
Feedback capacity of channels with memory

via Reinforcement Learning and

Graph-based auxiliary random variable

Oron Sabag, Haim Permuter and Ziv Aharoni

Ben Gurion university

Workshop on Probability and Information Theory
Haim Permuter

Two main ideas

1 Graph-based auxiliary random variable

2 Reinforcement learning for computing feedback capacity

Haim Permuter

Auxiliary random variable (r.v.)

Auxiliary r.v. plays an important role in multi-users
problems

Haim Permuter

Auxiliary random variable (r.v.)

Auxiliary r.v. plays an important role in multi-users
problems

Gelfand-Pinsker: C = max
P (u|s)P (x|u,s)

I(U ;Y)− I(U ;S)

Wyner-Ziv: R = min
P (u|x)

I(X;U |Y)

Haim Permuter

Auxiliary random variable (r.v.)

Auxiliary r.v. plays an important role in multi-users
problems

Gelfand-Pinsker: C = max
P (u|s)P (x|u,s)

I(U ;Y)− I(U ;S)

Wyner-Ziv: R = min
P (u|x)

I(X;U |Y)

Auxiliary r.v. converts multi-letter into single-letter

Haim Permuter

Auxiliary random variable (r.v.)

Auxiliary r.v. plays an important role in multi-users
problems

Gelfand-Pinsker: C = max
P (u|s)P (x|u,s)

I(U ;Y)− I(U ;S)

Wyner-Ziv: R = min
P (u|x)

I(X;U |Y)

Auxiliary r.v. converts multi-letter into single-letter

Auxiliary r.v. are i.i.d.

Haim Permuter

Graph-based auxiliary r.v.

Non i.i.d auxiliary r.v.

Haim Permuter

Graph-based auxiliary r.v.

Non i.i.d auxiliary r.v.

The auxiliary is represented by a graph

21

Haim Permuter

Graph-based auxiliary r.v.

Non i.i.d auxiliary r.v.

The auxiliary is represented by a graph

21

The graph induces a Markov process

Haim Permuter

Graph-based auxiliary r.v.

Non i.i.d auxiliary r.v.

The auxiliary is represented by a graph

21

The graph induces a Markov process

The single-letter expression is evaluated with the
stationary distribution

Haim Permuter

Reinforcement Learning

Environment

Agent
π

∆

Zt

Zt−1

Ut

Rt

Zt−1 - current state

Ut - action

Rt - reward

Zt - next state
Haim Permuter

Reinforcement Learning

Channel

Agent
π

∆

Zt

Zt−1

Ut

Rt

Zt−1 - current state

Ut - action

Rt - reward

Zt - next state
Haim Permuter

Reinforcement Learning

Channel

Agent
Transmitter

∆

Zt

Zt−1

Ut

Rt

Zt−1 - current state

Ut - action

Rt - reward

Zt - next state
Haim Permuter

Reinforcement Learning

Channel

Agent
Transmitter

∆

P (st|yt) Zt

Zt−1

Ut P (x|·)
Rt I(·, ·|·)

Zt−1 - current state

Ut - action

Rt - reward

Zt - next state
Haim Permuter

Communication with Feedback

Transmitter ReceiverChannel

Delay

M

Yt

Yt M̂

Yt−1

Xt

Unifilar finite state channel (FSC):

p (yt|xt, st−1)

st = f(xt, yt, st−1)

Haim Permuter

Communication with Feedback

Transmitter ReceiverChannel

Delay

M

Yt

Yt M̂

Yt−1

Xt

Unifilar finite state channel (FSC):

p (yt|xt, st−1)

st = f(xt, yt, st−1)

The goal: compute the capacity and coding scheme

Haim Permuter

0 0

1 1

?

Trapdoor Channel [Blackwell61] Ising Channel [Berger90]

yi =

{

xi, with prob. 1
2

xi−1, with prob. 1
2

yi =

{

xi − xi−1, w/ prob. ǭ

?, w/ prob. ǫ

1− ǫ

1− ǫ

ǫ

Cfb = log φ, φ =
√
5+1
2

Cfb = maxp
2H2(p)
3+p

≈ 0.575

Cfb = maxp(1− ǫ)p+ǫH2(p)
ǫ+(1−ǫ)p

Cfb = maxp
H2(p)

p+ 1
1−ǫ

[Elischo/P.13][P. et al08]

[Sabag/P/Kashyap15][Sabag/P/Pfister16]

Dicode Erasure Channel [Pfister08] Erasure Channel
with no repeated 1’s

Haim Permuter

The Capacity

Theorem (P-Cuff-Van Roy-Weissman’08, P-Weissman-Goldsmith’09)

The feedback capacity of unifilar FSC

Cfb = lim
n→∞

max
{p(xi|si−1,yi−1)}ni=1

1

n
I (Xn → Y n)

The directed information (Massey 1990)

I (Xn → Y n) =
n

∑

i=1

I(X i;Yi|Y
i−1)

This is a multi-letter expression

Haim Permuter

The Q-graph

A Q-graph is an irreducible directed graph.

Haim Permuter

The Q-graph

A Q-graph is an irreducible directed graph.

Each node has |Y| different labelled edges.

Haim Permuter

The Q-graph

A Q-graph is an irreducible directed graph.

Each node has |Y| different labelled edges.

For instance, if Y = {0, 1, ?}:

replacements

q = 1 q = 2

y = 1

y = 0/?

y = 0/?/1

Haim Permuter

The Q-graph

A Q-graph is an irreducible directed graph.

Each node has |Y| different labelled edges.

For instance, if Y = {0, 1, ?}:

replacements

q = 1 q = 2

y = 1

y = 0/?

y = 0/?/1

The Q-graph defines a mapping:

Φi−1 : Y
i−1 → Q (or, g : Q× Y → Q)

Haim Permuter

The Q-graph

A Q-graph is an irreducible directed graph.

Each node has |Y| different labelled edges.

For instance, if Y = {0, 1, ?}:

replacements

q = 1 q = 2

y = 1

y = 0/?

y = 0/?/1

The Q-graph defines a mapping:

Φi−1 : Y
i−1 → Q (or, g : Q× Y → Q)

Each outputs sequence is Q-uantized

Haim Permuter

Feedback capacity

Theorem [Sabag/P./Pfister17]

The feedback capacity of a unifilar FSC is bounded by

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q), ∀Q-graph

Haim Permuter

Feedback capacity

Theorem [Sabag/P./Pfister17]

The feedback capacity of a unifilar FSC is bounded by

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q), ∀Q-graph

Q-graph defines a mapping: (Qi−1,Yi) → Qi

y = 1
y = 0
y =? y = 0/?/1 21

Haim Permuter

Feedback capacity

Theorem [Sabag/P./Pfister17]

The feedback capacity of a unifilar FSC is bounded by

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q), ∀Q-graph

Q-graph defines a mapping: (Qi−1,Yi) → Qi

y = 1
y = 0
y =? y = 0/?/1 21

The Q-graph and P (x|s, q) induces

p(s, q, x, y) = π(s, q)p(x|s, q)p(y|s, x)

Haim Permuter

Feedback capacity

Theorem [Sabag/P./Pfiser16]

The feedback capacity of a unifilar FSC is bounded by

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q), ∀Q-graph

If |Q| unbounded then its also achievable, i.e.,

Cfb = inf
Q

sup
p(x|s,q)

I(X,S;Y |Q)

Haim Permuter

Feedback capacity

Theorem [Sabag/P./Pfiser16]

The feedback capacity of a unifilar FSC is bounded by

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q), ∀Q-graph

If |Q| unbounded then its also achievable, i.e.,

Cfb = inf
Q

sup
p(x|s,q)

I(X,S;Y |Q)

For all known cases the upper bound is tight |Q| ≤ 4,

a a a a

Haim Permuter

Sketch Proof

Cfb = max
P (xi|xi−1,yi−1)

1

n
I(Xn → Y n)

Haim Permuter

Sketch Proof

Cfb = max
P (xi|xi−1,yi−1)

1

n
I(Xn → Y n)

, max
P (xi|xi−1,yi−1)

1

n

n
∑

i=1

I(X i;Yi|Y
i−1)

Haim Permuter

Sketch Proof

Cfb = max
P (xi|xi−1,yi−1)

1

n
I(Xn → Y n)

, max
P (xi|xi−1,yi−1)

1

n

n
∑

i=1

I(X i;Yi|Y
i−1)

= max
P (xi|xi−1,yi−1)

1

n

n
∑

i=1

I(X i, Si−1(X
i−1, Y i−1);Yi|Y

i−1)

Haim Permuter

Sketch Proof

Cfb = max
P (xi|xi−1,yi−1)

1

n
I(Xn → Y n)

, max
P (xi|xi−1,yi−1)

1

n

n
∑

i=1

I(X i;Yi|Y
i−1)

= max
P (xi|xi−1,yi−1)

1

n

n
∑

i=1

I(X i, Si−1;Yi|Y
i−1)(X i−1, Y i−1)

Haim Permuter

Sketch Proof

Cfb = max
P (xi|xi−1,yi−1)

1

n
I(Xn → Y n)

, max
P (xi|xi−1,yi−1)

1

n

n
∑

i=1

I(X i;Yi|Y
i−1)

= max
P (xi|xi−1,yi−1)

1

n

n
∑

i=1

I(Xi, Si−1;Yi|Y
i−1)(X i−1, Y i−1)

Haim Permuter

Sketch Proof

Cfb = max
P (xi|xi−1,yi−1)

1

n
I(Xn → Y n)

, max
P (xi|xi−1,yi−1)

1

n

n
∑

i=1

I(X i;Yi|Y
i−1)

= max
P (xi|si−1,yi−1)

1

n

n
∑

i=1

I(Xi, Si−1;Yi|Y
i−1)(X i−1, Y i−1)

Haim Permuter

Sketch Proof

Cfb = max
P (xi|xi−1,yi−1)

1

n
I(Xn → Y n)

, max
P (xi|xi−1,yi−1)

1

n

n
∑

i=1

I(X i;Yi|Y
i−1)

= max
P (xi|si−1,yi−1)

1

n

n
∑

i=1

I(Xi, Si−1;Yi|Y
i−1)(X i−1, Y i−1)

≤ max
P (xi|si−1,yi−1)

1

n

n
∑

i=1

I(Xi, Si−1;Yi|Qi−1(Y
i−1))

Haim Permuter

Sketch Proof

Cfb = max
P (xi|xi−1,yi−1)

1

n
I(Xn → Y n)

, max
P (xi|xi−1,yi−1)

1

n

n
∑

i=1

I(X i;Yi|Y
i−1)

= max
P (xi|si−1,yi−1)

1

n

n
∑

i=1

I(Xi, Si−1;Yi|Y
i−1)(X i−1, Y i−1)

≤ max
P (xi|si−1,yi−1)

1

n

n
∑

i=1

I(Xi, Si−1;Yi|Qi−1)(Y
i−1)

Haim Permuter

Sketch Proof

Cfb = max
P (xi|xi−1,yi−1)

1

n
I(Xn → Y n)

, max
P (xi|xi−1,yi−1)

1

n

n
∑

i=1

I(X i;Yi|Y
i−1)

= max
P (xi|si−1,yi−1)

1

n

n
∑

i=1

I(Xi, Si−1;Yi|Y
i−1)(X i−1, Y i−1)

≤ max
P (xi|si−1,qi−1)

1

n

n
∑

i=1

I(Xi, Si−1;Yi|Qi−1)(Y
i−1)

Haim Permuter

Sketch Proof

Cfb = max
P (xi|xi−1,yi−1)

1

n
I(Xn → Y n)

, max
P (xi|xi−1,yi−1)

1

n

n
∑

i=1

I(X i;Yi|Y
i−1)

= max
P (xi|si−1,yi−1)

1

n

n
∑

i=1

I(Xi, Si−1;Yi|Y
i−1)(X i−1, Y i−1)

≤ max
P (xi|si−1,qi−1)

1

n

n
∑

i=1

I(Xi, Si−1;Yi|Qi−1)(Y
i−1)

= max
P (x|s,q)

I(X,S;Y |Q)

Haim Permuter

Examples

Theorem [Sabag/P./Pfister17]

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q), ∀Q-graph

Ex1: Memoryless channel, |S| = 1. Choose Q constant.

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q) = sup
p(x)

I(X;Y)

Haim Permuter

Examples

Theorem [Sabag/P./Pfister17]

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q), ∀Q-graph

Ex1: Memoryless channel, |S| = 1. Choose Q constant.

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q) = sup
p(x)

I(X;Y)

Ex2: State known at the decoder and encoder. Choose Q = S

Cfb ≤ sup
p(x|s,q)

I(X,S;Y, S|Q) = sup
p(x|s)

I(X;Y |S)

Haim Permuter

Upper bound

A unifying capacity formula

For all solved channels in the literature,

Cfb = max I(X,S;Y |Q).

Haim Permuter

Upper bound

A unifying capacity formula

For all solved channels in the literature,

Cfb = max I(X,S;Y |Q).

1. Discrete memoryless channels Cfb = max I(X;Y)
2. Markov channels Cfb = maxp(x|s) I(X;Y |S)

Haim Permuter

Upper bound

A unifying capacity formula

For all solved channels in the literature,

Cfb = max I(X,S;Y |Q).

1. Discrete memoryless channels Cfb = max I(X;Y)
2. Markov channels Cfb = maxp(x|s) I(X;Y |S)

3. Trapdoor channel Cfb = log
(

1+
√
5

2

)

Haim Permuter

Upper bound

A unifying capacity formula

For all solved channels in the literature,

Cfb = max I(X,S;Y |Q).

1. Discrete memoryless channels Cfb = max I(X;Y)
2. Markov channels Cfb = maxp(x|s) I(X;Y |S)

3. Trapdoor channel Cfb = log
(

1+
√
5

2

)

4. B. Symmetric Ising channel Cfb = max 2H2(a)
3+a

Haim Permuter

Upper bound

A unifying capacity formula

For all solved channels in the literature,

Cfb = max I(X,S;Y |Q).

1. Discrete memoryless channels Cfb = max I(X;Y)
2. Markov channels Cfb = maxp(x|s) I(X;Y |S)

3. Trapdoor channel Cfb = log
(

1+
√
5

2

)

4. B. Symmetric Ising channel Cfb = max 2H2(a)
3+a

5. Input-constrained BEC Cfb(ǫ) = maxa
H2(a)

a+ 1
1−ǫ

Haim Permuter

Upper bound

A unifying capacity formula

For all solved channels in the literature,

Cfb = max I(X,S;Y |Q).

1. Discrete memoryless channels Cfb = max I(X;Y)
2. Markov channels Cfb = maxp(x|s) I(X;Y |S)

3. Trapdoor channel Cfb = log
(

1+
√
5

2

)

4. B. Symmetric Ising channel Cfb = max 2H2(a)
3+a

5. Input-constrained BEC Cfb(ǫ) = maxa
H2(a)

a+ 1
1−ǫ

6. B. Ising channels Cfb(p) = H2

(

1
2H2(p)+1

)

− H2(p)

2H2(p)+1

Haim Permuter

Upper bound

A unifying capacity formula

For all solved channels in the literature,

Cfb = max I(X,S;Y |Q).

1. Discrete memoryless channels Cfb = max I(X;Y)
2. Markov channels Cfb = maxp(x|s) I(X;Y |S)

3. Trapdoor channel Cfb = log
(

1+
√
5

2

)

4. B. Symmetric Ising channel Cfb = max 2H2(a)
3+a

5. Input-constrained BEC Cfb(ǫ) = maxa
H2(a)

a+ 1
1−ǫ

6. B. Ising channels Cfb(p) = H2

(

1
2H2(p)+1

)

− H2(p)

2H2(p)+1

7. Input-constrained BSC maxa
H2(a)+aH2

(

α(1−α)
a

)

1+a
−H2(α)

Haim Permuter

Upper bound

A unifying capacity formula

For all solved channels in the literature,

Cfb = max I(X,S;Y |Q).

1. Discrete memoryless channels Cfb = max I(X;Y)
2. Markov channels Cfb = maxp(x|s) I(X;Y |S)

3. Trapdoor channel Cfb = log
(

1+
√
5

2

)

4. B. Symmetric Ising channel Cfb = max 2H2(a)
3+a

5. Input-constrained BEC Cfb(ǫ) = maxa
H2(a)

a+ 1
1−ǫ

6. B. Ising channels Cfb(p) = H2

(

1
2H2(p)+1

)

− H2(p)

2H2(p)+1

7. Input-constrained BSC maxa
H2(a)+aH2

(

α(1−α)
a

)

1+a
−H2(α)

For these channels, capacity is attained with |Q| ≤ 4
Haim Permuter

Markov Decision Process (MDP) Formulation

Theorem (P-Cuff-Van Roy-Weissman’08)

The feedback capacity of a unifilar FSC can be formulated as

a Markov decision process

Haim Permuter

Markov Decision Process (MDP) Formulation

Theorem (P-Cuff-Van Roy-Weissman’08)

The feedback capacity of a unifilar FSC can be formulated as

a Markov decision process

MDP’s state: p(st|y
t)

Haim Permuter

Markov Decision Process (MDP) Formulation

Theorem (P-Cuff-Van Roy-Weissman’08)

The feedback capacity of a unifilar FSC can be formulated as

a Markov decision process

MDP’s state: p(st|y
t)

Solution methods:

Dynamic programming - value iteration algorithm
Effective only for binary alphabet

Haim Permuter

Markov Decision Process (MDP) Formulation

Theorem (P-Cuff-Van Roy-Weissman’08)

The feedback capacity of a unifilar FSC can be formulated as

a Markov decision process

MDP’s state: p(st|y
t)

Solution methods:

Dynamic programming - value iteration algorithm
Effective only for binary alphabet

Reinforcement learning (RL)
Effective for large alphabets

Haim Permuter

Reinforcement Learning

Environment

Agent
π

∆

Zt

Zt−1

Ut

Rt

Zt−1 - current state

Ut - action

Rt - reward

Zt - next state
Haim Permuter

Reinforcement Learning

Environment

Agent
π

∆

Zt

Zt−1

Ut
Rt

The goal: maximize the expected average reward

Eπ [G] = lim
T→∞

1

T

T
∑

t=1

Eπ [Rt]

Haim Permuter

Reinforcement Learning

Environment

Agent
π

∆

Zt

Zt−1

Ut
Rt

The goal: maximize the expected average reward

Eπ [G] = lim
T→∞

1

T

T
∑

t=1

Eπ [Rt]

The state-action value function

Qπ(z, u) = Eπ [G|Z1 = z, U1 = u]

Haim Permuter

Q-Learning Approach

Environment

Actor

Critic

Agent

Ut
Zt, Rt

Zt−1

Improve

πµ(z)

Qω(z,u)

Experience
Buffer

Train

∆

Haim Permuter

The DDPG Algorithm

Deep Deterministic Policy Gradient, (Lillicrap et al.’16)

Draw N interactions from experience (zi, ui, ri, z
′
i)

Train critic: minimize by ω

1

N

N
∑

i=1

[Qω (zi, ui)− [ri − ρµ +Qω (z
′
i, πµ(z

′
i))]]

2

Improve actor: maximize by µ

1

N

N
∑

i=1

∇uQω (zi, u) |u=πµ(zi)∇µπµ (zi)

Haim Permuter

The Ising Channel

Defined by Berger and Bonomi (1990):

Yi =

{

Si−1 ,w.p. 0.5

Xi ,w.p. 0.5
, Si−1 = Xi−1

Models channel with ISI, magnetic recording

Haim Permuter

The Ising Channel

Defined by Berger and Bonomi (1990):

Yi =

{

Si−1 ,w.p. 0.5

Xi ,w.p. 0.5
, Si−1 = Xi−1

Models channel with ISI, magnetic recording

Solved the binary case (Elischo-P’14, Sharov-Roth’16)

Haim Permuter

The Ising Channel

Defined by Berger and Bonomi (1990):

Yi =

{

Si−1 ,w.p. 0.5

Xi ,w.p. 0.5
, Si−1 = Xi−1

Models channel with ISI, magnetic recording

Solved the binary case (Elischo-P’14, Sharov-Roth’16)

The goal: apply RL methodology to larger alphabets

Haim Permuter

Back to the Feedback Capacity

Environment

Agent
π

∆

Zt

Zt−1

Ut

Rt

The goal: maximize average reward

Haim Permuter

Back to the Feedback Capacity

Channel

Transmitter

∆

p(st|y
t)

p(st−1|y
t−1)

p(xt|st−1, y
t−1)

I(Xt, St−1;Yt|Y
t−1 = yt−1)

The goal: maximize achievable rate

Haim Permuter

Numerical results - Achievable Rate

50 100 150 200 250 300 350 400 450 500

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

Reveal the structure of the optimal solution

Haim Permuter

Properties of the Estimated Solution

Haim Permuter

Properties of the Estimated Solution

Optimal input distribution structure

Haim Permuter

Properties of the Estimated Solution

Optimal input distribution structure

Transitions between states as function of channel’s output

Haim Permuter

Transitions of states by a Q-graph

replacements 0 0

1 1

2 2

Y = 0

Y = 1

Y = 2

Haim Permuter

Transitions of states by a Q-graph

replacements 0 0

1 1

2 2

Y = 0

Y = 1

Y = 2

Design coding scheme

Haim Permuter

Transitions of states by a Q-graph

replacements 0 0

1 1

2 2

Y = 0

Y = 1

Y = 2

Design coding scheme

Prove upper-bound

Haim Permuter

Coding scheme

Pre-transmission: generate an information sequence s.t.

xi =

{

xi−1 ,w.p p

Unif[X\xi−1] ,w.p 1− p

0 0

1 1

2 2

Haim Permuter

Coding scheme

Pre-transmission: generate an information sequence s.t.

xi =

{

xi−1 ,w.p p

Unif[X\xi−1] ,w.p 1− p

At the beginning: assume

decoder knows s 0 0

1 1

2 2

Haim Permuter

Coding scheme

Pre-transmission: generate an information sequence s.t.

xi =

{

xi−1 ,w.p p

Unif[X\xi−1] ,w.p 1− p

At the beginning: assume

decoder knows s

Encoder:
Transmit x, if y = s,

repeat x

0 0

1 1

2 2

Haim Permuter

Coding scheme

Pre-transmission: generate an information sequence s.t.

xi =

{

xi−1 ,w.p p

Unif[X\xi−1] ,w.p 1− p

At the beginning: assume

decoder knows s

Encoder:
Transmit x, if y = s,

repeat x

Decoder:
Receive y, if y 6= s store

y, else store next output

0 0

1 1

2 2

Haim Permuter

Coding scheme

Pre-transmission: generate an information sequence s.t.

xi =

{

xi−1 ,w.p p

Unif[X\xi−1] ,w.p 1− p

At the beginning: assume

decoder knows s

Encoder:
Transmit x, if y = s,

repeat x

Decoder:
Receive y, if y 6= s store

y, else store next output

0 0

1 1

2 2

The rate of the scheme:

R (X) = max
p∈[0,1]

2
H2(p) + (1− p) log (|X | − 1)

p+ 3
Haim Permuter

Upper-bound

Theorem (Sabag-P-Pfister’17)

For any choice of Q-graph

Cfb ≤ max
p(x|s,q)∈Pπ

I(X,S;Y |Q)

Haim Permuter

Upper-bound

Theorem (Sabag-P-Pfister’17)

For any choice of Q-graph

Cfb ≤ max
p(x|s,q)∈Pπ

I(X,S;Y |Q)

Theorem (Duality bound)

For any FSC channel and TY |Q

Cfb ≤ lim
n→∞

max
maxxn

1

n

n
∑

i=1

E
[

D
(

PY |X=Xi,X−=Xi−1
‖TY |Q=Qi−1

)]

Haim Permuter

The feedback capacity

Theorem

For all |X | ≤ 8, the feedback capacity of the Ising channel is

given by

Cfb (X) = max
p∈[0,1]

2
H2(p) + (1− p) log (|X | − 1)

p+ 3

Haim Permuter

The feedback capacity

Theorem

For all |X | ≤ 8, the feedback capacity of the Ising channel is

given by

Cfb (X) = max
p∈[0,1]

2
H2(p) + (1− p) log (|X | − 1)

p+ 3

What happens for |X | ≥ 9?

Haim Permuter

The feedback capacity

Theorem

For all |X | ≤ 8, the feedback capacity of the Ising channel is

given by

Cfb (X) = max
p∈[0,1]

2
H2(p) + (1− p) log (|X | − 1)

p+ 3

What happens for |X | ≥ 9?

Asymptotic better rate

R (X) ∝
3

4
log

|X |

2

Haim Permuter

The DDPG Algorithm

Deep Deterministic Policy Gradient, (Lillicrap et al.’16)

Draw N interactions from experience (zi, ui, ri, z
′
i)

Train critic: minimize by ω

1

N

N
∑

i=1

[

Qω (zi, ui)−

[

ri − ρµ + Qω (z
′
i, πµ(z

′
i))

]]2

Improve actor: maximize by µ

1

N

N
∑

i=1

∇uQω (zi, u) |u=πµ(zi)∇µπµ (zi)

Haim Permuter

The DDPG Algorithm with planing

Deep Deterministic Policy Gradient, (Lillicrap et al.’16)

Draw N interactions from experience (zi, ui, ri, z
′
i)

Train critic: minimize by ω

1

N

N
∑

i=1

[

Qω (zi, ui)−

[

ri − ρµ +
∑

z′

p(z′|zi, ui)Qω (z
′, πµ(z

′))

]]2

Improve actor: maximize by µ

1

N

N
∑

i=1

∇uQω (zi, u) |u=πµ(zi)∇µπµ (zi)

Haim Permuter

Improving RL: DDPG without planning

200 400 600 800 1000

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

capacity

200 400 600 800 1000

1.54

1.56

1.58

1.6

1.62

1.64

1.66

capacity

200 400 600 800 1000

1.75

1.8

1.85

1.9

1.95

2

2.05

Haim Permuter

Improving RL: DDPG with planing

200 400 600 800 1000

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

capacity

200 400 600 800 1000

1.54

1.56

1.58

1.6

1.62

1.64

1.66

capacity

200 400 600 800 1000

1.75

1.8

1.85

1.9

1.95

2

2.05

Haim Permuter

Conclusions

The idea of graph-based auxilary r.v.

RL methodology for computing feedback capacity

Problem setting for improving RL

Haim Permuter

Conclusions

The idea of graph-based auxilary r.v.

RL methodology for computing feedback capacity

Problem setting for improving RL

Future Work:

What is the solution for |X | ≥ 9?

Haim Permuter

Conclusions

The idea of graph-based auxilary r.v.

RL methodology for computing feedback capacity

Problem setting for improving RL

Future Work:

What is the solution for |X | ≥ 9?

Use insights of IT to improve RL.

Haim Permuter

Conclusions

The idea of graph-based auxilary r.v.

RL methodology for computing feedback capacity

Problem setting for improving RL

Future Work:

What is the solution for |X | ≥ 9?

Use insights of IT to improve RL.

Graph-based auxiliary r.v. beyond feedback.

Haim Permuter

Conclusions

The idea of graph-based auxilary r.v.

RL methodology for computing feedback capacity

Problem setting for improving RL

Future Work:

What is the solution for |X | ≥ 9?

Use insights of IT to improve RL.

Graph-based auxiliary r.v. beyond feedback.

Cardinality bound on Q.

Haim Permuter

Conclusions

The idea of graph-based auxilary r.v.

RL methodology for computing feedback capacity

Problem setting for improving RL

Future Work:

What is the solution for |X | ≥ 9?

Use insights of IT to improve RL.

Graph-based auxiliary r.v. beyond feedback.

Cardinality bound on Q.

Thank You!

Haim Permuter

Transitions of states by a directed graph

0 0, 1, 2

1 1, 0, 2

2 2, 0, 1

0

0

1

1

2
2

Haim Permuter

The DDPG Algorithm

Deep Deterministic Policy Gradient, (Lillicrap et al.’16)

Draw N interactions from experience (zi, ui, ri, z
′
i)

Train critic: minimize by ω

1

N

N
∑

i=1

[

Qω (zi, ui)−

[

ri − ρµ +
∑

z′

p(z′|zi, ui)Qω (z
′, πµ(z

′))

]]

Improve actor: maximize by µ

1

N

N
∑

i=1

∇uQω (zi, u) |u=πµ(zi)∇µπµ (zi)

Haim Permuter

