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□ A new mathematical theory on Gaussian distribution
□ Its application on Gaussian interference channel
□ History, progress, and future



□ History of “Super-H” Theorem

□ Boltzmann equation, heat equation

□ Shannon Entropy Power Inequality

□ Complete Monotonicity Conjecture 

□ How to Solve Gaussian Interference Channel
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Fire and Civilization

Drill
Steam engine

James Watts
Myth: west and east

Independence of US

The Wealth of Nations

1776



Study of Heat

Heat transfer
□ The history begins with the work of Joseph 

Fourier around 1807
□ In a remarkable memoir, Fourier invented 

both Heat equation and the method of 
Fourier analysis for its solution
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Information Age

𝑍𝑡 ∼ 𝒩(0, 𝑡)
Gaussian Channel: 

X and Z are mutually independent. The p.d.f of X is g(x)

𝑌𝑡 is the convolution of X and 𝑍𝑡. 
𝑌𝑡 ≔ 𝑋 + 𝑍𝑡

The probability density function (p.d.f.) of 𝑌𝑡

𝑓(𝑦; 𝑡) = ∫ 𝑔(𝑥)
1

2𝜋𝑡
𝑒
(𝑦−𝑥)2

2𝑡

𝜕

𝜕𝑡
𝑓(𝑦; 𝑡) =

1

2

𝜕2

𝜕𝑦2
𝑓(𝑦; 𝑡)

The p.d.f. of Y is the solution to the heat equation, and vice versa.

Gaussian channel and heat equation are identical in mathematics.

A mathematical theory of communication, 

Bell System Technical Journal. 



Ludwig Boltzmann

Boltzmann formula:          

Boltzmann equation:

H-theorem:  

Ludwig Eduard Boltzmann

1844-1906

Vienna, Austrian Empire

𝑆 = −𝑘𝐵ln𝑊
𝑆 = −𝑘𝑏∑

𝑖
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𝐻(𝑓(𝑡))is non−decreasing

Gibbs formula: 



□ McKean’s Problem on Boltzmann 
equation (1966): 
□ 𝐻(𝑓(𝑡)) is CM in 𝑡, when 

𝑓 𝑡 satisfies Boltzmann equation
□ False, disproved by E. Lieb in 

1970s
□ the particular Bobylev-Krook-Wu 

explicit solutions, this “theorem” 
holds true for 𝑛 ≤ 101 and 
breaks downs afterwards 

“Super H-theorem” for Boltzmann Equation

H. P. McKean, NYU. 

National Academy of Sciences

A function is completely monotone (CM) iff all the signs of its derivatives 

are alternating in +/-:  +, -, +, -,…… (e.g., 1/𝑡, 𝑒−𝑡 )



□ Heat equation: Is 𝐻(𝑓(𝑡)) CM in 𝑡, if 𝑓(𝑡) satisfies heat equation

□ Equivalently, is 𝐻(𝑋 + 𝑡𝑍) CM in t? 
□ The signs of the first two order derivatives were obtained
□ Failed to obtain the 3rd and 4th. (It is easy to compute the 

derivatives, it is hard to obtain their signs)

“Super H-theorem” for Heat Equation

“This suggests that……, etc., but I could not prove it”

-- H. P. McKean 

C. Villani, 2010 Fields Medalist



Claude E. Shannon and EPI

□ Entropy power inequality (Shannon 1948): For any two independent 
continuous random variables  X  and  Y,

Equality holds iff X and Y are Gaussian
□ Motivation: Gaussian noise is the worst noise
□ Impact: A new characterization of Gaussian distribution in 

information theory
□ Comments: most profound! (Kolmogorov)   

𝑒2ℎ(𝑿+𝒀) ≥ 𝑒2ℎ(𝑿) + 𝑒2ℎ(𝒀)

Central limit theorem
Capacity region of Gaussian broadcast channel
Capacity region of Gaussian Multiple-Input Multiple-Output broadcast channel
Uncertainty principle

All of them can be proved by Entropy Power Inequality (EPI)



□ Shannon himself didn’t give a proof but an explanation, which turned 
out to be wrong

□ The first proof is given by A. J. Stam (1959), N. M. Blachman (1966)

□ Research on EPI
Generalization, new proof, new connection. E.g., Gaussian interference channel is 

open, some stronger “EPI’’ should exist.

□ Stanford Information Theory School: Thomas Cover and his 
students: A. El Gamel, M. H. Costa, A. Dembo, A. Barron (1980-
1990)

□ After 2000, Princeton && UC Berkeley

Entropy Power Inequality

Heart of Shannon theory



Ramification of EPI

Shannon EPI

Gaussian perturbation: ℎ(𝑋 + 𝑡𝑍)

Fisher Information: 𝐼 𝑋 + 𝑡𝑍 =
𝜕

𝜕𝑡
ℎ(𝑋 + 𝑡𝑍)/2

Fisher Information is decreasing in 𝑡

𝑒2ℎ(𝑋+ 𝑡𝑍) is concave in 𝑡
Fisher information inequality (FII):    

1

𝐼(𝑋+𝑌)
≥

1

𝐼(𝑋)
+

1

𝐼(𝑌)

Tight Young’s inequality 

𝑋 + 𝑌 𝑟 ≥ 𝑐 𝑋 𝑝 𝑌 𝑞

Status Quo: FII can imply EPI and all its generalizations.

Many network information problems remain open even 

the noise is Gaussian.

--Only EPI is not sufficient 



Where our journey begins
 Shannon Entropy power inequality 

 Fisher information inequality

 ℎ(𝑋 + 𝑡𝑍)

 ℎ 𝑓 𝑡 is CM 

 When  𝑓(𝑡) satisfied Boltzmann equation, disproved

 When 𝑓(𝑡) satisfied heat equation, unknown

 We even don’t know what CM is!

Mathematician ignored it

 Raymond introduced this paper to me in 2008

 I made some progress with Chandra Nair in 2011 (MGL)

 Complete monotonicity (CM) was discovered in 2012

 The third derivative in 2013 (Key breakthrough)

 The fourth order in 2014

 Recently, CM  GIC 



Motivation

Motivation: to find some inequalities to obtain a better rate region; e.g., the 

convexity of 𝒉(𝑿 + 𝒆−𝒕𝒁), the concavity of  
𝑰 𝑿+ 𝒕𝒁

𝒕
, etc.

“Any progress?” 

“Nope…”

It is widely believed that there should be no 

new EPI except Shannon EPI and FII.

Observation: 𝑰(𝑿 + 𝒕𝒁) is convex in 𝒕

𝐼 𝑋 + 𝑡𝑍 =
𝜕

2𝜕𝑡
ℎ 𝑋 + 𝑡𝑍 ≥ 0 (de Bruijn, 1958)  

𝐼(1) =
𝜕

𝜕𝑡
𝐼 𝑋 + 𝑡𝑍 ≤ 0 (McKean1966, Costa 1985)

Could the third one be determined?



Discovery

Observation: 𝑰(𝑿 + 𝒕𝒁) is convex in 𝒕

 ℎ 𝑋 + 𝑡𝑍 =
1

2
ln 2𝜋𝑒𝑡, 𝐼 𝑋 + 𝑡𝑍 =

1

𝑡
. 𝐼 is CM: +, -, +, -…

 If the observation is true, the first three derivatives are: +, -, +

 Q: Is the 4th order derivative -? Because 𝑍 is Gaussian! If so, then…

 The signs of derivatives of ℎ(𝑋 + 𝑡𝑍) are independent of 𝑋. Invariant!

 Exactly the same problem in McKean’s 1966 paper

To convince people, must prove its convexity

My own opinion:

• A new fundamental result on Gaussian distribution

• Invariant is very important in mathematics

• In mathematics, the more beautiful, the more powerful

• Very hard to make any progress



Challenge

Let 𝑋 ∼ 𝑔(𝑥)

 ℎ 𝑌𝑡 = −∫ 𝑓(𝑦, 𝑡) ln 𝑓(𝑦, 𝑡) 𝑑𝑦: no closed-form expression 

except for some special 𝑔 𝑥 .
 𝑓(𝑦, 𝑡) satisfies heat equation.

 𝐼 𝑌𝑡 = ∫
𝑓1
2

𝑓
𝑑𝑦

 𝐼 1 𝑌𝑡 = −∫
𝑓2

𝑓
−

𝑓1
2

𝑓2

2

𝑑𝑦

 So what is 𝐼(2)? (Heat equation, integration by parts)



Challenge (cont’d)

It is trivial to calculate derivatives. 

It is not generally obvious to prove their signs.

𝑰



Breakthrough

Integration by parts: ∫ 𝑢𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢

First breakthrough since 

McKean 1966





GCMC
Gaussian complete monotonicity conjecture (GCMC): 

𝑰(𝑿 + 𝒕𝒁) is CM in 𝒕

A general form: number partition. Hard to determine the coefficients.

Conjecture 2: 𝐥𝐨𝐠𝑰(𝑿 + 𝒕𝒁) is convex in 𝒕

Hard to find 𝛽𝑘,𝑗 !



Moreover

C. Villani showed the work of H. P. McKean to us.

G. Toscani cited our work within two weeks: 

 the consequences of the evolution of the entropy and of its subsequent 

derivatives along the solution to the heat equation have important consequences. 

 Indeed the argument of McKean about the signs of the first two derivatives are 

equivalent to the proof of the logarithmic Sobolev inequality.

Gaussian optimality for derivatives of differential entropy using linear matrix inequalities

X. Zhang, V. Anantharam, Y. Geng - Entropy, 2018 - mdpi.com

• A new method to prove signs by LMI

• Verified the first four derivatives

• For the fifth order derivative, current methods cannot find a solution



Complete monotone function

Herbert R. Stahl, 2013

𝑓 𝑡 = න
0

∞

𝑒−𝑡𝑥 𝑑𝜇(𝑥)

A new expression for entropy involved special 

functions in mathematical physics

How to construct 𝜇(𝑥)?

𝜇



Complete monotone function

Theorem: A function 𝑓(𝑡) is CM in 𝑡, then log 𝑓(𝑡) is also convex in 𝑡
 𝐼 𝑌𝑡 is CM in 𝑡, then log 𝐼(𝑌𝑡) is convex in 𝑡 (Conjecture 1 implies 

Conjecture 2)

 A function f(t) is CM, a Schur-convex function can be obtained by f(t)
 Schur-convex → Majority theory  

Remarks: The current tools in information 

theory don’t work. More sophisticated tools 

should be built to attack this problem.

A new mathematical foundation of 

information theory

1946



True Vs. False

 If GCMC is true
 A fundamental breakthrough in mathematical physics, information 

theory and any disciplines related to Gaussian distribution
 A new expression for Fisher information
 Derivatives are an invariant

 Though ℎ(𝑋 + 𝑡𝑍) looks very messy,  certain regularity exists 
 Application: Gaussian interference channel?

 If GCMC is false
 No Failure, as heat equation is a physical phenomenon
 A Gauss constant (e.g. 2019), where Gaussian distribution fails. Painful! 



Complete Monotonicity:

How to Solve Gaussian Interference Channel

 Two fundamental channel coding problem: BC and GIC

 ℎ 𝑎𝑋1 + 𝑐𝑋2 + 𝑁1 , ℎ 𝑏𝑋1 + 𝑑𝑋2 + 𝑁2 exceed the 

capability of EPI

 Han-Kobayashi inner bound

 Many researchers have contributed to this model

 Foundation of wireless communication 



The Thick Shell over ℎ(𝑋 + 𝑡𝑍)

ℎ(𝑋 + 𝑡𝑍) is hard to estimate: 

 The p.d.f of 𝑋 + 𝑡𝑍 is messy

 𝑓 𝑥 log 𝑓(𝑥)
 ∫ 𝑓 𝑥 log𝑓(𝑥)
No generally useful lower or upper bounds

--The thick shell over 𝑋 + 𝑡𝑍



Analysis: alternating is the worst

 If the CM property of ℎ(𝑋 + 𝑡𝑍) is not true
 Take 5 for example: if CM breaks down after n=5 
 If we just take the 5th derivative, there may be nothing special. 

(So GIC won’t be so hard)  
 CM affected the rate region of GIC

 Prof. Siu, Yum-Tong: “Alternating is the worst thing in analysis as 
the integral is hard to converge, though CM is very beautiful”
 It is not strange that Gaussian distribution is the worst in 

information theory

 Common viewpoint: information theory is about information 
inequality: EPI, MGL, etc.

 CM is a class of inequalities. We should regard it as a whole in 
application. We should pivot our viewpoint from inequalities. 



Information Decomposition

 The lesson learned from complete monotonicity

𝐼 𝑋 + 𝑡𝑍 = න
0

∞

𝑒−𝑡𝑥𝑑𝜇(𝑥)

 Two independent components:
 𝑒−𝑡𝑥 stands for complete monotonicity

 𝑑𝜇(𝑥) serves as the identity of 𝐼 𝑋 + 𝑡𝑍
 Information decomposition: 

Fisher Information = Complete Monotonicity + Borel Measure

 CM is the thick shell. It can be used to estimate in majority theory
 Very useful in analysis and geometry  

 𝑑𝜇(𝑥) involves only 𝑥, and 𝑡 is removed
 The thick shell is removed from Fisher information
 𝑑𝜇(𝑥) is relatively easier to study than Fisher information
 WE know very little about 𝑑𝜇(𝑥)

 Only CM is useless for (network) information theory 
 The current constraints on 𝑑𝜇(𝑥) are too loose
 Only the “special one” is useful, otherwise every CM function should 

have the same meaning in information theory



CM && GIC

A fundamental problem should have a nice and clean solution. 

To understand complete monotonicity is not an easy job (10 years).

Top players are ready, but the football is missing…



Thanks!

Guangyue

Raymond, Chandra, Venkat, Vincent...


