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Channel Model

We focus on finite-state channels with input constraints. To
formulate this channel, we first introduce the following notation.

For any F ⊆ X 2 (forbidden set) and δ > 0, define

ΠF ,δ = {stochastic matrix A : Aij = 0, for (i , j) ∈ F

and Aij ≥ δ otherwise}.

One typical example is given by X = {0, 1},F = {11}, i.e.,
the block 11 is forbidden for all binary sequences. ((1,∞)-
RLL constraint)
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Channel Model

We are concerned with finite-state channels such that:

(a) X is an irreduaible Markov chain and there exist F ⊆ X 2 and
δ > 0 such that the transition probability matrix of X belongs
to ΠF ,δ.

(b) (X ,S) is a stationary Markov chain and

p(xn, sn|xn−1, sn−1) = p(xn|xn−1)p(sn|xn, sn−1)

for n = 1, 2, . . . where p(sn|xn, sn−1) > 0 for any sn−1, sn, xn.

(c) the channel is stationary and characterized by

p(yn|yn−11 , xn1 , s
n−1
1 ) = p(yn|xn, sn−1) > 0

for n = 1, 2, . . . .
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Properties of the Channel

For finite-state channels satisfying (a), (b) and (c), the following
can be readily verified:

1. The channel is indecomposable.

2. Finding the capacity corresponds to solving the following
optimization problem:

C = sup I (X ;Y )

= sup lim
n→∞

H(Y n
1 ) + H(X n

1 )− H(X n
1 ,Y

n
1 )

n

= sup lim
n→∞

H(X 2
1 ) + H(Yn|Y n−1

1 )− H(Xn,Yn|X n−1
1 ,Y n−1

1 )

where sup is taken over all distributions of the input {Xn}∞n=1.
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Properties of the Channel (Cont)

3. It has been proved (Han, 2015) that H(Yn|Y n−1
1 ) and

H(Xn,Yn|X n−1
1 ,Y n−1

1 ) converges exponentially. Hence, if we
assume that the input Markov chain is parameterized by
θ ∈ Θ and let

f (θ) := sup
θ

I (X ;Y )

fk(θ) = H(X 2
1 ) + H(Yn|Y n−1

1 )− H(Xn,Yn|X n−1
1 ,Y n−1

1 )

then there exist N > 0 and 0 < ρ < 1 such that for l = 0, 1, 2,

||f (`)k (θ)−f (`)k−1(θ)||2 ≤ Nρk , ||f (`)k (θ)−f (`)(θ)||2 ≤ Nρk (1)

where f (l) is the l-th order derivative.

The capacity can be
approximated exponentially.
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Classical Descent Method with Backtracking Line Search

For finding the maximum of f (x), one popular method is the
well-know descent method:

Descent Method

Choose a starting point x0 ∈ S . Repeat

1 Choose a direction ∆x such that

∆x · ∇f (x) > 0;

2 choose a step size t > 0;

3 update the point x := x + t∆x

until the stopping criterion is satisfied.

• When ∆x = ∇f (x), then it is the well-known gradient descent
method.
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Classical Descent Method with Backtracking Line Search

One of the method to choose the step size is given by the
backtracking line search:

Backtracking line search

Let t = 1. For a fixed descent direction ∆x , choose
0 < α < 0.5, 0 < β < 1 and perform

t := βt

while f (x + t∆x) > f (x) + αt∇f (x)T∆x .
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Backtracking Line Search

Figure: backtracking line search
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Limitations of Classical Descent Methods

The classical descent methods will have trouble when:

No explicit formula for the target function;

the domain of the variable is not Rn (the convergence analysis
may be very complicated).

In our case, however,

I (X (θ);Y (θ)) = f (θ) = limn→ fk(θ);

θ ∈ Θ usually a strict subset of Rn.

So the classical descent method fails.
→ Exponential convergence may allow us to modify it.
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Our Algorithm

Algorithm 1

Step 0. Set k = 0, and choose α ∈ (0, 0.5), β ∈ (0, 1) and θ0 ∈ Θ
such that ∇f0(θ0) 6= 0.
Step 1. Set t = 1 and increase k by 1.
Step 2. If ∇fk−1(θk−1) = 0, set

τ = θk−1 + t∇fk−1(θk−1 + ρk−1),

otherwise, set
τ = θk−1 + t∇fk−1(θk−1).

If τ 6∈ Θ or

fk(τ) < fk(θk−1) + αt||∇fk−1(θk−1)||22−(N + M)Mtρk−1,

set t = βt and go to Step 2, otherwise set θk = τ and go to Step
1. (Remark: M is the upperbound on the derivatives of f .)

Chengyu Wu1, Guangyue Han1 and Brian Marcus2 1The University of Hong Kong 2University of British Columbia



• Difficulty for the convergence analysis: for any k , in order to
obtain a new iterate θk+1 from θk , how many time of Step 2 is
executed?

In order to solve this problem, let

k be the number that Step 1 has been executed;

n be the number that Step 2 has been executed.

We can rewrite our algorithm as follows:
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Algorithm 1’: (An equivalent form of Algorithm 1.)

Step 0. Set n = 0, k = 0, f̂0 = f0, choose α ∈ (0, 0.5), β ∈ (0, 1)
and θ̂0 ∈ Θ such that ∇f̂0(θ̂0) 6= 0.
Step 1. Set t = 1 and increase k by 1.
Step 2. Increase n by 1. If ∇f̂n−1(θ̂n−1) = 0, set

τ = θ̂n−1 + t∇f̂n−1(θ̂n−1 + ρk−1),

otherwise, set
τ = θ̂n−1 + t∇f̂n−1(θ̂n−1).

If τ 6∈ Θ or

fk(τ) < fk(θ̂n−1) + αt||∇f̂n−1(θ̂n−1)||22 − (N + M)Mtρk−1,

then set θ̂n = θ̂n−1, f̂n = fk−1, t = βt and go to Step 2, otherwise,
set θ̂n = τ, f̂n = fk and go to Step 1.
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Assumptions on the Initial Point

Before stating the convergence result of Algorithm 1’, we need the
following observation:

For f
(l)
k (θ)→ f (l)(θ) exponentially and strongly concave f ,

suppose f has a unique maximum point that is away from the
boundary of the open connected domain Θ, then we can always
choose k0 and y0 such that, by defining

B := {x : fk0(x) ≥ y0},

we have B is convex and B ⊆ Θ.
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Convergence Result

Theorem 1

Let f (θ) and {fk(θ)} have the exponential convergence properties
in (1). Suppose f (θ) is strongly concave, that is, there exists
m > 0 such that for all θ ∈ Θ (open, connect),

∇2f (θ) � −mId ,

where Id denotes the d × d-dimensional identity matrix, and
moreover, f (θ) achieves its maximum at θ∗ which has a positive
distance to ∂Θ. Then, by choosing θk0 in B and running Algorithm
1’, there exist M̂ > 0 and 0 < ξ̂ < 1 such that for all n,

|f̂n(θ̂n)− f (θ∗)| ≤ M̂ ξ̂n.
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Outline of the Proof

Suppose we are at θk−1 now. Remember that

τ = θk−1 + t∇fk−1(θk−1).

Define:

T1(k): time used to satisfy τ ∈ Θ;

T2(k): time used to satisfy the “increasing condition”

fk(τ) < fk(θk−1) + αt||∇fk−1(θk−1)||22−(N + M)Mtρk−1

Want: Uniform boundedness of T1(k), T2(k) over k .
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Outline of the Proof (Cont)

Most important fact: we can treat T1(k) and T2(k) separately,
i.e., first consider whether τ ∈ Θ, if not, iterate until τ ∈ Θ; after
this is satisfied, consider the “increasing condition”.

Hence, we can argue as follows:

T1(k) <∞ (may not be uniform);

T2(k) < A uniformly for some A;

“increasing condition” and strong concavity implies {θk}∞k=k0
in a compact subset of Θ, this in turn will be sufficient for the
uniform boundedness of T1(k).

Finally, exponential convergence of the algorithm can be
obtained.
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Complexity of our Algorithm

When apply our algorithm to compute the channel capacity of
finite-state channels with Markovian inputs, the computation
complexity of

fk(θ) = H(X 2
1 ) + H(Yk |Y k−1

1 )− H(Xk ,Yk |X k−1
1 ,Y k−1

1 )

is at most exponential in k . Hence, our algorithm achieves an
exponential accuracy in an exponential time. By using change
of variable, polynomial accuracy can be achieved within
polynomial amount of time.
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Applications

Example 1 (BEC with (1,∞)-RLL input constraint):

Yn = Xn · En

where Xn binary Markov chain with transition matrix

Π =

[
1− θ θ

1 0

]
,

and {En} i.i.d., independent with {Xn} and

P(En = 1) = ε = 0.1.
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Applications

In this case,

I (X (θ);Y (θ)) = (1− ε)2
∞∑
j=0

H(Xj+2(θ)|X1(θ))εj

and is concave with respect to θ (Li, Han, 2014).

By running our algorithm, we get

0.4422382 ≤ C ≤ 0.4422398.

By applying our algorithm on the second order Markovian
input case, we can show second-order Markov capacity is
strictly larger than the first-order Markov capacity.
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Applications

Example 2: A finite-state channel

Yn = φ(Xn,Sn−1), n = 1, 2, . . .

where {Xn} is a binary Markov chain, the state Sn = Xn for
all n and φ is a sliding block code:

φ(00) = 1, φ(01) = 0, φ(10) = 0, φ(11) = 0.

In this case, by “unambiguous formula” for hidden Markov
chain, we get:

I (X ;Y ) = lim
k→∞

H(Yk+1|Y k
1 )

=
∞∑
k=1

P(Y k
1 = 1 00 . . . 00︸ ︷︷ ︸

k−1

)H(Yk+1|1 00 . . . 00︸ ︷︷ ︸
k−1

).
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Suppose {(Xn,Xn−1)} has the transition probability matrix
(indexed by 00, 01, 10, 11):

θ 1− θ 0 0
0 0 θ 1− θ
θ 1− θ 0 0
0 0 θ 1− θ

 ,
it can be numerically shown I (X (θ),Y (θ)) is strongly concave with
respect to θ and by going through our algorithm, we have

0.4291146 ≤ I (0)(X ;Y ) ≤ 0.4294638.

Again, by comparing it to the birch lower bound for the
first-order Markovian input case, we can conclude that the
first-order Markov capacity is strictly larger that i.i.d. input
case.
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Generalization to non-concave case

Our algorithm can be generalized to the case where the target
function is non-concave, but extra assumptions are needed:

There are finitely many stationary points of f and they are
away from ∂Θ (Θ is the domain of the parameter);

For proper choice of k0 (large enough), there exists a y0 such
that

B := {x : fk0(x) ≥ y0}

is convex, in Θ and contains all the stationary points;

Choose θk0 such that θk0 ∈ B.

Then we can propose another similar algorithm and prove the local
converges.
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The second modified gradient descent algorithm.

Step 0. Set k = 0, and choose α ∈ (0, 0.5), β ∈ (0, 1), θk0 ∈ Θ,
k0 > 0 and b ∈ (0, 1) such that

ρ1/3 + ρ2k0/3 < 1, ||∇fk0(θk0)||2 ≥
2Nρk0/3

1− b
.

Step 1. Set t = 1 and increase k by 1.
Step 2. Set

τ = θk−1 + t∇fk−1(θk−1),

If τ 6∈ Θ or

||∇fk(τ)||2 <
2Nρk/3

1− b

or
fk(τ) < fk(θk−1) + αt||∇fk−1(θk−1)||22,

set t = βt and go to Step 2, otherwise set θk = τ and go to Step
1.
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Thank You!
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