
Sub-additive functionals, information theory, and non-convex
optimization

Chandra Nair

The Chinese University of Hong Kong

Workshop on Probability and Information Theory

21st August, 2019



Sub-additive functionals, information theory, and non-convex
optimization

• Introduction

? Building blocks

? How to test the optimality of coding schemes

? Where do the optimization problems arise?

• Sub-additive functionals

? Gallager-style proofs of sub-additivity
? Consequences: inequalities and Gaussian optimality

• Observations and potential future directions
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Point-to-point communication

M Encoder
Xn

W⊗n
Y n

Decoder M̂

A rate R is achievable if there exists a sequence of encoding/decoding maps so that
P(M 6= M̂)→ 0 as n→∞. Capacity, C(W ) := sup{R : R is achievable }.

Shannon

Random coding can be used to achieve

R(W ) = sup
µ(x)

I(X;Y )

where I(X;Y ) :=
∑
x,y

µX,Y (x, y) log

(
µX,Y (x, y)

µX(x)µY (y)

)
I(X;Y ): mutual information between X and Y

Question: Is R(W ) = C(W )? (YES) (Shannon '48)
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Testing optimality

It is easy (why?) to see that R(W ) is optimal if and only if

R(W ⊗W ) = 2R(W ) ∀ W.

The above equality (additivity) follows if the following sub-additivity holds:

I(X1, X2;Y1, Y2) ≤ I(X1;Y1) + I(X2;Y2).

I(X1, X2;Y1, Y2) = I(X1, X2;Y1) + I(X1, X2;Y2|Y1)
= I(X1, X2;Y1) + I(Y1, X1, X2;Y2)− I(Y1;Y2)
= I(X1;Y1) + I(X2;Y2)− I(Y1;Y2)
≤ I(X1;Y1) + I(X2;Y2).

Note: Computing R(W ) = supp(x) I(X;Y ) is relatively easy, since I(X;Y ) is a
concave function of p(x).
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Sub-additivity

A functional de�ned over a probability simplex is said to be
sub-additive if

F12(µX1,X2) ≤ F1(µX1) + F2(µX2) ∀ µX1,X2 .

In above, since W is �xed, I(X;Y ) is a functional over µX , the space of
input distributions.
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1. Multiple Access Channel (uplink) (Shannon '61)

M1

M2

Encoder 1

Encoder 2
Xn

2

Xn
1

W (y|x1, x2)
Y n

Decoder (M̂1, M̂2)

rfwireless-world

Ahlswede

Random coding can be used to achieve rate pairs
(R1, R2) that satisfy

R1 ≤ I(X1;Y |X2, Q)

R2 ≤ I(X2;Y |X1, Q)

R1 +R2 ≤ I(X1, X2;Y |Q)

for some p(q)p(x1|q)p(x2|q); it su�ces to consider
|Q| ≤ 2. Call this region R(W ).

Question: Is this the capacity (optimal) region? (YES) (Ahlswede '72)
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Testing optimality

De�ne, for λ ≥ 1,

Sλ(W ) = max
(R1,R2)∈R(W )

{
λR1 +R2}

= max
p1(x1)p2(x2)

{
(λ− 1)I(X1;Y |X2) + I(X1, X2;Y )

}

The above equality (additivity) follows if the following sub-additivity holds:

(λ− 1)I(X11, X12;Y1, Y2|X21, X22) + I(X11, X12, X21, X22;Y1, Y2)

≤ (λ− 1)I(X11;Y1|X21) + I(X11, X21;Y1)

+ (λ− 1)I(X12;Y2|X22) + I(X12, X22;Y2)
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Testing optimality

De�ne, for λ ≥ 1,
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As before, R(W ) is optimal if and only if
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One can establish this in same way as point-to-point setting.
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2. Broadcast channel (downlink) (Cover '72)

(M0,M1,M2) Encoder
Xn

Wa(y1|x)

Wb(y2|x)

Y n
1

Y n
2

Decoder 1

Decoder 2

M̂0, M̂1

M̃0, M̃2

rfwireless-world

Marton

Superposition coding and random hashing can be used to

achieve rate triples (R0, R1, R2) that satisfy

R0 ≤ min{I(Q;Y1), I(Q;Y2)}
R0 +R1 ≤ I(U,Q;Y1)

R0 +R2 ≤ I(V,Q;Y2)

R0 +R1 +R2 ≤ min{I(Q;Y1), I(Q;Y2)}+ I(U ;Y1|Q)

+ I(V ;Y2|Q)− I(U ;V |Q)

for some p(q, u, v, x). Call this region R(Wa,Wb).

Question: Is this the capacity (optimal) region? (Open) (since Marton '79)
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Testing optimality (R0 = 0)

De�ne, for λ ≥ 1,

Sλ(W ) = max
(R1,R2)∈R(Wa,Wb)

{λR1 +R2}

= max
p(u,v,w,x)

{
(λ− 1)I(U,Q;Y1) + min{I(Q;Y1), I(Q;Y2)}+ I(U ;Y1|Q)

+ I(V ;Y2|Q)− I(U ;V |Q)
}

= min
α∈[0,1]

max
p(u,v,w,x)

{
(λ− α)I(Q;Y1) + αI(Q;Y2) + λI(U ;Y1|Q)

+ I(V ;Y2|Q)− I(U ;V |Q)
}

As before, R(Wa,Wb) is optimal if and only if

Sλ(Wa ⊗Wa,Wb ⊗Wb) = 2Sλ(Wa,Wb) ∀ Wa,Wb, λ ≥ 1.

Note: Computing Sλ(Wa,Wb) is a non-convex optimization problem.
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Successes

In spite of the underlying problem being intrinsically non-convex

• R(Wa,Wb) is optimal on R1 = 0 (or R2 = 0)

? Degraded message sets: Korner and Marton ('77)

• R(Wa,Wb) is optimal for some classes of channels

? Gallager '74, Korner and Marton ('75, '77, '79), Gelfand and Pinsker ('78),
Poltyrev ('78), El Gamal ('79, '80)

? Weingarten and Steinberg and Shamai '06, Nair '10, Geng and Gohari and
Nair and Yu '14, Geng and Nair '14

• Novel ideas and techniques were needed to establish these capacity regions

? Cover '72 : development of superposition coding strategy
? Gallager '74 : converse to the degraded broadcast channel ( sub-additivity )

? Weingarten-Steinberg-Shamai '06 : Optimality of R(Wa,Wb) (on
R0 = 0) for Gaussian broadcast channel; developing a family of tight convex
relaxations to compute the optimal value of a non-convex optimization
problem

? Geng-Nair '14 : Optimality of R(Wa,Wb) for Gaussian broadcast channel:

Technique for establishing extremality of Gaussian distributions using

sub-additivity of functionals
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? Weingarten-Steinberg-Shamai '06 : Optimality of R(Wa,Wb) (on
R0 = 0) for Gaussian broadcast channel; developing a family of tight convex
relaxations to compute the optimal value of a non-convex optimization
problem

? Geng-Nair '14 : Optimality of R(Wa,Wb) for Gaussian broadcast channel:

Technique for establishing extremality of Gaussian distributions using

sub-additivity of functionals
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3. Interference Channel (Ahlswede '74)

Credit:www.personal.psu.edu/bxg215/research.html

M1

M2

Encoder 1

Encoder 2

Xn
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Xn
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Wb(y2|x1, x2)

Wa(y1|x1, x2)
Y n
1

Y n
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Decoder 1

Decoder 2

M̂1
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3. Interference Channel (Ahlswede '74)

Han

Kobayashi

Superposition coding, message splitting, coded time-sharing

can be used to achieve rate pairs (R1, R2) that satisfy

R1 < I(X1;Y1|U2, Q),

R2 < I(X2;Y2|U1, Q),

R1 +R2 < I(X1, U2;Y1|Q) + I(X2;Y2|U1, U2, Q),

R1 +R2 < I(X2, U1;Y2|Q) + I(X1;Y1|U1, U2, Q),

R1 +R2 < I(X1, U2;Y1|U1, Q) + I(X2, U1;Y2|U2, Q),

2R1 +R2 < I(X1, U2;Y1|Q) + I(X1;Y1|U1, U2, Q) + I(X2, U1;Y2|U2, Q),

R1 + 2R2 < I(X2, U1;Y2|Q) + I(X2;Y2|U1, U2, Q) + I(X1, U2;Y1|U1, Q)

for some pmf p(q)p(u1, x1|q)p(u2, x2|q), where |U1| ≤ |X1|+ 4,
|U2| ≤ |X2|+ 4, and |Q| ≤ 7. Call this region R(Wa,Wb).

Question: Is this the capacity region?
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|U2| ≤ |X2|+ 4, and |Q| ≤ 7. Call this region R(Wa,Wb).

Question: Is this the capacity region?

Had been open (since Han and Kobayashi '81)
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Successes

In spite of the underlying problem being intrinsically non-convex

• R(Wa,Wb) is optimal for some classes of channels

? Carleial '75, Sato '81, El Gamal and Costa ('81 and '86)

• R(Wa,Wb) is close to optimal for Gaussian Interference channel

? Etkin and Tse and Wang ('09)

• Novel ideas and mathematical results came out from the investigation of
optimality

? Concavity of entropy power (Costa '85)
? Genie based approach to prove sub-additivity (El Gamal and Costa '81,
Kramer '02)

• R(Wa,Wb) is not optimal in general (Nair, Xia, Yazdanpanah '15)

Broadcast and interference channels are far too important

• To let non-convexity dissuade us

• To not investigate simple classes that require new ideas
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A class of open problems

A sub-collection of the 15 open problems listed in Chaps. 5-9.

5.1 What is the capacity region of less noisy

broadcast-channels with four or more receivers?

(two-receiver: Korner-Marton '76, three-receiver: Nair-Wang '10)

5.2 What is the capacity region of more capable

broadcast-channels with three or more receivers?

(two-receiver: El Gamal '79)

6.1 What is the capacity region of the Gaussian Interference

channel with weak interference?

(strong-interference: Sato '79; mixed-interference corner-points:
Sato' 81, Costa'85; weak-interference corner-points: rate-sum
(partial): three-groups '09 )

6.4 Is the Han-Kobayashi inner bound tight in general for interference channels?

8.2 Is superposition coding optimal for the general 3-receiver broadcast channel with

one message to all three receivers and another message to two receivers?

8.3 What is the sum-capacity of the binary skew-symmetric broadcast channel?

8.4 Is the Marton inner bound tight in general for broadcast channels?

9.2 Can the converse for the Gaussian broadcast channel be proved directly by

optimizing the Nair-El Gamal outer bound?

9.3 What is the capacity region of the 2-receiver Gaussian broadcast channel with

common message?
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A class of open problems

My reformulations of a few of them.

5.1 Is superposition coding optimal for less-noisy broadcast

channels with four or more receivers?

5.2 Is superposition coding optimal for more-capable

broadcast channels with three or more receivers?

6.1 Is the Han�Kobayashi scheme with Gaussian signaling

tight for the Gaussian Interference channel with weak

interference?

6.4 Is the Han-Kobayashi inner bound tight in general for interference channels?

8.2 Is superposition coding optimal for the general 3-receiver broadcast channel with

one message to all three receivers and another message to two receivers?

8.3 Does the Marton inner bound achieve the sum-capacity of the binary skew-symmetric

broadcast channel?

8.4 Is the Marton inner bound tight in general for broadcast channels?

9.2 Can the converse for the Gaussian broadcast channel be proved directly by

optimizing the Nair-El Gamal outer bound?

9.3 Does the Marton inner bound achieve the capacity region of the 2-receiver Gaussian

broadcast channel with common message?

12



The common theme to these (reformulated) questions

Common theme

Is a candidate rate region optimal?

Idea for testing optimality:

• Sλ(W ⊗W )
?
= 2Sλ(W )

• Determine sub-additivity of an associated non-convex functional

13



Status of the open problems

5.1 Is superposition coding optimal for less-noisy broadcast

channels with four or more receivers?(OPEN)

5.2 Is superposition coding optimal for more-capable

broadcast channels with three or more receivers?

(NO: Nair-Xia '12)

6.1 Is the Han�Kobayashi scheme with Gaussian signaling

tight for the Gaussian Interference channel with weak

interference?(OPEN) (YES: corner points using ideas in
measure transportation by Polyanskiy-Wu '15)

6.4 Is the Han-Kobayashi inner bound tight in general for interference channels?

(NO: Nair-Xia-Yazdanpanah '15)

8.2 Is superposition coding optimal for the general 3-receiver broadcast channel with

one message to all three receivers and another message to two receivers?

(NO: Nair-Yazdanpanah '17)

8.3 Does the Marton inner bound achieve the sum-capacity of the binary skew-symmetric

broadcast channel?(OPEN)

8.4 Is the Marton inner bound tight in general for broadcast channels?(OPEN)

9.2 Can the converse for the Gaussian broadcast channel be proved directly by

optimizing the Nair-El Gamal outer bound?(YES: Geng-Nair '14)

9.3 Does the Marton inner bound achieve the capacity region of the 2-receiver Gaussian

broadcast channel with common message?(YES: Geng-Nair '14)
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Part II: Sub-additive functionals

• Two examples of sub-additive functionals

? Gallager-style proofs of sub-additivity
? Consequences: inequalities and Gaussian optimality

• Family of non-convex optimization problems

? Relation to problems of interest in other �elds
? Unifying observations and some conjectures
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The "Lieb-Stam" functional (j.w.: Anantharam and Jog '19)

Upper-concave envelope

x

f(x)

x

upper concave envelope: Cx[f ]

Not easy to compute (in general)

Let X ∼ µX and Y ∼ νY
FLS(µX , νY ) := sup

U :X−U−Y
ah(X|U) + bh(Y |U)− h(X + Y |U)

= C[ah(X) + bh(Y )− h(X + Y )]|µX ,νY

Proposition

The "Lieb-Stam" functional is sub-additive, i.e.

FLS(µX1X2 , νY1Y2) ≤ FLS(µX1 , νY1) + FLS(µX2 , νY2)

"Gallager-style" proof of sub-additivity

ah(X1, X2|U) + bh(Y1, Y2|U)− h(X1 + Y1, X2 + Y2|U)

= ah(X1|U) + bh(Y1|U)− h(X1 + Y1|U)

+ ah(X2|U,X1) + bh(Y2|U, Y1)− h(X2 + Y2|U,X1 + Y1)

≤ ah(X1|U) + bh(Y1|U)− h(X1 + Y1|U)

+ ah(X2|U,X1, Y1) + bh(Y2|U,X1, Y1)− h(X2 + Y2|U,X1, Y1)

≤ FLS(µX1 , νY1) + FLS(µX2 , νY2).
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FLS(µX1X2 , νY1Y2) ≤ FLS(µX1 , νY1) + FLS(µX2 , νY2)

One can also de�ne, more genreally, for a channel (Markov operator) W (z|x, y)
FWLS(µX , νY ) := sup

U :X−U−Y
ah(X|U) + bh(Y |U)− h(Z|U)

= C[ah(X) + bh(Y )− h(Z)]|µX ,νY

One can establish similarly that

FW1⊗W2
LS (µX1X2 , νY1Y2) ≤ F

W1
LS (µX1 , νY1) + FW2

LS (µX2 , νY2)
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Korner-Marton functional (j.w.: Geng '14)

Let X ∼ µX Wa(y|x) and Wb(z|x) be two channels and λ ≥ 1.

F λ,Wa,Wb
KM (µX) := sup

U :U−X−(Y,Z)
I(X;Y |U)− λI(X;Z|U)

= C[I(X;Y )− λI(X;Z)]|µX

Proposition

The "Korner-Marton" functional is sub-additive, i.e.

F λ,Wa⊗Ŵa,Wb⊗Ŵb
KM (µX1X2) ≤ F

λ,Wa,Wb
KM (µX1) + F λ,Ŵa,Ŵb

KM (µX2)

"Gallager-style" proof of sub-additivity

I(X1, X2;Y1, Y2|U)− λI(X1, X2;Z1, Z2|U)

= I(X1;Y1|U,Z2)− λI(X1;Z1|U,Z2)

+ I(X2;Y2|U, Y1)− λI(X2;Z2|U, Y1)− (λ− 1)I(Y1;Z2|U)

≤ F λ,Wa,Wb
KM (µX1) + F λ,Ŵa,Ŵb

KM (µX2).
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KM (µX2)

"Gallager-style" proof of sub-additivity

I(X1, X2;Y1, Y2|U)− λI(X1, X2;Z1, Z2|U)

= I(X1;Y1|U,Z2)− λI(X1;Z1|U,Z2)

+ I(X2;Y2|U, Y1)− λI(X2;Z2|U, Y1)− (λ− 1)I(Y1;Z2|U)

≤ F λ,Wa,Wb
KM (µX1) + F λ,Ŵa,Ŵb
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Remarks: Sub-additive functionals

One can extract from

• outer bounds (channel coding)

• lower bounds (source coding)

many sub-additive functionals

Remarks

• Proofs of sub-additivity are almost exclusively "Gallager-style"

• The "art" has been in determining which functional is sub-additive

? Lift to a higher-dimensional space (Genie approach)
? Work with "extremal" families of U

Wish List: It would be nice to have a "repository" of sub-additive functionals

• like OEIS but much smaller magnitude obviously

Next: Gaussian Optimality from sub-additivity

18
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Gaussian optimality via sub-additivity (Geng-Nair '14)

Korner-Marton functional - extremal distribution

Maximize, for λ > 1, the value of the functional

CµX [h(AX + Z)− λh(BX + Z)]

over X : E(XXT ) � K, where A,B are invertible matrices and Z ∼ N (0, I).

We will see that the maximum value is

h(AX∗ + Z)− λh(BX∗ + Z),

where X∗ ∼ N (0,K ′) for some K ′ � K.

Lemma: CµX [h(AX + Z)− λh(BX + Z)] is sub-additive.

Proof: For any µX1,X2

h(AX1 + Z1, AX2 + Z2|U)− λh(BX1 + Z1, BX2 + Z2|U)

= h(AX1 + Z1|U,AX2 + Z2)− λh(BX1 + Z1|U,AX2 + Z2)

+ h(AX2 + Z2|U,BX1 + Z1)− λh(BX2 + Z2|U,BX1 + Z1)

−(λ− 1)I(AX2 + Z2;BX1 + Z1|U)
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Gaussian optimality via sub-additivity (Geng-Nair '14)

Korner-Marton functional - extremal distribution
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Gaussian optimality: ctd..

Let (U†, X†) be a maximizer, i.e.

V = max
µX
CµX [h(AX + Z)− λh(BX + Z)] = h(AX† + Z|U†)− λh(BX† + Z|U†).

Let (Xa, Ua) and (Xb, Ub) be i.i.d. according to (U†, X†).

Note: Thus, conditioned on (Ua, Ub):

• Xa ⊥ Xb (from construction)

• (Xa +Xb) ⊥ (Xa −Xb) (from proof of sub-additivity)

• Implies that conditioned on (Ua, Ub): Xa, Xb are Gaussian

? Characterization of Gaussians (Bernstein '40s)
? Proof: Using characteristic functions (Fourier transforms)

Note: There are some similarities with work of Lieb and Barthe (90s)

They also use rotations (but not information measures and its algebra)
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Lieb-Stam functional j.w.: (Ananthram, Jog '19)

Lieb-Stam functional - extremal distribution

Maximize, for λ > 1, the value of the functional

CµX ,νY [ah(X) + bh(Y )− h(X + Y )]

over X : E(XXT ) � Ka, and Y : E(Y Y T ) � Kb.

In a very similar fashion, the maximum value is

ah(X∗) + bh(Y∗)− h(X∗ + Y∗),

where X∗ ∼ N (0,K ′) and X∗ ∼ N (0,K†).

Corollary: Entropy-Power inequality
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Lieb-Stam functional - extremal distribution

Maximize, for λ > 1, the value of the functional

CµX ,νY [ah(X) + bh(Y )− h(X + Y )]

over X : E(XXT ) � Ka, and Y : E(Y Y T ) � Kb.

In a very similar fashion, the maximum value is

ah(X∗) + bh(Y∗)− h(X∗ + Y∗),

where X∗ ∼ N (0,K ′) and X∗ ∼ N (0,K†).

Corollary: Entropy-Power inequality

Remark: We consider a more general functional that yields EPI as one extreme and
Brascamp-Lieb inequality as the other
http://arxiv.org/abs/1901.06619
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Lieb-Stam functional j.w.: (Ananthram, Jog '19)

Lieb-Stam functional - extremal distribution

Maximize, for λ > 1, the value of the functional

CµX ,νY [ah(X) + bh(Y )− h(X + Y )]

over X : E(XXT ) � Ka, and Y : E(Y Y T ) � Kb.

In a very similar fashion, the maximum value is

ah(X∗) + bh(Y∗)− h(X∗ + Y∗),

where X∗ ∼ N (0,K ′) and X∗ ∼ N (0,K†).

Corollary: Entropy-Power inequality

Observe: Sub-additivity results holds even in discrete spaces and with any channel
W (z|x, y).
Question: Can this be used to get new extremal inequalties (e.g. discrete EPIs)?
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Another functional - (Courtade '17)

Let X ∼ µX and Z be standard Gaussian independet of X

g(µX) := sup
U,Y :(U,X)⊥Z,

I(X;Y |U,X+Z)=0

λh(X|U) + (1− λ)h(Z)− h(X + Z|U)

+ I(X;Y |U)− λI(X + Z;Y |U)

Theorem

The functional gε(X) is sub-additive.

Proof: "Gallager-type"

Corollary: Courtade's "strengthened-EPI"

22(h(X+Z)−I(X;Y )) ≥ 22(h(X)−I(X+Z;Y )) + 22h(Z)
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Open problem: Marton's region for the broadcast channel?

Is the following functional sub-additive or is there an example where it is
super-additive?

Let Wa(y|x) and Wb(z|x) be given channels, α ∈ [0, 1], and λ ≥ 1.

CµX
[
(λ− α)H(Y )− αH(Z) + max

p(u,v|x)
{λI(U ;Y ) + I(V ;Z)− I(U ;V )}

]

• If sub-additive, then Marton's region is optimal for broadcast channel

• If ∃ example where it is super-additive, then one should be able to deduce a
channel where Marton's region is not optimal

Remarks:

• Conjectured to be sub-additive (Anantharam-Gohari-Nair '13)

• To evaluate the concave envelope

? Su�ces to consider (U, V ): |U |+ |V | ≤ |X|+ 1.
? We did not get any contradiction to sub-addivity for binary input broadcast
channels

• Can prove sub-additivity when α = 0 or α = 1.
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A speci�c family of non-convex optimization problems

Shows up: Testing the optimality of coding schemes

Testing optimality (usually) reduces to testing sub-additivity of

CνX
[ ∑
S⊆[n]

αSH(XS)
]
, αS ∈ R.

Using Fenchel duality this is same as (Anantharam, Gohari, Nair '13)

G1(γ1) := max
µX

∑
S⊆[n]

αSH(XS)− E(γ1(X))

G2(γ2) := max
µX

∑
S⊆[n]

αSH(XS)− E(γ2(X))

G12(γ1, γ2) := max
µX1,X2

∑
S⊆[n]

αSH(X1S , X2S)− E(γ1(X1))− E(γ2(X2))
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µX

∑
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αSH(XS)− E(γ2(X))

G12(γ1, γ2) := max
µX1,X2

∑
S⊆[n]

αSH(X1S , X2S)− E(γ1(X1))− E(γ2(X2))

Is G12(γ1, γ2) = G1(γ1) +G2(γ2) ∀ γ1, γ2 ?
i.e. Is the maximizer of G12 a product distribution?
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A speci�c family of non-convex optimization problems

Shows up: Testing the optimality of coding schemes

Testing optimality (usually) reduces to testing sub-additivity of

CνX
[ ∑
S⊆[n]

αSH(XS)
]
, αS ∈ R.

Using Fenchel duality this is same as (Anantharam, Gohari, Nair '13)
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∑
S⊆[n]

αSH(XS)− E(γ1(X))

G2(γ2) := max
µX

∑
S⊆[n]

αSH(XS)− E(γ2(X))

G12(γ1, γ2) := max
µX1,X2

∑
S⊆[n]

αSH(X1S , X2S)− E(γ1(X1))− E(γ2(X2))

Are there other �elds where the same family shows up?
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Hypercontractivity

Studied in functional analysis, cs theory, etc.

De�nition

(X,Y ) ∼ µXY is (p, q)-hypercontractive for 1 ≤ q ≤ p if

‖Tg‖p ≤ ‖g‖q ∀g(Y )

where T is the Markov operator characterized by µY |X

Here ‖Z‖p = E(|Z|p)
1
p .

This (serendipitous) rediscovery of the link between hypercontractivity and
information measures and these equivalent characterizations is spurring a lot of work
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where T is the Markov operator characterized by µY |X

Here ‖Z‖p = E(|Z|p)
1
p .

There is a lot of interest in evaluting hypercontractivity parameters for distributions.

Theorem (Nair '14)

(X,Y ) ∼ µXY is (p, q)-hypercontractive for 1 ≤ q ≤ p if and only if

CνX,Y

[
H(X,Y )− (1− 1

p
)H(X)− 1

q
H(Y )

]∣∣∣
µX,Y

= H(X,Y )− (1− 1

p
)H(X)− 1

q
H(Y )
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where T is the Markov operator characterized by µY |X

Here ‖Z‖p = E(|Z|p)
1
p .

Hypercontractivity parameters satis�es a property called tensorization :

If (X1, Y1) ⊥ (X2, Y2) are both (p, q)-hypercontractive, then ((X1, X2), (Y1, Y2)) is also
(p, q)-hypercontractive

Gets around the curse of dimensionality.

This (serendipitous) rediscovery of the link between hypercontractivity and
information measures and these equivalent characterizations is spurring a lot of work
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‖Tg‖p ≤ ‖g‖q ∀g(Y )

where T is the Markov operator characterized by µY |X

Here ‖Z‖p = E(|Z|p)
1
p .

Rather immediate that sub-additivity, i.e.

CµX1Y1X2Y2
[H(X1Y1X2Y2)− λ1H(X1X2)− λ2H(Y1Y2)]

≤ CµX1Y1
[H(X1Y1)− λ1H(X1)− λ2H(Y1)] + CµX2Y2

[H(X2Y2)− λ1H(X2)− λ2H(Y2)]

is equivalent to tensorization of hypercontractivity parameters

This (serendipitous) rediscovery of the link between hypercontractivity and
information measures and these equivalent characterizations is spurring a lot of work
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Consequences

Computation of hypercontractivity parameters is considered hard

• X is uniform and µY |X is binary symmetric channel

? (Bonami-Beckner inequality '70s, Borrell '82)

• (X,Y ) Jointly Gaussian (Gross '75)

Evaluation of achievable regions is of similar di�culty as determining
hypercontractivity (same family and similar terms)

For testing optimality of schemes we had to develop tools for evaluating achievable
regions for certain channels

Can we use our techniques to evaluate new hypercontractivity parameters?

Yes, we can.

E.g.: X is uniform and µY |X is binary erasure channel (Nair-Wang '16,'17)

Other techniques we used to solve these non-convex problems:

• Identify a lower dimensional manifold that contains all the stationary points

• Analyze the function directly on this manifold or

• Use properties of the points on this manifold to deduce sub-additivity
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An Observation

Reminder: Family of functionals that showed up in network information theory∑
S⊆[n]

αSH(XS), αS ∈ R.

Usually, one is interested in testing the sub-additivity of

CµX [αSH(XS)].

This is equivalent to testing a global tensorization property.

De�nition

A functional
∑

S⊆[n] αSH(XS) is said to satisfy global tensorization if a product

distribution maximizes Gµ12(γ1, γ2) for all γ1, γ2, where

Gµ12(γ1, γ2) :=
∑
S⊆[n]

αSH(X1S , X2S)− E(γ1(X1))− E(γ2(X2))
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An Observation

De�nition

A functional
∑

S⊆[n] αSH(XS) is said to satisfy local tensorization if the product

of local maximizers of Gµ1(γ1) and G
µ2(γ2) is a local maximizer of Gµ12(γ1, γ2)

for all γ1, γ2, where

Gµ1 (γ1) :=
∑
S⊆[n]

αSH(X1S)− E(γ1(X1))

Gµ2 (γ2) :=
∑
S⊆[n]

αSH(X2S)− E(γ2(X2))

Gµ12(γ1, γ2) :=
∑
S⊆[n]

αSH(X1S , X2S)− E(γ1(X1))− E(γ2(X2))

Observation (Conjecture)

For functionals in this family global tensorization holds if and only if local
tensorization holds

Note: Similarity to testing concavity using a local (second derivative) condition
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Notes

For some of the remaining open problems (mentioned earlier), we can establish
local-tensorization

• Marton's inner bound for binary input broadcast channels

• Gaussian Z-interference channel

Therefore, if the Conjecture is true, then we would establish the capacity region for
these settings

Question: How may these two phenomena be connected?

A possible answer is suggested by our computations in various examples

• Construct a path in the space of functionals and track the global maximizers
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Optimization based approaches

Optimization based approaches have been game changers

First jump: Linear programming to convex optimization

Semi-de�nite program based algorithm design and analysis

• Compressive sensing

• Phase recovery

• Clustering

• Image processing

New Jump: Convex optimization to speci�c families of non-convex optimization

Studies on these families are already making impact in

• Machine learning and AI (Singular Value Decomposition)

• Graphical models and Statistical Physics based approaches (sum of energy and
entropy terms)

• Communication networks (linear combination of entropies of subsets)
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