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The Channel Coding Theorem

Theorem (Shannon 1948)
1 For a channel, all rates below capacity C are achievable. Specifically, for

every rate R < C , there exists a sequence of (2nR,n) codes with maximal
probability of error λ(n) → 0.

2 Conversely, any rate above capacity C cannot be achievable. Equivalently,
any sequence of (2nR,n) codes with λ(n) → 0 must have R ≤ C .

Capacity for AWGN Channels

A channel with additive white Gaussian noise (AWGN) is characterised by
yt = xt + wt , where xt , yt and wt are input, output and noise, respectively. For
AWGN channels, the capacity per dimension is given by [Shannon 1948]

C =
1

2
log (1 + SNR) ,

where SNR is the signal-to-noise ratio (SNR).
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Capacity curves for AWGN Channels
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Figure: Capacity curves for AWGN channels and the i.u.d. capacity limits for several
constellations (BPSK, 4-PAM, QPSK, 8-PSK, 16-QAM).
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Existing Good Codes

Turbo codes:
parallel concatenated convolutional codes (PCCC) and serial concatenated
convolutional codes (SCCC);

Low-density parity-check (LDPC) codes (either random construction or
algebraic construction): From decoding aspect, they can be viewed as serially
concatenated repetition codes with single parity-check codes;

Turbo/LDPC-like codes:
(irregular) repeat-accumulate (RA) codes;
accumulate-repeat-accumulate (ARA) codes;
concatenated zigzag codes;
precoded concatenated zigzag codes;

Polar codes: Concatenation of a series of simple transformation;

Spatially coupled codes: Convolutional LDPC codes; braided
block/convolutional codes; stair-case codes;

· · ·

Non-binary, BICM, · · ·
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Question

Question
Is there a universal procedure to construct codes with

any given (rational) code rate R, say 119
911 ;

any given signal constellation A (with moderate size);

2-PAM/BPSK 4-PAM 16-QAM8-PSK 8-AMPM

any given target error performance (of interest), say, 10−4, 10−6, or 10−15.
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Principle of Block Markov Superposition
Transmission (BMST)
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Consider a basic code C = [N ,K ]B

B-fold Cartesian product of a short block code [N ,K ].

The codeword is transmitted once.

Performance curve in terms of BER versus SNR is shown.
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The same codeword is transmitted twice.

The performance curve shifts to the left by 10 log10 2 = 3 dB.
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Repetition Increases Reliability

The same codeword is transmitted m + 1 times.

The performance curve shifts to the left by 10 log10(m + 1) dB.

Repetition increases reliability but decreases efficiency (code rate).

Xiao Ma (SYSU) BMST August 25, 2016 9 / 83



Principle of Block Markov Superposition
Transmission (BMST)
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Superposition Increases Efficiency

In the first transmission:

The transmitter sends a codeword v (0) from the code C that corresponds to
the first data block.

Xiao Ma (SYSU) BMST August 25, 2016 10 / 83



Principle of Block Markov Superposition
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Superposition Increases Efficiency

In the second transmission:

The transmitter generates the codeword v (0) (interleaved version) one more
time;
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Superposition Increases Efficiency

In the second transmission:

The transmitter generates the codeword v (0) (interleaved version) one more
time;
In the meanwhile, a fresh codeword v (1) from C that corresponds to the
second data block is superimposed on the interleaved version of v (0).
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Principle of Block Markov Superposition
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Superposition Increases Efficiency

In the t-th transmission:

The current codeword v (t) is superimposed on (“mixed into”) the previous
codeword v (t−1) and then transmitted.

We obtain a BMST code with memory 1.
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Superposition Increases Efficiency

For a BMST code with memory m, the t-th transmission is a superposition of
the current codeword and the m previous codewords, all randomly-interleaved.

The high SNR performance can be predicted by shifting the BER curve to the
left by 10 log10(m + 1) dB.
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Principle of BMST – Encoding Structure
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A serially concatenated code:

Outer code (the basic code) introduces redundancy;
Inner code (a rate-one block-oriented feedforward convolutional encoder)
introduces memory between transmissions.

Termination procedure:

A tail consisting of m blocks of the all-zero vector is added;
Much simpler than for spatially coupled LDPC codes.

Can be viewed as a class of spatially coupled codes

Generator matrix instead of the parity-check matrix is coupled.
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Principle of BMST – Matrix Representation

GBMST =


GΠ0 GΠ1 · · · GΠm

GΠ0 GΠ1
. . . GΠm

. . .
. . .

. . .
. . .

GΠ0 · · · GΠm−1 GΠm


Lk×(L+m)n

L: length (in terms of blocks) of the transmitted data (coupling length).

m: encoding memory (coupling width).

G: generator matrix of the basic code.

Πi (0 ≤ i ≤ m): m + 1 randomly selected permutation matrices.

Rate of the BMST code:

RBMST =
Lk

(L + m)n
=

L

L + m
R,

where R is the rate of the basic code.
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Principle of BMST – Decoding Algorithm
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Figure: The normal graph of a BMST system with L = 4 and m = 2.

An iterative sliding-window decoding (SWD) algorithm is used;

Four types of nodes: C , =, +, and
∏

;

Messages are processed and passed through different decoding layers forward
and backward over the normal graph.
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Performance Bounds of BMST – Genie-Aided Lower Bound
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Figure: The genie-aided lower bound system.

Genie-Aided Lower Bound

Imagine that u′ = {u(i), t −m ≤ i ≤ t + m , i , t} are known at the receiver.

This is equivalent to transmitting u (t) for m + 1 times.

The coding gain of the BMST can not be larger than

10 log10(m + 1) − 10 log10(1 + m/L) dB.

Noticing that Pr{u ′|y } ≈ 1 in the low error rate region, we can expect that
the maximal coding gain 10 log10(m + 1) − 10 log10(1 + m/L) dB.
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Performance Bounds of BMST – Upper Bound

Upper Bound

The input-output weight enumerating function (IOWEF) of the BMST
system can be computed from that of the basic code.

The BER can be upper-bounded by an improved union bound.

Notice that an incomplete (truncated) IOWEF is sufficient for upper bounds.
(See Xiao Ma, Jia Liu and Baoming T-COMM 2013).
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Performance Bounds of BMST – Example
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Figure: Coding gain analysis of the BMST system. The basic code is a terminated
convolutional code (CC) with the polynomial generator matrix [1, 1+D+D2

1+D2 ]. The coding
parameters of the BMST system are m = 1, L = 19, d = 19, and Imax = 18.
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A General Procedure of Designing BMST

With the genie-aided lower bound, to construct a BMST system of a given rate R
with a target BER of ptarget, we can perform the following steps.

1 Take a code [N ,K ]B with the given rate R as the basic code. In order to approach
the channel capacity, we set the code length n = NB ≥ 10000 in our simulations;

2 Find the performance curve fbasic (γb) of the basic code. From this curve, find the
required SNR ( 1

σ2 ) to achieve the target BER. That is, find γtarget such that
fbasic(γtarget) ≤ ptarget;

3 Find the Shannon limit for the code rate, denoted by γlim;

4 Determine the encoding memory by 10 log10(m + 1) ≥ γtarget − γlim. That is,

m =

⌊
10

γtarget−γlim
10 − 1

⌉
,

where bx e stands for the integer that is closest to x .

5 Generate m + 1 interleavers randomly.
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Construction Examples – BMST with Different Code Rates over

Binary-Input AWGN Channels (BI-AWGNC)

Table: The encoding memories required to approach the corresponding Shannon limits
using BMST systems for different code rates at given target BERs

Basic codes ptarget γtarget (dB) γlim (dB) γtarget−γlim (dB) m

RC [8,1]1250 10−3 0.77 −7.23 8.00 6

RC [8,1]1250 10−6 4.51 −7.23 11.74 14

RC [4,1]2500 10−3 3.78 −3.80 7.58 5

RC [4,1]2500 10−6 7.52 −3.80 11.32 13

RC [2,1]5000 10−3 6.79 0.19 6.60 4

RC [2,1]5000 10−6 10.53 0.19 10.34 10

SPC [4,3]2500 10−3 7.62 3.39 4.23 2

SPC [4,3]2500 10−6 10.91 3.39 7.52 5

SPC [8,7]1250 10−3 8.18 5.27 2.91 1

SPC [8,7]1250 10−6 11.20 5.27 5.93 3
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A Construction Example – BMST with Rate-1/2 over BI-AWGNC
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Figure: Performance of the BMST systems with the RC [2, 1]5000 as the basic code. The
target BERs are 10−3 and 10−6. The systems encode L = 100000 sub-blocks of data and
decode with the SWD algorithm of a maximum iteration Imax = 18.
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target BERs are 10−3 and 10−6. The systems encode L = 100000 sub-blocks of data and
decode with the SWD algorithm of a maximum iteration Imax = 18.
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A Construction Example – BMST with Rate-1/2 over BI-AWGNC
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Figure: Performance of the BMST systems with the RC [2, 1]5000 as the basic code. The
target BERs are 10−3 and 10−6. The systems encode L = 100000 sub-blocks of data and
decode with the SWD algorithm of a maximum iteration Imax = 18.
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Construction Examples – BMST with Rate-1/8 over BI-AWGNC
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Figure: Performance of the BMST systems with the RC [8, 1]1250 as the basic code. The
target BERs are 10−3 and 10−6. The systems encode L = 100000 sub-blocks of data and
decode with the SWD algorithm of a maximum iteration Imax = 18.
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Construction Examples – BMST with Rate-1/4 over BI-AWGNC
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Figure: Performance of the BMST systems with the RC [4, 1]2500 as the basic code. The
target BERs are 10−3 and 10−6. The systems encode L = 100000 sub-blocks of data and
decode with the SWD algorithm of a maximum iteration Imax = 18.
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Construction Examples – BMST with Rate-3/4 over BI-AWGNC

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 
Shannon limit of rate 3/4

BMST,  m = 2,  d = 6,  p
target

 = 10−3

BMST,  m = 5,  d = 15,  p
target

 = 10−6

Lower bound for  m = 2
Lower bound for  m = 5

Figure: Performance of the BMST systems with the SPC [4, 3]2500 as the basic code.
The target BERs are 10−3 and 10−6. The systems encode L = 100000 sub-blocks of data
and decode with the SWD algorithm of a maximum iteration Imax = 18.
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Construction Examples – BMST with Rate-7/8 over BI-AWGNC
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Figure: Performance of the BMST systems with the SPC [8, 7]1250 as the basic code.
The target BERs are 10−3 and 10−6. The systems encode L = 100000 sub-blocks of data
and decode with the SWD algorithm of a maximum iteration Imax = 18.
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Construction Examples – BMST with Different Code Rates over

BI-AWGNC
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Performance of the BMST system
Capacity bound with BPSK signalling

Figure: The required SNRs (1/σ2) for the BMST system using repetition codes and
single-parity-check codes to achieve the BER of 10−6 over the BI-AWGNC.
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What does the performance curve look like?

Xiao Ma (SYSU) BMST August 25, 2016 27 / 83



What does the performance curve look like?

Xiao Ma (SYSU) BMST August 25, 2016 27 / 83



What does the performance curve look like?

Xiao Ma (SYSU) BMST August 25, 2016 27 / 83



What does the performance curve look like?

Xiao Ma (SYSU) BMST August 25, 2016 27 / 83



What does the performance curve look like?

Xiao Ma (SYSU) BMST August 25, 2016 27 / 83



What does the performance curve look like?

Xiao Ma (SYSU) BMST August 25, 2016 27 / 83



What does the performance curve look like?

Xiao Ma (SYSU) BMST August 25, 2016 27 / 83



What code can be the basic code?

What do we mean by short code?

Can a random-generated linear code [32, 16] be the basic code?

Is BMST an LDPC code or a convolutional LDPC code?

Actually, we care about neither the generator matrix nor the parity-check
matrix. The basic code can even be a non-linear code.

What do we really care about?
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What we really care about is whether or not the basic code
has efficient encoding/decoding algorithms.
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Figure: Encoding of BMST with memory m.
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Multiple-Rate Codes over BI-AWGNC – Hadamard Transform

(HT) Coset Codes
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Table: The Memory Required for Each Code Rate Using the BMST of HT-coset Codes
with N = 8 to Approach the Shannon Limit at the BER of 10−5

Rate R = K /8 1/8 2/8 3/8 4/8 5/8 6/8 7/8

γ∗K (dB) -7.2 -3.8 -1.5 0.2 1.8 3.4 5.3

γK (dB) 3.6 6.8 7.2 8.0 9.9 10.4 10.6

Gap γK −γ
∗
K (dB) 10.8 10.6 8.7 7.8 8.1 7.0 5.3

Memory mK 11 10 6 5 5 4 2
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Multiple-Rate Codes over BI-AWGNC – BMST-HT Codes
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Capacity bound with BPSK modulation
Performance of the BMST−HT codes

Figure: The required SNR for the BMST-HT codes [8,K ]1250(1 ≤ K ≤ 7) to achieve the
BER of 10−5 with BPSK signalling over AWGN channels.
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Binary Multiple-Rate Codes over BI-AWGNC – Time-Sharing

Repetition (R) Codes And Single-Parity-Check (SPC) Codes

Repetition C

2N

Repetition SP CSP

Figure: The form of a codeword in an RSPC code, where the locations for information
bits are shaded. The code rate can be varied from 1/N to (N − 1)/N by setting
β = 0, 1, · · · ,N − 2.

Table: The Memories Required for the BMST-RSPC Codes with N = 10 to Approach
the Shannon Limit at the BER of 10−5

RateK /N 1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10

γ∗
K

−8.3 −4.9 −2.8 −1.2 0.2 1.5 2.7 4.1 5.8

γK 2.6 10.4 10.4 10.5 10.5 10.5 10.5 10.5 10.5

MemorymK 11 33 20 14 10 7 5 3 2
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Multiple-Rate Codes over BI-AWGNC – BMST-RSPC
Codes
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Figure: The required SNR for the BMST-RSPC codes with N = 10 to achieve the BER
of 10−5 with BPSK signalling over AWGN channels.
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BMST over High-Order Constellations – Binary Codes + Nonbinary

Constellations

Binary 
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Figure: Binary BMST with high-order constellations.
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BMST over High-Order Constellations – Binary BMST + 8-PSK

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 E
b
/N

0
(dB)

B
E

R

 

 
Shannon limit, unconstraint
Shannon limit, 8−PSK
CC,  k = 5500,  n = 11004,  m = 1

Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1 + D2, 1 + D + D2] with k = 5500 and n = 11004.
Signals are transmitted using 8-PSK modulation with Gray mapping over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm is performed, where the encoding memories and the
decoding delays are specified in the legends.
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polynomial generator matrix G(D) = [1 + D2, 1 + D + D2] with k = 5500 and n = 11004.
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BMST over High-Order Constellations – Nonbinary Codes +

Nonbinary Constellations

RUNu(t)
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Figure: Nonbinary BMST with high-order constellations. RUN stands a nonbinary code
over groups.
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BMST over High-Order Constellations – Nonbinary Codes +

Nonbinary Constellations

Table: Construction Examples with 8-PSK Constellations over AWGN Channels

A P
Q

(
1

N+1 ,
1
N

)
α ptarget γlim (dB) m

8-PSK 1
5

(
1
6 ,

1
5

)
0 10−4 −2.8 19

8-PSK 2
5

(
1
3 ,

1
2

)
1
2 10−4 1.3 17

8-PSK 3
5

(
1
2 ,1

)
2
3 10−4 4.7 15

8-PSK 4
5

(
1
2 ,1

)
1
4 10−4 8.1 7
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BMST over High-Order Constellations – Nonbinary BMST + 8-PSK
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Figure: Performance of the BMST-RUN codes with the codes
CRUN[Q ,P ]150( P

Q
= 1

5
, · · · , 4

5
) as basic codes defined with 8-PSK modulation over

AWGN channels.
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BMST Codes over Other Scenarios – Continuous Phase Modulation

(CPM) over AWGN channels
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Figure: The BMST combined with minimum shift keying (MSK) modulation.
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BMST Codes over Other Scenarios – Continuous Phase Modulation

(CPM) over AWGN channels
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Shnnon limit of rate 1/2
CC,  k = 10000,  n = 20004,  m = 0

Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1 + D2, 1 + D + D2] with k = 10000 and
n = 20004. Signals are transmitted using non-recursive MSK modulation over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with d = 7 and Imax = 18 is performed, where the
encoding memories are specified in the legends.
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Figure: The basic code is a terminated 4-state (2, 1, 2) convolutional code defined by the
polynomial generator matrix G(D) = [1 + D2, 1 + D + D2] with k = 10000 and
n = 20004. Signals are transmitted using non-recursive MSK modulation over AWGN
channels. The system encodes L = 1000 sub-blocks of data and the iterative
sliding-window decoding algorithm with d = 7 and Imax = 18 is performed, where the
encoding memories are specified in the legends.
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BMST Codes over Other Scenarios – Binary + Visible Light

Communication (VLC)
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BMST Codes over Other Scenarios – Binary + Visible Light

Communication (VLC)

0 5 10 15 20 25 30 35
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0(dB)

B
E

R

 

 

BMST 3−wicks OOK,m=1,d=3
BMST 3−wicks OOK with ID,m=1,d=3
CC, k=5500,n=11004,m=1
lowerbound for m=1
shannon limit,unconstrained
limit 3−wicks OOK

Figure: Performances of BMST systems with and without iterative demapping over
AWGN Channels
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BMST Codes over Other Scenarios – Nonbinary + Visible Light

Communication (VLC)

Figure: Block diagram of a VLC system.

Figure: The nonbinary BMST encoder for the VLC system.
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BMST Codes over Other Scenarios – Nonbinary + Visible Light

Communication (VLC)

Figure: Error performances of the nonbinary BMST scheme under different delay
requirements and dimming targets: OOK modulation and the nonbinary LDPC code
C64[20, 10].
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BMST Codes over Other Scenarios – Spatial Modulation (SM) over

Rayleigh Fading Channels AntennaSelectingBPSK SymbolSelectingu=(b1, b2) b1(2 bits) xb2(1 bit) SM Demapper û
Figure: The spatial modulation with 4 transmitter antennas and 4 receiver antennas
using BPSK modulation. Only one antenna is active for each transmission.
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BMST Codes over Other Scenarios – Spatial Modulation (SM) over

Rayleigh Fading Channels
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Figure: Comparison of the BMST-SM scheme with the BICSM scheme at 4 bits/s/Hz
spectral efficiency.
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BMST Codes over Other Scenarios – Two-Layer Coded Spatial

Modulation (SM) over Rayleigh Fading Channels
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BMST Codes over Other Scenarios – Two-Layer Coded Spatial

Modulation (SM) over Rayleigh Fading Channels
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BMST Codes over Other Scenarios – Two-Layer Coded Spatial

Modulation (SM) over Raleigh Fading Channels
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Figure: Mutual information for the 4 × 4, na = 2 BPSK setup.
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BMST Codes over Other Scenarios – Two-Layer Coded Spatial

Modulation (SM) over Rayleigh Fading Channels
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Figure: BER performance of the BMST-SM scheme with m1 = m2 = 1 and
L1 = L2 = 100 under the 4 × 4, na = 2 BPSK setup, where the spectral efficiency is 2.75
bits/channel-use and Imax is the number of iterations between the two layers.
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BMST Codes over Other Scenarios – Coded OFDM System over

High-Mobility Channels
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Figure: The block diagram of the coded OFDM system.

The receive vector can be written as

y = FHtF
Hx + Fw.

Let the frequency-domain matrix Hf = FHtF
H , then the receive vector can be

rewritten as
y = Hf x + wf .
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Figure: Comparison of the BMST scheme with the CC for OFDM system at 2
bits/symbol/carrier spectral efficiency. 16-QAM is used over the high-mobility channel
with 360 km/h. The Shannon limit is based on ZF equalization.
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BMST Codes over Other Scenarios – OFDM with Index Modulation

(OFDM-IM) System over High-Mobility Channels
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Figure: The block diagram of the coded OFDM-IM system.

The receive vector can be written as

y = FHtF
Hx + Fw.

Let the frequency-domain matrix Hf = FHtF
H , then the receive vector can be

rewritten as
y = Hf x + wf .
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BMST Codes over Other Scenarios – OFDM with Index Modulation

(OFDM-IM) System over High-Mobility Channels

Table: Simulation Parameters

Number of Subcarriers (N) 128
Number of Occuppied Subcarriers 96
Subcarrier Spacing Fc 15 KHz
Carrier Frequency (fc) 2 GHz
Number of Multipaths (Ntap) 9
Cyclic Prefix Length (Ncp) 8
Velocity 360 km/h
Speed of Light (c0) 3 × 108 m/s

The power-delay profile (PDP) is Pi = αe−0.6i , 0 ≤ i ≤ Ntap − 1, where α is a
normalization constant. For IM system, we assume that one group has 4
subcarriers, i.e., we have

(
4
2

)
= 6 possible combinations of the selected subcarriers,

and we choose I = {(1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1), (1, 0, 0, 1)} as the index
constellation.
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BMST Codes over Other Scenarios – OFDM-IM System under BPSK
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Figure: Comparison of the BMST-IM, BMST-OFDM scheme and the uncoded system
under BPSK.
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BMST Codes over Other Scenarios – OFDM-IM System under QPSK
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Figure: Comparison of the BMST-IM, BMST-OFDM scheme at 1 bits/symbol/carrier
spectral efficiency under QPSK.
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Drawbacks of BMST Codes

Drawbacks

0 0 0 01 1 1

W(1,0) W(1,1)

U(0) U(1) U(2) U(L-1)

C(0) C(1) C(2) C(L-1) C(L)

W(2,0)

V(1) V(2) V(L-1)V(0)

W(0,0) W(0,1) W(L-1,0)W(L-2,1)
W(L-1,1)

Neither rate-compatible nor systematic;
Do not perform well over block fading channels due to error propagation.

Recent Focus
Rate-compatible systematic BMST codes

Support a wide range of code rates;
Maintain essentially the same encoding/decoding hardware structure.
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Systematic BMST of Repetition (BMST-R) Codes
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Figure: Encoder of a systematic BMST-R code with repetition degree N and encoding
memory m.
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Systematic BMST-R Codes – Encoding Algorithm

Encoding of Systematic BMST-R Codes

1 Initialization: For t < 0 and 1 ≤ i ≤ N − 1, set v (t)
i = 0 ∈ FK2 .

2 Loop: For t ≥ 0,

Repeat u (t) N times such that c(t)
0 = u (t) ∈ FK2 and v (t)

i = u (t) ∈ FK2 for
1 ≤ i ≤ N − 1;
For 1 ≤ i ≤ N − 1,

1 For 0 ≤ j ≤ m, interleave v (t−j )
i into w (t ,j )

i using the (i , j )-th interleaver Πi ,j ;

2 Compute c(t)
i =

∑
0≤j≤m w (t ,j )

i .

Puncture randomly Kp of K bits in c(t)
N−1, resulting in c̃(t)

N−1;

Take c(t) = {c(t)
0 , c

(t)
1 , c

(t)
2 , · · · , c̃

(t)
N−1} as the t-th block of transmission.

3 Termination: For t = L, L + 1, · · · , L + m − 1,

Set u (t) = 0 ∈ FK2 , compute c(t) following Loop;
Take the redundant check part of c(t) as the t-th block of transmission.

Puncturing fraction θ
∆
=

Kp

K ;

Rate: RL = 1
N−θ+(N−1−θ)m/L .
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Systematic BMST-R Codes – Decoding Algorithm

Window Decoding
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Figure: Window decoder with decoding delay d = 2 operating on the normal graph of a
systematic BMST-R code with N = 4, m = 1 and L = 3.
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Systematic BMST-R Codes – Relations with Existing Codes

Systematic BMST-R codes resemble the classical rate-compatible punctured
convolutional (RCPC) codes

Start from a rate 1/N systematic BMST-R code, where N is as large as
required;
By puncturing, one can obtain all code rates of interest from 1/N to 1.

The encoding of systematic BMST-R codes is block-oriented.

The decoding is typically not implementable by the Viterbi algorithm.

Systematic BMST-R codes can be viewed as a special class of spatially
coupled codes.

Similar to SC-LDPC codes, systematic BMST-R codes are decodable with a
sliding window decoding algorithm.

The encoding procedure for systematic BMST-R codes is simpler than for
SC-LDPC codes.

Different from existing codes, systematic BMST-R codes have a simple lower
bound on the BER performance.
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Systematic BMST-R Codes – Performance Bounds

Upper Bound on BER Performance

Assuming that we know the truncated input-redundancy weight enumerating
function (IRWEF) {Ai ,j , 0 ≤ i ≤ T } of systematic BMST-R codes, the
bit-error probability under MAP decoding can be upper-bounded by

BERMAP ≤ min
0≤r ∗≤T/2

{ ∑
i≤2r ∗

i

k

∑
j

Ai ,jQ

( √
i + j

σ

)
+

k∑
i=r ∗+1

min{i + r ∗, k }

k

(
k

i

)
εi (1 − ε)k−i

}
,

where ε
∆
= Q

(
1
σ

)
.

Lower Bound on BER Performance
The bit-error probability of a systematic BMST-R code ensemble under MAP
decoding can be lower-bounded by

BERMAP ≥

m+1∑
`=0

(
m + 1

`

)
θm+1−`(1 − θ)`Q

( √
N + m(N − 2) − 1 + `

σ

)
,

where θ is the puncturing fraction.
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Systematic BMST-R Codes – Example: Performance Bounds
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Figure: Performance of systematic BMST-R codes with m = 0, m = 1 and m = 2. BPSK
modulation and AWGN channels. L = 20, K = 30, and d = 3m. The truncating
parameter is set to T = 60.
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Systematic BMST-R Codes – Example: Code Construction

Object

Target code rate: R ∈ (0, 1)
Target BER: ptarget

To construct a code with rate RL ≈ R, which can approach the Shannon
limit at the target BER.

Five parameters: repetition degree N , information subsequence length K ,
puncturing length Kp , data block length L, and encoding memory m.

Construction Procedure
1 Determine N and θ such that 1

N−θ = R. Choose sufficiently large K and Kp

such that Kp/K ≈ θ;

2 Find the Shannon limit for the given code rate R and target BER ptarget;

3 Determine the minimum m such that the lower bound of BERMAP at the
Shannon limit is not greater than the preselected target BER ptarget;

4 Choose a L such that the rate loss (i.e., R − RL) is small;

5 Generate (m + 1)(N − 1) interleavers randomly.
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Systematic BMST-R Codes – Example: Equal Decoding Latency
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Figure: Required SNR to achieve a BER of 10−5 for finite-length systematic BMST-R
codes, non-systematic BMST-R codes, (3, 6)-regular SC-LDPC codes, and (4, 8)-regular
SC-LDPC codes as a function of decoding latency.
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Systematic BMST-R Codes – Example: Rate-Compatible Property
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Figure: Simulated decoding performance of systematic BMST-R codes with K = 500 and
L = 500. The rates corresponding to the BER curves from left to right are 0.1631,
0.1959, 0.2449, 0.2801, 0.3272, 0.3929, 0.4921, 0.5623, 0.6562, and 0.7874.
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Systematic BMST-R Codes – Example: Bandwidth Efficiency
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Figure: Required SNR to achieve a BER of 10−5 for systematic BMST-R codes. The
performances of three AR4JA LDPC codes with code rates 1/2, 2/3 and 4/5 in the
CCSDS standard, and five PBRL LDPC codes with code rates 1/4, 1/3, 1/2, 2/3, and
4/5, all of which have information length 16384, are also included.
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Systematic BMST-R Codes – Example: Block Fading Channels
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Figure: Performance comparison of the systematic BMST-R code and the SC-LDPC
code with BPSK modulation over a block fading channel. The (3, 6)-regular SC-LDPC
codes is constructed with the protograph lifting factor 100 and three component
submatrices B0 = B1 = B2 = [1 1]. The decoding latencies of two codes are the same.
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Three Ensembles of Low Density Generator Matrix
(LDGM) Codes – Ensemble 1

Definition (Ensemble 1)

The generator matrix has the form G = [I P] of size k × n, where

P =


P1,1 P1,2 · · · P1,n−k

P2,1 P2,2 · · · P2,n−k

...
...

. . .
...

Pk ,1 Pk ,2 · · · Pk ,n−k


and Pi ,j is generated independently according to the Bernoulli distribution with
success probability Pr{Pi ,j = 1} = ρ.

Theorem (Coding Theorem for Ensemble 1)

For any given 0 < ρ ≤ 1/2, Ensemble 1 is capacity-achieving in terms of BER in
the following sense. Given a code rate R < I (1/2). For any ε > 0, there exist a
sequence of codes C2[n , k ] such that limn→∞ k/n = R and BER is not greater
than ε.
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Three Ensembles of Low Density Generator Matrix
(LDGM) Codes – Ensemble 2

Definition (Ensemble 2)

The generator matrix has the form G = [I P] of size kB × nB with B > 1, where

P =


P1,1 P1,2 · · · P1,n−k

P2,1 P2,2 · · · P2,n−k

...
...

. . .
...

Pk ,1 Pk ,2 · · · Pk ,n−k


and Pi ,j is a random matrix of size B × B with each column drawn independently
and uniformly from B = {vB ∈ FB |WH (vB ) ≤ 1}, the collection of all binary
column vectors of weight 0 or 1.

Theorem (Coding Theorem for Ensemble 2)

Ensemble 2 achieves the channel capacity as k → ∞.
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Three Ensembles of Low Density Generator Matrix
(LDGM) Codes – Ensemble 3

Definition (Ensemble 3)

This ensemble is different from the above two ensembles, which is a convolutional
code with memory mk and conveniently defined by an algorithm. The input to the
encoder is a sequence of binary vectors uk (1), uk (2), · · · , uk (t), · · · , where
uk (t) ∈ Fk for all t ≥ 1. At time t ≥ 1, the output from the encoder is
xn (t) = (uk (t),w (n−k )(t)) with

w (n−k )(t) =
∑

t−m≤j≤t

uk (j )Pj ,t ,

where uk (t) = 0k for t < 1 and Pj ,t is a random matrix of size k × (n − k ) with
each column drawn independently and randomly at uniform from
K = {vk ∈ Fk |WH (vk ) ≤ 1}.

Theorem (Coding Theorem for Ensemble 3)

Ensemble 3 achieves capacity as m goes to infinity.
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Conclusions

Conclusions
BMST codes are spatially coupled codes with simple encoding algorithm and
construction method.

BMST codes have predictable error floors (lower bound).

BMST codes have near-capacity performance in the waterfall region.

BMST codes have flexible construction: any basic code with SISO decoding,
any rate, any signal constellation, any target BER.

BMST codes have good performance over different scenarios (BICM, CPM,
VLC, SM, OFDM, IM, Rayleigh fading channels, High-mobility channels).
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