} \theta^{m+1-\ell} (1-\theta)^{\ell} Q\left(\frac{\sqrt{N+m(N-2)-1+\ell}}{\sigma}\right),$$

where $\boldsymbol{\theta}$ is the puncturing fraction.

Figure: Performance of systematic BMST-R codes with m = 0, m = 1 and m = 2. BPSK modulation and AWGN channels. L = 20, K = 30, and d = 3m. The truncating parameter is set to T = 60.

Figure: Performance of systematic BMST-R codes with m = 0, m = 1 and m = 2. BPSK modulation and AWGN channels. L = 20, K = 30, and d = 3m. The truncating parameter is set to T = 60.

Figure: Performance of systematic BMST-R codes with m = 0, m = 1 and m = 2. BPSK modulation and AWGN channels. L = 20, K = 30, and d = 3m. The truncating parameter is set to T = 60.

Figure: Performance of systematic BMST-R codes with m = 0, m = 1 and m = 2. BPSK modulation and AWGN channels. L = 20, K = 30, and d = 3m. The truncating parameter is set to T = 60.

Figure: Performance of systematic BMST-R codes with m = 0, m = 1 and m = 2. BPSK modulation and AWGN channels. L = 20, K = 30, and d = 3m. The truncating parameter is set to T = 60.

Systematic BMST-R Codes - Example: Code Construction

Object

- Target code rate: $R \in (0, 1)$
- Target BER: p_{target}
- To construct a code with rate $R_L \approx R$, which can approach the Shannon limit at the target BER.
- Five parameters: repetition degree N, information subsequence length K, puncturing length K_p , data block length L, and encoding memory m.

Construction Procedure

- Determine N and θ such that $\frac{1}{N-\theta} = R$. Choose sufficiently large K and K_p such that $K_p/K \approx \theta$;
- **②** Find the Shannon limit for the given code rate R and target BER p_{target} ;
- Obtermine the minimum m such that the lower bound of BER_{MAP} at the Shannon limit is not greater than the preselected target BER p_{target};
- Choose a L such that the rate loss (i.e., $R R_L$) is small;
- Senerate (m + 1)(N 1) interleavers randomly.

Figure: Required SNR to achieve a BER of 10^{-5} for finite-length systematic BMST-R codes, non-systematic BMST-R codes, (3,6)-regular SC-LDPC codes, and (4,8)-regular SC-LDPC codes as a function of decoding latency.

Figure: Required SNR to achieve a BER of 10^{-5} for finite-length systematic BMST-R codes, non-systematic BMST-R codes, (3, 6)-regular SC-LDPC codes, and (4, 8)-regular SC-LDPC codes as a function of decoding latency.

Systematic BMST-R Codes - Example: Rate-Compatible Property

Figure: Simulated decoding performance of systematic BMST-R codes with K = 500 and L = 500. The rates corresponding to the BER curves from left to right are 0.1631, 0.1959, 0.2449, 0.2801, 0.3272, 0.3929, 0.4921, 0.5623, 0.6562, and 0.7874.

Figure: Required SNR to achieve a BER of 10^{-5} for systematic BMST-R codes. The performances of three AR4JA LDPC codes with code rates 1/2, 2/3 and 4/5 in the CCSDS standard, and five PBRL LDPC codes with code rates 1/4, 1/3, 1/2, 2/3, and 4/5, all of which have information length 16384, are also included $2 + 4 \ge 4 \ge 2$

Figure: Required SNR to achieve a BER of 10^{-5} for systematic BMST-R codes. The performances of three AR4JA LDPC codes with code rates 1/2, 2/3 and 4/5 in the CCSDS standard, and five PBRL LDPC codes with code rates 1/4, 1/3, 1/2, 2/3, and 4/5, all of which have information length 16384, are also included $2 + 4 \ge 4 \ge 2$

Figure: Required SNR to achieve a BER of 10^{-5} for systematic BMST-R codes. The performances of three AR4JA LDPC codes with code rates 1/2, 2/3 and 4/5 in the CCSDS standard, and five PBRL LDPC codes with code rates 1/4, 1/3, 1/2, 2/3, and 4/5, all of which have information length 16384, are also included by the term of term of the term of the term of term of the term of term of

Systematic BMST-R Codes - Example: Block Fading Channels

Figure: Performance comparison of the systematic BMST-R code and the SC-LDPC code with BPSK modulation over a block fading channel. The (3, 6)-regular SC-LDPC codes is constructed with the protograph lifting factor 100 and three component submatrices $\mathbf{B}_0 = \mathbf{B}_1 = \mathbf{B}_2 = [1\ 1]$. The decoding latencies of two codes are the same and the same and

Definition (Ensemble 1)

The generator matrix has the form $\mathbf{G} = [\mathbf{I} \ \mathbf{P}]$ of size $k \times n$, where

$$\mathbf{P} = \begin{pmatrix} P_{1,1} & P_{1,2} & \cdots & P_{1,n-k} \\ P_{2,1} & P_{2,2} & \cdots & P_{2,n-k} \\ \vdots & \vdots & \ddots & \vdots \\ P_{k,1} & P_{k,2} & \cdots & P_{k,n-k} \end{pmatrix}$$

and $P_{i,j}$ is generated independently according to the Bernoulli distribution with success probability $Pr\{P_{i,j} = 1\} = \rho$.

(日) (同) (三) (三) (三)

Definition (Ensemble 1)

The generator matrix has the form $\mathbf{G} = [\mathbf{I} \mathbf{P}]$ of size $k \times n$, where

$$\mathbf{P} = \begin{pmatrix} P_{1,1} & P_{1,2} & \cdots & P_{1,n-k} \\ P_{2,1} & P_{2,2} & \cdots & P_{2,n-k} \\ \vdots & \vdots & \ddots & \vdots \\ P_{k,1} & P_{k,2} & \cdots & P_{k,n-k} \end{pmatrix}$$

and $P_{i,j}$ is generated independently according to the Bernoulli distribution with success probability $Pr\{P_{i,j} = 1\} = \rho$.

Theorem (Coding Theorem for Ensemble 1)

For any given $0 < \rho \le 1/2$, Ensemble 1 is capacity-achieving in terms of BER in the following sense. Given a code rate R < I(1/2). For any $\epsilon > 0$, there exist a sequence of codes $C_2[n,k]$ such that $\lim_{n\to\infty} k/n = R$ and BER is not greater than ϵ .

Definition (Ensemble 2)

The generator matrix has the form $\mathbf{G} = [\mathbf{I} \mathbf{P}]$ of size $kB \times nB$ with B > 1, where

$$\mathbf{P} = \begin{pmatrix} \mathbf{P}_{1,1} & \mathbf{P}_{1,2} & \cdots & \mathbf{P}_{1,n-k} \\ \mathbf{P}_{2,1} & \mathbf{P}_{2,2} & \cdots & \mathbf{P}_{2,n-k} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{P}_{k,1} & \mathbf{P}_{k,2} & \cdots & \mathbf{P}_{k,n-k} \end{pmatrix}$$

and $\mathbf{P}_{i,j}$ is a random matrix of size $B \times B$ with each column drawn independently and uniformly from $\mathcal{B} = \{v^B \in \mathbb{F}^B | W_H(v^B) \leq 1\}$, the collection of all binary column vectors of weight 0 or 1.

< □ > < 同 > < 回 > < Ξ > < Ξ

Definition (Ensemble 2)

The generator matrix has the form $\mathbf{G} = [\mathbf{I} \mathbf{P}]$ of size $kB \times nB$ with B > 1, where

$$\mathbf{P} = \begin{pmatrix} \mathbf{P}_{1,1} & \mathbf{P}_{1,2} & \cdots & \mathbf{P}_{1,n-k} \\ \mathbf{P}_{2,1} & \mathbf{P}_{2,2} & \cdots & \mathbf{P}_{2,n-k} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{P}_{k,1} & \mathbf{P}_{k,2} & \cdots & \mathbf{P}_{k,n-k} \end{pmatrix}$$

and $\mathbf{P}_{i,j}$ is a random matrix of size $B \times B$ with each column drawn independently and uniformly from $\mathcal{B} = \{v^B \in \mathbb{F}^B | W_H(v^B) \leq 1\}$, the collection of all binary column vectors of weight 0 or 1.

Theorem (Coding Theorem for Ensemble 2) Ensemble 2 achieves the channel capacity as $k \to \infty$. Xiao Ma (SYSU) BMST

Definition (Ensemble 3)

This ensemble is different from the above two ensembles, which is a convolutional code with memory mk and conveniently defined by an algorithm. The input to the encoder is a sequence of binary vectors $u^k(1), u^k(2), \dots, u^k(t), \dots$, where $u^k(t) \in \mathbb{F}^k$ for all $t \ge 1$. At time $t \ge 1$, the output from the encoder is $x^n(t) = (u^k(t), w^{(n-k)}(t))$ with

$$w^{(n-k)}(t) = \sum_{t-m \le j \le t} u^k(j) \mathbf{P}_{j,t},$$

where $u^k(t) = 0^k$ for t < 1 and $\mathbf{P}_{j,t}$ is a random matrix of size $k \times (n - k)$ with each column drawn independently and randomly at uniform from $\mathcal{K} = \{v^k \in \mathbb{F}_k | W_H(v^k) \le 1\}.$

(日) (四) (日) (日) (日)

Definition (Ensemble 3)

This ensemble is different from the above two ensembles, which is a convolutional code with memory mk and conveniently defined by an algorithm. The input to the encoder is a sequence of binary vectors $u^k(1), u^k(2), \cdots, u^k(t), \cdots$, where $u^k(t) \in \mathbb{F}^k$ for all $t \ge 1$. At time $t \ge 1$, the output from the encoder is $x^n(t) = (u^k(t), w^{(n-k)}(t))$ with

$$w^{(n-k)}(t) = \sum_{t-m \le j \le t} u^k(j) \mathbf{P}_{j,t},$$

where $u^k(t) = 0^k$ for t < 1 and $\mathbf{P}_{j,t}$ is a random matrix of size $k \times (n-k)$ with each column drawn independently and randomly at uniform from $\mathcal{K} = \{v^k \in \mathbb{F}_k | W_H(v^k) \le 1\}.$

Theorem (Coding Theorem for Ensemble 3)

Ensemble 3 achieves capacity as m goes to infinity.

Outline

Existing Good Codes

- 2 Principle of Block Markov Superposition Transmission (BMST)
- **3** Performance Bounds of BMST
- 4 A General Procedure of Designing BMST
- 5 BMST over High-Order Constellations
- 6 BMST Codes over Other Scenarios
- Systematic BMST Codes
- 8 Conclusions

Image: A math a math

Conclusions

- BMST codes are spatially coupled codes with simple encoding algorithm and construction method.
- BMST codes have predictable error floors (lower bound).
- BMST codes have near-capacity performance in the waterfall region.
- BMST codes have flexible construction: any basic code with SISO decoding, any rate, any signal constellation, any target BER.
- BMST codes have good performance over different scenarios (BICM, CPM, VLC, SM, OFDM, IM, Rayleigh fading channels, High-mobility channels).

Image: A math the second se

Related Works

- X. Ma, C. Liang, K. Huang, and Q. Zhuang, "Block Markov superposition transmission: Construction of big convolutional codes from short codes," *IEEE Trans. Inf. Theory*, vol. 61, no. 6, pp. 3150-3163, Jun. 2015.
- X. Ma, "Coding theorem for systematic low density generator matrix codes," in Proceeding *the 9th Int. Symp. Turbo Codes*, Brest, France, Sep. 2016.
- K. Huang and X. Ma, "Performance analysis of block Markov superposition transmission of short codes", *IEEE J. Sel. Areas Commun.*, vol. 34, pp. 362-374, Feb. 2016.
- C. Liang, X. Ma, Q. Zhuang, and B. Bai, "Spatial coupling of generator matrices: A general approach to design good codes at a target BER," *IEEE Trans. Commun.*, vol. 62, no. 12, pp. 4211-4219, Dec. 2014.
- X. Ma, C. Liang, K. Huang, and Q. Zhuang, "Obtaining extra coding gain for short codes by block Markov superposition transmission," in Proceeding *IEEE Int. Symp. Inf. Theory*, Istanbul, Turkey, Jul. 2013, pp. 2054-2058.
- K. Huang, X. Ma, and D. J. Costello, Jr., "EXIT chart analysis of block Markov superposition transmission of short codes", in Proceeding IEEE Int. Symp. Inf. Theory, Hong Kong, China, Jun. 2015, pp. 894-898.
 - C. Liang, X. Ma, Q. Zhuang, and B. Bai, "A general procedure to design good codes at a target BER," in Proceeding *the 8th Int. Symp. Turbo Codes*, Bremen, Germany, 18-22, Aug. 2014, pp. 92-96.

< □ > < 同 > < 回 > < 回 >

Related Works

- C. Liang, J. Hu, X. Ma, and B. Bai, "A new class of multiple-rate codes based on block Markov superposition transmission," submitted to *IEEE Trans. Signal Process.*, vol. 63, no. 16, pp. 4236-4244, Aug. 15, 2015.
- C. Liang, X. Ma, and B. Bai, "Block Markov superposition transmission of RUN codes", *IEEE Trans. Commun.*, accepted, Aug. 2016.
- J. Hu, X. Ma, and C. Liang, "Block Markov superposition transmission of repetition and single-parity-check codes," *IEEE Commun. Lett.*, vol. 19, no. 2, pp. 131-134, Feb. 2015.
 - K. Huang, X. Ma, and B. Bai, "Systematic block Markov superposition transmission of repetition codes," in Proceeding *IEEE Int. Symp. Inf. Theory*, Barcelona, Spain, Jul. 2013, pp. 1929-1933.
 - J. Hu, C. Liang, X. Ma, and B. Bai, "A new class of multiple-rate codes based on block Markov superposition transmission," in Proceeding *Int. Workshop High Mobility Wirel. Commun.*, Beijing, China, Nov. 2014, pp. 109-114.
 - C. Liang, X. Ma, and B. Bai, "Spatial coupling of RUN codes via block Markov superposition transmission," in Proceeding *Int. Workshop High Mobility Wirel. Commun.*, Xi'an, China, Oct. 2015, pp. 6-10.
 - X. Ma, K. Huang and B. Bai, "Systematic block Markov superposition transmission of repetition codes," Submitted to *IEEE Trans. Inf. Theory*, 2016. [Online]. Available: http://arxiv.org/abs/1601.05193

イロト イボト イヨト イヨ

Related Works

- L. Wang, C. Liang, Z. Yang, and X. Ma, "Two-layer coded spatial modulation with block Markov superposition transmission," *IEEE Trans. Commun.*, vol. 64, no. 2, pp. 643-653, Feb. 2016.
- S. Zhao and X. Ma, "A low-complexity delay-tunable coding scheme for visible light communication systems," *IEEE Photonics Tech. Lett.*, vol. 28, no. 18, pp. 1964-1967, Sep. 15 2016.
- C. Liang, K. Huang, X. Ma, and B. Bai, "Block Markov superposition transmission with bit-interleaved coded modulation," *IEEE Commun. Lett.*, vol. 18, no. 3, pp. 397-400, Mar., 2014.
- X. Xu, C. Wang, Y.-J. Zhu, X. Ma, and X. Zhang, "Block Markov superposition transmission of short codes for indoor visible light communications," *IEEE Commun. Lett.*, vol. 19, no. 3, pp. 359-362, Mar. 2015.
- X. Liu, C. Liang, and X. Ma, "Block Markov superposition transmission of convolutional codes with MSK signaling," *IET Commun.*, vol. 9, no. 1, pp. 71-77, Jan. 2015.
 - Z. Yang, C. Liang, X. Xu, and X. Ma, "Block Markov superposition transmission with spatial modulation," *IEEE Wirel. Commun. Lett.*, vol. 3, no. 6, pp. 565-568, Dec. 2014.
 - L. Wang, Y. Zhang, and X. Ma, "Block Markov superposition transmission for high-speed railway wireless communication systems," in Proceeding *Int. Workshop High Mobility Wirel. Commun.*, Xi'an, China, Oct. 2015, pp. 61-65.
 - L. Wang, and X. Ma, "Coded index modulation with block Markov superposition transmission for highly mobile OFDM systems," in Proceeding 2016 IEEE 83rd Veh. Tech. Conf. (VTC Spring), Nanjing, China, C

- - K. Huang, C. Liang, X. Ma, and B. Bai, "Unequal error protection by partial superposition transmission using low-density parity-check codes," *IET Commun.*, vol. 8, no. 13, pp. 2348-2355, Sep. 2014.
 - K. Huang, C. Liang, and X. Ma, "Unequal error protection using LDPC codes by partial superposition transmission," in Proceeding Int. Workshop High Mobility Wirel. Commun., Shanghai, China, Nov. 2014, pp. 110-114.
 - Q. Zhuang, J. Liu, and X. Ma, "Upper bounds on the ML decoding error probability of general codes over AWGN channels," [Online]. Available: http://arxiv.org/abs/1308.3303.
 - Q. Zhuang, X. Ma, and A. Kavčić, "Bounds on the ML decoding error probability of RS-Coded modulation over AWGN channels," [Online]. Available: http://arxiv.org/abs/1401.5305.

Image: A math a math

Related Peoples

Xiao Ma

Baoming Bai

Chulong Liang

Kechao Huang

Qiutao Zhuang

Jingnan Hu

Leijun Wang

Zhihua Yang

Xiaopei Xu

Shancheng Zhao

イロン イロン イヨン イヨン

Huicong Zeng

Xiying Liu

Yunhong Zhang

• This work was partially supported by the 973 Program (No. 2012CB316100), the 863 Program (No. 2015AA01A709), and the China NSF (No. 91438101 and No. 61172082).

イロト イヨト イヨト イ

Thank You for Your Attention!

・ロト ・回 ト ・ ヨト ・