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Two main ideas

1 Graph-based auxiliary random variable

2 Reinforcement learning for computing feedback capacity
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Auxiliary random variable (r.v.)

Auxiliary r.v. plays an important role in multi-users
problems
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Auxiliary random variable (r.v.)

Auxiliary r.v. plays an important role in multi-users
problems

Gelfand-Pinsker: C = max
P (u|s)P (x|u,s)

I(U ;Y )− I(U ;S)

Wyner-Ziv: R = min
P (u|x)

I(X;U |Y )

Auxiliary r.v. converts multi-letter into single-letter

Auxiliary r.v. are i.i.d.
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Graph-based auxiliary r.v.

Non i.i.d auxiliary r.v.
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Graph-based auxiliary r.v.

Non i.i.d auxiliary r.v.

The auxiliary is represented by a graph

21

The graph induces a Markov process

The single-letter expression is evaluated with the
stationary distribution
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Reinforcement Learning

Environment

Agent
π

∆

Zt

Zt−1

Ut

Rt

Zt−1 - current state

Ut - action

Rt - reward

Zt - next state
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Reinforcement Learning

Channel

Agent
Transmitter

∆

P (st|yt) Zt

Zt−1

Ut P (x|·)
Rt I(·, ·|·)

Zt−1 - current state

Ut - action

Rt - reward

Zt - next state
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Communication with Feedback

Transmitter ReceiverChannel

Delay

M

Yt

Yt M̂

Yt−1

Xt

Unifilar finite state channel (FSC):

p (yt|xt, st−1)

st = f(xt, yt, st−1)
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Communication with Feedback

Transmitter ReceiverChannel

Delay

M

Yt

Yt M̂

Yt−1

Xt

Unifilar finite state channel (FSC):

p (yt|xt, st−1)

st = f(xt, yt, st−1)

The goal: compute the capacity and coding scheme
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0 0

1 1

?

Trapdoor Channel [Blackwell61] Ising Channel [Berger90]

yi =

{

xi, with prob. 1
2

xi−1, with prob. 1
2

yi =

{

xi − xi−1, w/ prob. ǭ

?, w/ prob. ǫ

1− ǫ

1− ǫ

ǫ

Cfb = log φ, φ =
√
5+1
2

Cfb = maxp
2H2(p)
3+p

≈ 0.575

Cfb = maxp(1− ǫ)p+ǫH2(p)
ǫ+(1−ǫ)p

Cfb = maxp
H2(p)

p+ 1
1−ǫ

[Elischo/P.13][P. et al08]

[Sabag/P/Kashyap15][Sabag/P/Pfister16]

Dicode Erasure Channel [Pfister08] Erasure Channel
with no repeated 1’s
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The Capacity

Theorem (P-Cuff-Van Roy-Weissman’08, P-Weissman-Goldsmith’09)

The feedback capacity of unifilar FSC

Cfb = lim
n→∞

max
{p(xi|si−1,yi−1)}ni=1

1

n
I (Xn → Y n)

The directed information (Massey 1990)

I (Xn → Y n) =
n

∑

i=1

I(X i;Yi|Y
i−1)

This is a multi-letter expression

Haim Permuter



The Q-graph

A Q-graph is an irreducible directed graph.
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The Q-graph

A Q-graph is an irreducible directed graph.

Each node has |Y| different labelled edges.

For instance, if Y = {0, 1, ?}:

replacements

q = 1 q = 2

y = 1

y = 0/?

y = 0/?/1

The Q-graph defines a mapping:

Φi−1 : Y
i−1 → Q (or, g : Q× Y → Q)
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The Q-graph

A Q-graph is an irreducible directed graph.

Each node has |Y| different labelled edges.

For instance, if Y = {0, 1, ?}:

replacements

q = 1 q = 2

y = 1

y = 0/?

y = 0/?/1

The Q-graph defines a mapping:

Φi−1 : Y
i−1 → Q (or, g : Q× Y → Q)

Each outputs sequence is Q-uantized
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Feedback capacity

Theorem [Sabag/P./Pfister17]

The feedback capacity of a unifilar FSC is bounded by

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q), ∀Q-graph
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Feedback capacity

Theorem [Sabag/P./Pfister17]

The feedback capacity of a unifilar FSC is bounded by

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q), ∀Q-graph

Q-graph defines a mapping: (Qi−1,Yi) → Qi

y = 1
y = 0
y =? y = 0/?/1 21

The Q-graph and P (x|s, q) induces

p(s, q, x, y) = π(s, q)p(x|s, q)p(y|s, x)
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Feedback capacity

Theorem [Sabag/P./Pfiser16]

The feedback capacity of a unifilar FSC is bounded by

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q), ∀Q-graph

If |Q| unbounded then its also achievable, i.e.,

Cfb = inf
Q

sup
p(x|s,q)

I(X,S;Y |Q)

Haim Permuter



Feedback capacity

Theorem [Sabag/P./Pfiser16]

The feedback capacity of a unifilar FSC is bounded by

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q), ∀Q-graph

If |Q| unbounded then its also achievable, i.e.,

Cfb = inf
Q

sup
p(x|s,q)

I(X,S;Y |Q)

For all known cases the upper bound is tight |Q| ≤ 4,

a a a a
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Sketch Proof

Cfb = max
P (xi|xi−1,yi−1)

1

n
I(Xn → Y n)
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≤ max
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1

n

n
∑
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I(Xi, Si−1;Yi|Qi−1)(Y
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= max
P (x|s,q)
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Examples

Theorem [Sabag/P./Pfister17]

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q), ∀Q-graph

Ex1: Memoryless channel, |S| = 1. Choose Q constant.

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q) = sup
p(x)

I(X;Y )
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Examples

Theorem [Sabag/P./Pfister17]

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q), ∀Q-graph

Ex1: Memoryless channel, |S| = 1. Choose Q constant.

Cfb ≤ sup
p(x|s,q)

I(X,S;Y |Q) = sup
p(x)

I(X;Y )

Ex2: State known at the decoder and encoder. Choose Q = S

Cfb ≤ sup
p(x|s,q)

I(X,S;Y, S|Q) = sup
p(x|s)

I(X;Y |S)
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Upper bound

A unifying capacity formula

For all solved channels in the literature,

Cfb = max I(X,S;Y |Q).
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Upper bound

A unifying capacity formula

For all solved channels in the literature,

Cfb = max I(X,S;Y |Q).

1. Discrete memoryless channels Cfb = max I(X;Y )
2. Markov channels Cfb = maxp(x|s) I(X;Y |S)

3. Trapdoor channel Cfb = log
(

1+
√
5

2

)

4. B. Symmetric Ising channel Cfb = max 2H2(a)
3+a

5. Input-constrained BEC Cfb(ǫ) = maxa
H2(a)

a+ 1
1−ǫ

6. B. Ising channels Cfb(p) = H2

(

1
2H2(p)+1

)

− H2(p)

2H2(p)+1

7. Input-constrained BSC maxa
H2(a)+aH2

(

α(1−α)
a

)

1+a
−H2(α)

For these channels, capacity is attained with |Q| ≤ 4
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Markov Decision Process (MDP) Formulation

Theorem (P-Cuff-Van Roy-Weissman’08)

The feedback capacity of a unifilar FSC can be formulated as

a Markov decision process
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Markov Decision Process (MDP) Formulation

Theorem (P-Cuff-Van Roy-Weissman’08)

The feedback capacity of a unifilar FSC can be formulated as

a Markov decision process

MDP’s state: p(st|y
t)

Solution methods:

Dynamic programming - value iteration algorithm
Effective only for binary alphabet

Reinforcement learning (RL)
Effective for large alphabets

Haim Permuter



Reinforcement Learning

Environment

Agent
π

∆

Zt

Zt−1

Ut

Rt

Zt−1 - current state

Ut - action

Rt - reward

Zt - next state
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Reinforcement Learning

Environment

Agent
π

∆

Zt

Zt−1

Ut
Rt

The goal: maximize the expected average reward

Eπ [G] = lim
T→∞

1

T

T
∑

t=1

Eπ [Rt]
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Reinforcement Learning

Environment

Agent
π

∆

Zt

Zt−1

Ut
Rt

The goal: maximize the expected average reward

Eπ [G] = lim
T→∞

1

T

T
∑

t=1

Eπ [Rt]

The state-action value function

Qπ(z, u) = Eπ [G|Z1 = z, U1 = u]
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Q-Learning Approach

Environment

Actor

Critic

Agent

Ut
Zt, Rt

Zt−1

Improve

πµ(z)

Qω(z,u)

Experience
Buffer

Train

∆
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The DDPG Algorithm

Deep Deterministic Policy Gradient, (Lillicrap et al.’16)

Draw N interactions from experience (zi, ui, ri, z
′
i)

Train critic: minimize by ω

1

N

N
∑

i=1

[Qω (zi, ui)− [ri − ρµ +Qω (z
′
i, πµ(z

′
i))]]

2

Improve actor: maximize by µ

1

N

N
∑

i=1

∇uQω (zi, u) |u=πµ(zi)∇µπµ (zi)
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The Ising Channel

Defined by Berger and Bonomi (1990):

Yi =

{

Si−1 ,w.p. 0.5

Xi ,w.p. 0.5
, Si−1 = Xi−1

Models channel with ISI, magnetic recording
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The Ising Channel

Defined by Berger and Bonomi (1990):

Yi =

{

Si−1 ,w.p. 0.5

Xi ,w.p. 0.5
, Si−1 = Xi−1

Models channel with ISI, magnetic recording

Solved the binary case (Elischo-P’14, Sharov-Roth’16)

The goal: apply RL methodology to larger alphabets
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Back to the Feedback Capacity

Environment

Agent
π

∆

Zt

Zt−1

Ut

Rt

The goal: maximize average reward
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Back to the Feedback Capacity

Channel

Transmitter

∆

p(st|y
t)

p(st−1|y
t−1)

p(xt|st−1, y
t−1)

I(Xt, St−1;Yt|Y
t−1 = yt−1)

The goal: maximize achievable rate
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Numerical results - Achievable Rate

50 100 150 200 250 300 350 400 450 500

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

Reveal the structure of the optimal solution

Haim Permuter



Properties of the Estimated Solution
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Properties of the Estimated Solution

Optimal input distribution structure
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Properties of the Estimated Solution

Optimal input distribution structure

Transitions between states as function of channel’s output
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Transitions of states by a Q-graph

replacements 0 0

1 1

2 2

Y = 0

Y = 1

Y = 2
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Transitions of states by a Q-graph

replacements 0 0

1 1

2 2

Y = 0

Y = 1

Y = 2

Design coding scheme

Prove upper-bound
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Coding scheme

Pre-transmission: generate an information sequence s.t.

xi =

{

xi−1 ,w.p p

Unif[X\xi−1] ,w.p 1− p

0 0

1 1

2 2
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Coding scheme

Pre-transmission: generate an information sequence s.t.

xi =

{

xi−1 ,w.p p

Unif[X\xi−1] ,w.p 1− p

At the beginning: assume

decoder knows s

Encoder:
Transmit x, if y = s,

repeat x

Decoder:
Receive y, if y 6= s store

y, else store next output

0 0

1 1

2 2

The rate of the scheme:

R (X ) = max
p∈[0,1]

2
H2(p) + (1− p) log (|X | − 1)

p+ 3
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Upper-bound

Theorem (Sabag-P-Pfister’17)

For any choice of Q-graph

Cfb ≤ max
p(x|s,q)∈Pπ

I(X,S;Y |Q)

Haim Permuter



Upper-bound

Theorem (Sabag-P-Pfister’17)

For any choice of Q-graph

Cfb ≤ max
p(x|s,q)∈Pπ

I(X,S;Y |Q)

Theorem (Duality bound)

For any FSC channel and TY |Q

Cfb ≤ lim
n→∞

max
maxxn

1

n

n
∑

i=1

E
[

D
(

PY |X=Xi,X−=Xi−1
‖TY |Q=Qi−1

)]
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The feedback capacity

Theorem

For all |X | ≤ 8, the feedback capacity of the Ising channel is

given by

Cfb (X ) = max
p∈[0,1]

2
H2(p) + (1− p) log (|X | − 1)

p+ 3
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The feedback capacity

Theorem

For all |X | ≤ 8, the feedback capacity of the Ising channel is

given by

Cfb (X ) = max
p∈[0,1]

2
H2(p) + (1− p) log (|X | − 1)

p+ 3

What happens for |X | ≥ 9?

Asymptotic better rate

R (X ) ∝
3

4
log

|X |

2
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The DDPG Algorithm

Deep Deterministic Policy Gradient, (Lillicrap et al.’16)

Draw N interactions from experience (zi, ui, ri, z
′
i)

Train critic: minimize by ω

1

N

N
∑

i=1

[

Qω (zi, ui)−

[

ri − ρµ + Qω (z
′
i, πµ(z

′
i))

]]2

Improve actor: maximize by µ

1

N

N
∑

i=1

∇uQω (zi, u) |u=πµ(zi)∇µπµ (zi)
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The DDPG Algorithm with planing

Deep Deterministic Policy Gradient, (Lillicrap et al.’16)

Draw N interactions from experience (zi, ui, ri, z
′
i)

Train critic: minimize by ω

1

N

N
∑

i=1

[

Qω (zi, ui)−

[

ri − ρµ +
∑

z′

p(z′|zi, ui)Qω (z
′, πµ(z

′))

]]2

Improve actor: maximize by µ

1

N

N
∑

i=1

∇uQω (zi, u) |u=πµ(zi)∇µπµ (zi)
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Improving RL: DDPG without planning

200 400 600 800 1000

0.92

0.925

0.93

0.935

0.94

0.945
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0.965
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capacity

200 400 600 800 1000

1.54

1.56

1.58
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1.66

capacity

200 400 600 800 1000

1.75

1.8
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1.95

2

2.05
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Improving RL: DDPG with planing

200 400 600 800 1000

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

capacity

200 400 600 800 1000

1.54

1.56

1.58

1.6

1.62

1.64

1.66

capacity

200 400 600 800 1000

1.75

1.8

1.85

1.9

1.95

2
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Conclusions

The idea of graph-based auxilary r.v.

RL methodology for computing feedback capacity

Problem setting for improving RL
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Conclusions

The idea of graph-based auxilary r.v.

RL methodology for computing feedback capacity

Problem setting for improving RL

Future Work:

What is the solution for |X | ≥ 9?

Use insights of IT to improve RL.

Graph-based auxiliary r.v. beyond feedback.

Cardinality bound on Q.

Thank You!
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Transitions of states by a directed graph

0 0, 1, 2

1 1, 0, 2

2 2, 0, 1

0

0

1

1

2
2
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The DDPG Algorithm

Deep Deterministic Policy Gradient, (Lillicrap et al.’16)

Draw N interactions from experience (zi, ui, ri, z
′
i)

Train critic: minimize by ω

1

N

N
∑

i=1

[

Qω (zi, ui)−

[

ri − ρµ +
∑

z′

p(z′|zi, ui)Qω (z
′, πµ(z

′))

]]

Improve actor: maximize by µ

1

N

N
∑

i=1

∇uQω (zi, u) |u=πµ(zi)∇µπµ (zi)
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