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Discrete Distributions

Discrete support set X

{heads, tails} = {h, t} Z

Distribution p over X , probability px for x ∈ X

px ≥ 0 ∑x∈X px = 1

p = (ph, pt) ph = .6, pt = .4

P collection of distributions

PX all distributions over X

P{h, t} = {(ph, pt)} = {(.6, .4), (.4, .6), (.5, .5), (0,1), . . .}
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Distributions Property

f ∶ PX → R

Maps distribution to real value, also called functional

Shannon entropy H(p) ∑x px log 1
px

Support size S(p) ∑x 1px>0
Support coverage Sm(p) ∑x(1 − (1 − px)

m)

Expected # distinct symbols in m samples
Distance to uniformity Luni(p) ∑x ∣px −

1
∣X ∣

∣

Rényi entropy Hα(p)
1

1−α log (∑x p
α
x)

Highest probability max(p) max{px ∶ x ∈ X}

Many applications
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Symmetric Properties

f invariant under label permutations

H(p) Hα(p) S(p) Sm(p) Luni(p) max(p)

Non-symmetric: f depends on labels

ph
ph
pt

ph ⋅ pt, if ∣X ∣ > 2
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Additive Properties

f(p) = ∑x f(px)

S(p) ∶= ∑x 1px>0

H(p) = ∑x px log 1
px

Sr(p)

Luni(p)

Non-additive

Hα(p) ∶=
1

1−α
log (∑x p

α
x)

max(p) ∶= max{px ∶ x ∈ X}

Most results apply to additive symmetric properties
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Property Estimation

Given: support set X , property f

Unknown: p ∈ PX

Estimate: f(p)

Entropy of English words

Given: X = {English words}, f =H, unknown: p, estimate: H(p)

# species in habitat

Given: X = {bird species}, f = S, unknown: p, estimate: S(p)

Learn from examples

Observe n independent samples Xn =X1, . . . ,Xn ∼ p

Estimate f(p)
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Estimators

Estimator: f est ∶ X n → R

Estimate: f est(Xn)

7 / 36



Plug-in Estimators

Simple two-step estimators

Use Xn to derive estimate pest(Xn) of p

Plug-in f(pest(Xn)) to estimate f(p)

If as n→∞, pest(Xn)→ p, then f(pest(Xn))→ f(p)

What is the simplest pest?

8 / 36



Empirical Estimator

n samples

Nx # times x appears

pemp
x ∶= Nx

n

Entropy estimation

X = {a, b, c} p = (pa, pb, pc) = (.5, .3, .2)

Estimate H(p) from n = 10 samples

X10 = c, a, b, a, b, a, b, a, b, c

pemp = (.4, .4, .2)

Hemp(X10) =H(.4, .4, .2)

Best-known, most widely-used distribution estimator

Relatively easy to analyze
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Best Estimator?

Min-max formulation

Given: Property f , collection P of distributions over X

n i.i.d. samples Xn from unknown p ∈ P

Property value f(p) – unknown

Estimator’s value f est(Xn)

Estimator’s absolute loss ∣f est(Xn) − f(p)∣

Expected loss Lf(f est, p, n) ∶= EXn∼p∣f est(Xn) − f(p)∣

Worst-case loss Lf(f est,P, n) ∶= maxp∈PX Lf(f
est, p, n)

Minimum worst-case loss Lf(P, n) ∶= minfest Lf(f
est,P, n)
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Abbreviation

Symmetric properties

PX all distributions over X

Dependence on X only through k = ∣X ∣

H over {cat, dog} same as over {ma, shu}

Lf(PX , n) → Lf(k,n)
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Prior work: Min-max Error up to Constant Factors

References: P03, VV11a/b,WY14/19, JVHW14, AOST14, OSW16, ADOS17, JVW18

Property Base function L(f emp, k, n) L(k,n)

Entropy 1 p(x) log 1
p(x)

k
n +

logn√
n

k
n logn +

logn√
n

Supp. coverage2 (1 − (1 − p(x))r) r exp (−Θ(n
r
)) r exp (−Θ(

n logn
r ))

Power sum 3 4 p(x)α, α ∈ (0, 12]
k
nα

k
(n logn)α

p(x)α, α ∈ (12 ,1)
k
nα +

k1−α√
n

k
(n logn)α +

k1−α√
n

Dist. to uniform5 ∣p(x) − 1
k ∣

√
k
n

√
k

n logn

Support size6 1p(x)>0 k exp (−Θ(n
k
)) k exp(−Θ(

√
n logn
k ))

n to n logn when comparing the worst-case performances

1n ≳ k for empirical; n ≳ k/ log k for minimax
2n ≳ r for empirical; n ≳ r/ log r for minimax
3α ∈ (0, 1

2
]: n ≳ k1/α for empirical; n ≳ k1/α

logk
and log k ≳ logn for minimax

4α ∈ ( 1
2
,1): n ≳ k1/α for empirical; n ≳ k1/α

logk
for minimax

5n ≳ k for empirical; n ≳ k/ log k and log k ≳ logn for minimax
6consider P≥1/k instead of PX ; k log k ≳ n ≳ k/ log k for minimax
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Why is Empirical Suboptimal?

Intuitive, simple

Why does it work at all?
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Maximum Likelihood

For i.i.d. p ∈ PX , the probability of observing xn ∈ X n

p(xn) ∶= Pr
Xn∼p

(Xn
= xn) =

n

∏
i=1
p(xi)

Maximum likelihood estimator: xn → dist. p maximizing p(xn)

pml
(xn) = arg max

p
p(xn)

pml
(h, t, h) = arg max

ph
p2h ⋅ (1 − ph) → ph = 2/3, pt = 1/3

Identical to empirical estimator – always

Good: distribution that best explains observation

Sub-optimal for all properties in table

ML / EF work well for small alphabets large sample

Overfit data when alphabet is large relative to sample size
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Can we improve?

iid: Do not care about order

Symmetric properties: Do not care about specific values

(h,h,t), (t,t,h), (h,t,h), (t,h,t), (t,h,h), (h,t,t) same entropy

Care only: # of elements appearing any given number of times

Three samples: 1 element appeared once, 1 element appeared twice

Profile: ϕ = {1,2}
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Profile maximum likelihood (PML)

Profile ϕ(xn) of xn is the multiset of its symbol frequencies

xn = a ba c c d e Ô⇒ a c appears twice, b d e appear once
Ô⇒ ϕ(xn) = {2,2,1,1,1}

Probability of observing a profile ϕ when sampling from p is

p(ϕ) ∶= ∑
yn∶ϕ(yn)=ϕ

p(yn) = ∑
yn∶ϕ(yn)=ϕ

n

∏
i=1
p(yi)

[OSVZ04] Profile maximum likelihood maps xn to

pml
ϕ(xn) ∶= argmax

p∈PX
p(ϕ(xn))
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PML: Experimental performance
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PML: Experimental performance
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PML: Experimental performance
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PML: Experimental performance
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PML: Experimental performance
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PML: Experimental performance
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PML: Experimental performance

23 / 36



PML: Experimental performance
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PML: Experimental performance
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PML: Experimental performance
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Proof Elements
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Is unlikely likely?

Upper bound probability of observing unlikely outcomes

p: distribution over Z

δ > 0

z ∈ Z is δ-unlikely if p(z) ≤ δ

Pr(observing a δ − unlikely outcome) = ∑z∈Z≤δ p(z) ≤ ∑z∈Z≤δ δ =
δ ⋅ ∣Z≤δ ∣.
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Competitiveness of PML

Consider the problem of symmetric property estimation

Φn: collection of profiles associated with samples of size n

Lemma Suppose f̂ ∶ Φn → R is such that for all p ∈ PX ,

Pr
ϕ∼p(∣f̂(ϕ) − f(p)∣ > ε) < δ,

then the PML plug-in estimator satisfies [ADOS17]

Pr
ϕ∼p (∣f(p

ml
ϕ ) − f(p)∣ > 2 ⋅ ε) < δ ⋅ exp(3

√
n)
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Competitiveness of PML

Proof: Consider any p ∈ PX

Φn
≥δ ∶= {ϕ ∈ Φn ∶ p(ϕ) ≥ δ}

For ϕ ∈ Φn
≥δ:

∣f̂(ϕ) − f(p)∣ ≤ ε (condition in the lemma)

pml
ϕ (ϕ) ≥ p(ϕ) ≥ δ, hence ∣f̂(ϕ) − f(pml

ϕ )∣ ≤ ε

Triangle inequality: ∣f(pml
ϕ ) − f(p)∣ ≤ 2ε

Therefore,

Pr
ϕ∼p (∣f(p

ml
ϕ ) − f(p)∣ > 2ε) ≤ Pr

ϕ∼p(ϕ /∈ Φn
≥δ) ≤ δ ⋅ ∣Φn∣

Finally, ∣Φn∣ is exactly the number of partitions of
integer n, which ≤ exp(3

√
n) by the well-known result*

of Hardy and Ramanujan

*Hardy, G. H. and Ramanujan, S. “Asymptotic Formulae in Combinatory Analysis.”
Proc. London Math. Soc. 17, 75-115, 1918. 30 / 36



Sample Complexity Formulation

p an unknown distribution in PX

Given an i.i.d. sample Xn ∼ p

Estimate f(p) by estimator f̂

Min-max sample complexity nf(∣X ∣, ε, δ)

minimum n necessary to

ensure ∣f̂(Xn) − f(p)∣ ≤ ε with probability ≥ 1 − δ

for every p ∈ PX

Equivalent to result in table

31 / 36



The Broad Optimality of PML [HO19a]

Profile maximum likelihood (PML) is a unified time-
and sample-optimal approach to four fundamental problems:

additive property estimation, Rényi entropy estimation,
uniformity testing, and sorted distribution estimation.

.
Hao, Y., & Orlitsky, A. (2019). The Broad Optimality of Profile Maximum Likelihood.
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Additive property estimation

Theorem For every f in a broad class of symmetric additive
properties, including all Lipschitz properties, any X , p ∈ PX , and
n ≥ nf(∣X ∣, ε,1/3), if ε ≥ n−0.1,

Pr (∣f(pml
ϕ(X4n)) − f(p)∣ > 5ε) ≤ exp(−

√
n).

Can use APML [CSS19], approximating PML in near linear time.
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Observations

Prior work either:

Used different estimators for different properties

Applied a plug-in estimator for only few properties

(A)PML apply to all additive Lipschitz properties and more

Essentially strengthens original table

Runs in near-linear time
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Additional results

α-Rényi entropy estimation

For integer α > 1, PML plug-in has optimal k1−1/α sample complexity

For non-integer α > 3/4, (A)PML plug-in improves best-known results

Sorted distribution estimation

Under `1 distance, (A)PML yields optimal Θ(k/(ε2 log k)) sample
complexity for sorted distribution estimation

Uniformity testing: p = pu v.s. ∣p− pu∣ ≥ ε; complexity Θ(
√
k/ε2)

Tester below is sample-optimal up to logarithmic factors of k

Input: parameters k, ε, and a sample Xn
∼ p with profile ϕ

If any symbol appears ≥ 3 max{1, n/k} log k times, return 1

If ∣∣pml
ϕ − pu∣∣2 ≥ 3ε/(4

√
k), return 1; else, return 0
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Thank You!
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