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Introduction

I NAND flash memories have been used widely in real-life
applications such as storage devices for computers and
cellphones.

I Flash memories have been more vulnerable to various device
or circuit level noises due to the rapidly growing density.

I Various fault-tolerance techniques such as error correction
coding and constrained coding have been proposed to
overcome this problem.

I Error correction codes: BCH codes Sun et al. 2007, LDPC
codes by Wang et al. 2011 and Dong et al. 2011, rank
modulation by Jiang et al. 2009;

I Constrained codes: Qin et al. 2014 and Taranalli et al. 2015.
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Introduction

I The other direction is to model flash memory by
communication channels and then analyze their theoretical
information limits; Representative work includes Dong et al.
2011 and 2012, Cai et al. 2013, Li et al. 2014, Taranalli et al.
2015.

I In 2014 based on Dong et al. 2011, Asadi et al. proposed a
more mathematically tractable communication channel, which
incorporates inter-symbol interference and output memory.

In this work, we mainly focus on Asadi et al.’s channel model.
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Flash Memory Channel

Channel Model

Y0 = X0 + W0 + U0,

Yn = Xn + AnXn−1 + Bn(Yn−1 − En−1) + Wn + Un, n ≥ 1
Assumptions

(i) {Xi} is the channel input process, taking values from a finite

alphabet X 4= {v0, v1, · · · , vM−1}.
(ii) {Ai}, {Bi}, {Ei} and {Wi} are i.i.d. Gaussian random

processes with mean 0 and variance σ2
A, 0 < σ2

B < 1, σ2
E and

1, respectively;

(iii) {Ai}, {Bi}, {Ei}, {Wi}, {Ui} and {Xi} are mutually
independent;

(iv) {Ui} is an i.i.d. random process with the uniform distribution
over (α1, α2).
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Channel Model

Remarks

I Flash memory channel is not stationary in the sense that the
output process is not stationary even if the input is stationary.

I Flash memory channels is a channel which possesses input and
output memory.

I Flash memory channel is a channel with infinite states if
(xi , yi ) is regarded as the state for the channel at time i + 1.
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Yonglong Li Aleksandar Kavčić Guangyue Han The University of Hong Kong The University of Hawaii



Channel Model

Remarks

I Flash memory channel is not stationary in the sense that the
output process is not stationary even if the input is stationary.

I Flash memory channels is a channel which possesses input and
output memory.

I Flash memory channel is a channel with infinite states if
(xi , yi ) is regarded as the state for the channel at time i + 1.
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Capacity

Shannon Capacity

CShannon = lim
n→∞

1

n + 1
sup
p(xn0 )

I (X n
0 ;Y n

0 ).

m-th Order Markov Capacity

C
(m)
Markov = sup I (X ;Y ),

where the supremum is taken over all m-th order stationary
Markov chains X .

Stationary Capacity

CS = sup I (X ;Y ) = sup lim
n→∞

1

n + 1
I (X n

0 ;Y n
0 ),

where the supremum is taken over all stationary processes X .
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Main Result

Main Theorem
Let C be the operational capacity of the flash memory channel,
that is, C is the supremum of the achievable rates. Then

C = CShannon = CS = lim
m→∞

C
(m)
Markov .

Yonglong Li Aleksandar Kavčić Guangyue Han The University of Hong Kong The University of Hawaii



Markov Approximation
I In general, for channels with memory or states there is no

closed-form characterization of channel capacity.

I A natural idea is using the so-called Markov approximation

scheme to numerically compute C
(m)
Markov and its capacity

achieving distribution.
I Two known algorithms:

I P. O. Vontobel, A. Kavčić, D. M. Arnold, and H. A. Loeliger,
“A generalization of the Blahut-Arimoto algorithm to
finite-state channels,” IEEE Trans. Inf. Theory, vol. 54, no. 5,
pp. 1887–1918, May 2008.

I G. Han, “A randomized algorithm for the capacity of
finite-state channels,” IEEE Trans. Inf. Theory, vol. 61, no. 7,
pp. 3651-3669, July 2015.

Remark
This theorem justifies the effectiveness of Markov approximation
for multilevel NAND flash memory channels.
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Asymptotic Mean Stationarity
One of the main tools that will be used in this work is the so-called
asymptotic mean stationarity (AMS).

I Let T : RN → RN be the left shift operator defined by

Tx = (x1, x2, · · · ) for x = (x0, x1, x2, · · · ) ∈ RN.

I A probability measure µ on RN is said to be asymptotically
mean stationary if there exists a probability measure µ̄ such
that for any Borel set A ⊂ RN,

µ̄(A) = lim
n→∞

1

n

n∑
i=1

µ(T−iA); (1)

And µ̄ in (1), if it exists, is said to be the stationary mean of
µ.

I The process {Yn} is said to be asymptotically mean stationary
if the associated measure PY is asymptotically mean
stationary.
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Asymptotic Mean Stationarity

The following theorem gives an analog of Birkhoff’s ergodic
theorem for asymptotically mean stationary processes.

Theorem
Suppose that PY is asymptotically mean stationary with stationary
mean P̄Y . If EP̄Y

[|Y0|] <∞, then

lim
n→∞

1

n

n∑
i=1

Yi exists PY − a.s.

Yonglong Li Aleksandar Kavčić Guangyue Han The University of Hong Kong The University of Hawaii



Asymptotic Mean Stationarity

The following two theorems relate convergences with respect to
the measure PY and its stationary mean P̄Y .

Theorem
If PY is symptotically mean stationary with stationary mean P̄Y ,
then

lim
n→∞

1

n

n∑
i=1

Yi exists PY−a.s. if and only if lim
n→∞

1

n

n∑
i=1

Yi exists P̄Y−a.s.

Also, if the limiting function as above is integrable (with respect
to PY or P̄Y ), then

EPY

[
lim
n→∞

1

n

n∑
i=1

Yi

]
= EP̄Y

[
lim
n→∞

1

n

n∑
i=1

Yi

]
.
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Asymptotic Mean Stationarity

Theorem (A.Barron,1985)

Suppose that PY is asymptotically mean stationary with stationary
mean P̄Y , and suppose that for each n, there exists k = k(n) such
that IPY

(Y n
1 ;Y∞k+n+1|Y

n+k
n+1 ) is finite. If for some shift invariant

random variable Z (i.e., Z = Z ◦ T ),

lim
n→∞

1

n
log f̄ (Y n

1 ) = Z , P̄Y − a.s.,

then we have

lim
n→∞

1

n
log f (Y n

1 ) = Z , PY − a.s.

Yonglong Li Aleksandar Kavčić Guangyue Han The University of Hong Kong The University of Hawaii



Indecomposability

The flash memory channel is “indecomposable” in the following
sense.

Lemma
a) For any k ≤ n, xnk , yk and ỹk , we have∫ ∞
−∞

∣∣∣fYn|X n
k ,Yk

(yn|xnk , yk)− fỸn|X n
k ,Ỹk

(yn|xnk , ỹk)
∣∣∣ dyn ≤ σ2(n−k)

B (y2
k + ỹ2

k ).

b) For any k, n, xn and yn and x̂n0 , we have∫ ∞
−∞

∣∣∣fYn|X n
0

(ŷ |x̂n0 )− fYn+k+1|X n+k+1
k+1 ,Xk ,Yk

(ŷ |x̂n0 , xk , yk)
∣∣∣ dŷ

≤ σ2n
B (σ2

Ax
2
k + 2σ2

B(y2
k + σ2

E )).
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Proof of the Main Theorem

Proof of CS ≤ C
I We prove the AEP for flash memory channel model. Let X be

a stationary and ergodic input process and Y be the output
by passing X through the flash memory channel. Then (X ,Y )
is asymptotic mean stationary and ergodic and also with
probability 1,

− 1

n + 1
log f (Y n

0 )→ H(Y );

1

n + 1
log

f (Y n
0 |X n

0 )

f (Y n
0 )

→ I (X ;Y ).

I For any rate R < CS and ε > 0, choose a stationary ergodic
input process X such that R < I (X ;Y )− ε. As shown above,
{X ,Y } satisfies the AEP, we can complete the proof of the
achievability by going through the usual random coding
argument.

Yonglong Li Aleksandar Kavčić Guangyue Han The University of Hong Kong The University of Hawaii



Proof of the Main Theorem

PY is AMS

I P(Yk ∈ A) =
∑

xk0
pX k

0
(xk0 )pYk |X k

0
(A|xk0 ).

I P(Yk+1 ∈ A) =
∑

x̃0,xk0

{
pX k+1

1
(xk0 )pX0|X k+1

1
(x̃0|xk0 )

×
∫
fY0|X0

(ỹ |x̃0) pYk+1|X k+1
1 ,X0,Y0

(A|xk0 , x̃0, ỹ)dỹ
}

I |P(Yk+1 ∈ A)− P(Yk ∈ A)| ≤ Mσ2k
B .

I limn→∞
1
n

∑n
k=0 P(Yk ∈ A) exists.
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Proof of the Main Theorem

Existence of H(Y )

I Uniform integrability of {Y 2
n } under PY , together with

PYn(·)→ P̄Y (·), implies that

EP̄Y
[Y 2

0 ] = lim
n→∞

E[Y 2
n ] <∞.

I Under PY , with probability 1, limn→∞
1
n

∑n
i=0 Y

2
n exists.

I | log f (Y n
0 )| ≤ M0 + M1

∑n
i=0 Y

2
i .

I E
[
− 1

n+1 log f (Y n
0 )
]
→ H(Y ).

Yonglong Li Aleksandar Kavčić Guangyue Han The University of Hong Kong The University of Hawaii



Proof of the Main Theorem

Proof of CS ≥ limm→∞ C
(m)
Markov

This can be shown by observing that stationary Markov processes
is a subclass of stationary processes.

Proof of CS ≤ limm→∞ C
(m)
Markov

I It suffices to show that for any ε > 0 and any stationary and
ergodic process X , one can find an m-th order Markov chain
X̃ such that

I (X̃ ; Ỹ ) ≥ I (X ;Y )− ε.
I Given X , construct the m-th order Markov chain X̃ by setting

P(X̃m
0 = xm0 ) = P(Xm

0 = xm0 ).

Yonglong Li Aleksandar Kavčić Guangyue Han The University of Hong Kong The University of Hawaii
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Proof of Main Theorem

Proof of CS ≤ limm→∞ C
(m)
Markov

H(X̃ |Ỹ ) ≤ lim
s→∞

1

s(m + 1)

s−1∑
i=0

{
H(X̃

(i+1)m+i
im+i )− I (X̃

(i+1)m+i
im+i ; Ỹ

(i+1)m+i
im+i )

}
≤ lim

s→∞

1

s(m + 1)

s−1∑
i=0

{
H(X̃m

0 )− I (X̃m
0 ; Ỹm

0 ) + ε
}

=
1

m + 1
H(X̃m

0 |Ỹm
0 ) +

ε

m + 1

=
1

m + 1
H(Xm

0 |Ym
0 ) +

ε

m + 1
.
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Proof of Main Theorem

Proof of CS ≤ limm→∞ C
(m)
Markov

I (X̃ ; Ỹ ) = H(X̃ )− H(X̃ |Ỹ ) ≥ H(X̃ )− 1

m + 1
H(X̃m

0 |Ỹm
0 )

= H(X̃m|X̃m−1
0 )− 1

m + 1
H(Xm

0 |Ym
0 )− ε

m + 1

= H(Xm|Xm−1
0 )− 1

m + 1
H(Xm

0 |Ym
0 )− ε

m + 1

≥ H(X )− 1

m + 1
H(Xm

0 |Ym
0 )− ε

m + 1

≥ I (X ;Y )− ε.
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Conclusion and Future Work

Conclusion

(a) For a multilevel NAND flash memory channel under mild
assumptions, we prove that such a channel is indecomposable
and it features asymptotic equipartition property;

(b) We prove equalities among operational capacity, Shannon
capacity, Stationary capacity and Markov capacity.
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Conclusion and Future Work

Future Work

(a) Investigate the concavity of I (X ;Y ) with respect to the
parameters of the input Markov chain.

(b) Numerically compute the Markov capacity and its capacity
achieving distributions by generalizing the GBAA or Han’s
randomized algorithm.

(c) Investigate the effectiveness of Markov approximation for the
two dimensional flash memory channel.
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Thanks for Your Attention!
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