Feedback capacity of channels with memory

via Reinforcement Learning and Graph-based auxiliary random variable

Oron Sabag, Haim Permuter and Ziv Aharoni

Ben Gurion university
Workshop on Probability and Information Theory

Two main ideas

(1) Graph-based auxiliary random variable
(2) Reinforcement learning for computing feedback capacity

Auxiliary random variable (r.v.)

- Auxiliary r.v. plays an important role in multi-users problems

Auxiliary random variable (r.v.)

- Auxiliary r.v. plays an important role in multi-users problems

Gelfand-Pinsker: $\quad C=\max _{P(u \mid s) P(x \mid u, s)} I(U ; Y)-I(U ; S)$

$$
\text { Wyner-Ziv: } \quad R=\min _{P(u \mid x)} I(X ; U \mid Y)
$$

Auxiliary random variable (r.v.)

- Auxiliary r.v. plays an important role in multi-users problems

Gelfand-Pinsker: $\quad C=\max _{P(u \mid s) P(x \mid u, s)} I(U ; Y)-I(U ; S)$

$$
\text { Wyner-Ziv: } \quad R=\min _{P(u \mid x)} I(X ; U \mid Y)
$$

- Auxiliary r.v. converts multi-letter into single-letter

Auxiliary random variable (r.v.)

- Auxiliary r.v. plays an important role in multi-users problems

Gelfand-Pinsker: $\quad C=\max _{P(u \mid s) P(x \mid u, s)} I(U ; Y)-I(U ; S)$

$$
\text { Wyner-Ziv: } \quad R=\min _{P(u \mid x)} I(X ; U \mid Y)
$$

- Auxiliary r.v. converts multi-letter into single-letter
- Auxiliary r.v. are i.i.d.

Graph-based auxiliary r.v.

- Non i.i.d auxiliary r.v.

Graph-based auxiliary r.v.

- Non i.i.d auxiliary r.v.
- The auxiliary is represented by a graph

Graph-based auxiliary r.v.

- Non i.i.d auxiliary r.v.
- The auxiliary is represented by a graph

- The graph induces a Markov process

Graph-based auxiliary r.v.

- Non i.i.d auxiliary r.v.
- The auxiliary is represented by a graph

- The graph induces a Markov process
- The single-letter expression is evaluated with the stationary distribution

Reinforcement Learning

- Z_{t-1} - current state
- U_{t} - action
- R_{t} - reward
- Z_{t} - next state

Reinforcement Learning

- Z_{t-1} - current state
- U_{t} - action
- R_{t} - reward
- Z_{t} - next state

Reinforcement Learning

- Z_{t-1} - current state
- U_{t} - action
- R_{t} - reward
- Z_{t} - next state

Reinforcement Learning

- Z_{t-1} - current state
- U_{t} - action
- R_{t} - reward
- Z_{t} - next state

Communication with Feedback

- Unifilar finite state channel (FSC):

$$
\begin{aligned}
& p\left(y_{t} \mid x_{t}, s_{t-1}\right) \\
& s_{t}=f\left(x_{t}, y_{t}, s_{t-1}\right)
\end{aligned}
$$

Communication with Feedback

- Unifilar finite state channel (FSC):

$$
\begin{aligned}
& p\left(y_{t} \mid x_{t}, s_{t-1}\right) \\
& s_{t}=f\left(x_{t}, y_{t}, s_{t-1}\right)
\end{aligned}
$$

- The goal: compute the capacity and coding scheme

The Capacity

Theorem (P-Cuff-Van Roy-Weissman'08, P-Weissman-Goldsmith'09)
The feedback capacity of unifilar FSC

$$
C_{f b}=\lim _{n \rightarrow \infty} \max _{\left\{p\left(x_{i} \mid s_{i-1}, y^{i-1}\right)\right\}_{i=1}^{n}} \frac{1}{n} I\left(X^{n} \rightarrow Y^{n}\right)
$$

- The directed information (Massey 1990)

$$
I\left(X^{n} \rightarrow Y^{n}\right)=\sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right)
$$

- This is a multi-letter expression

The Q-graph

- A Q-graph is an irreducible directed graph.

The Q-graph

- A Q-graph is an irreducible directed graph.

Each node has $|\mathcal{Y}|$ different labelled edges.

The Q-graph

- A Q-graph is an irreducible directed graph.

Each node has $|\mathcal{Y}|$ different labelled edges.

- For instance, if $\mathcal{Y}=\{0,1, ?\}$:

The Q-graph

- A Q-graph is an irreducible directed graph.

Each node has $|\mathcal{Y}|$ different labelled edges.

- For instance, if $\mathcal{Y}=\{0,1, ?\}$:

$$
y=0 / ? \sim_{y=0 / ? / 1}^{y=1}(q=2
$$

- The Q-graph defines a mapping:

$$
\Phi_{i-1}: \mathcal{Y}^{i-1} \rightarrow \mathcal{Q} \quad(\text { or, } \quad g: \mathcal{Q} \times \mathcal{Y} \rightarrow \mathcal{Q})
$$

The Q-graph

- A Q-graph is an irreducible directed graph.

Each node has $|\mathcal{Y}|$ different labelled edges.

- For instance, if $\mathcal{Y}=\{0,1, ?\}$:

$$
y=0 / ? \sim q=1
$$

- The Q-graph defines a mapping:

$$
\Phi_{i-1}: \mathcal{Y}^{i-1} \rightarrow \mathcal{Q} \quad(\text { or, } \quad g: \mathcal{Q} \times \mathcal{Y} \rightarrow \mathcal{Q})
$$

- Each outputs sequence is Q-uantized

Feedback capacity

Theorem

[Sabag/P./Pfister17]

The feedback capacity of a unifilar FSC is bounded by

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q), \quad \forall Q \text {-graph }
$$

Feedback capacity

Theorem
[Sabag/P./Pfister17]
The feedback capacity of a unifilar FSC is bounded by

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q), \quad \forall Q \text {-graph }
$$

Q-graph defines a mapping: $\left(\mathcal{Q}_{i-1}, \mathcal{Y}_{i}\right) \rightarrow \mathcal{Q}_{i}$

$$
\begin{aligned}
& y=0 \\
& y=?
\end{aligned} \frac{y=1}{y=0 / ? / 1}<2
$$

Feedback capacity

Theorem

[Sabag/P./Pfister17]

The feedback capacity of a unifilar FSC is bounded by

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q), \quad \forall Q \text {-graph }
$$

Q-graph defines a mapping: $\left(\mathcal{Q}_{i-1}, \mathcal{Y}_{i}\right) \rightarrow \mathcal{Q}_{i}$

$$
\begin{aligned}
& y=0 \\
& y=?
\end{aligned} \substack{y=1 \\
y=0 / ? / 1} 2
$$

The Q-graph and $P(x \mid s, q)$ induces

$$
p(s, q, x, y)=\pi(s, q) p(x \mid s, q) p(y \mid s, x)
$$

Feedback capacity

Theorem
[Sabag/P./Pfiser16]
The feedback capacity of a unifilar FSC is bounded by

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q), \quad \forall Q \text {-graph }
$$

- If $|\mathcal{Q}|$ unbounded then its also achievable, i.e.,

$$
C_{f b}=\inf _{Q} \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q)
$$

Feedback capacity

Theorem
[Sabag/P./Pfiser16]
The feedback capacity of a unifilar FSC is bounded by

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q), \quad \forall Q \text {-graph }
$$

- If $|\mathcal{Q}|$ unbounded then its also achievable, i.e.,

$$
C_{f b}=\inf _{Q} \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q)
$$

- For all known cases the upper bound is tight $|\mathcal{Q}| \leq 4$,

Sketch Proof

$$
C_{f b}=\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} I\left(X^{n} \rightarrow Y^{n}\right)
$$

Sketch Proof

$$
\begin{aligned}
C_{f b} & =\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} I\left(X^{n} \rightarrow Y^{n}\right) \\
& \triangleq \max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right)
\end{aligned}
$$

Sketch Proof

$$
\begin{aligned}
C_{f b} & =\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} I\left(X^{n} \rightarrow Y^{n}\right) \\
& \triangleq \max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right) \\
& =\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X^{i}, S_{i-1}\left(X^{i-1}, Y^{i-1}\right) ; Y_{i} \mid Y^{i-1}\right)
\end{aligned}
$$

Sketch Proof

$$
\begin{aligned}
C_{f b} & =\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} I\left(X^{n} \rightarrow Y^{n}\right) \\
& \triangleq \max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right) \\
& =\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X^{i}, S_{i-1} ; Y_{i} \mid Y^{i-1}\right)
\end{aligned}
$$

Sketch Proof

$$
\begin{aligned}
C_{f b} & =\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} I\left(X^{n} \rightarrow Y^{n}\right) \\
& \triangleq \max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right) \\
& =\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X_{i}, S_{i-1} ; Y_{i} \mid Y^{i-1}\right)
\end{aligned}
$$

Sketch Proof

$$
\begin{aligned}
C_{f b} & =\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} I\left(X^{n} \rightarrow Y^{n}\right) \\
& \triangleq \max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right) \\
& =\max _{P\left(x_{i} \mid s_{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X_{i}, S_{i-1} ; Y_{i} \mid Y^{i-1}\right)
\end{aligned}
$$

Sketch Proof

$$
\begin{aligned}
C_{f b} & =\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} I\left(X^{n} \rightarrow Y^{n}\right) \\
& \triangleq \max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right) \\
& =\max _{P\left(x_{i} \mid s_{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X_{i}, S_{i-1} ; Y_{i} \mid Y^{i-1}\right) \\
& \leq \max _{P\left(x_{i} \mid s_{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X_{i}, S_{i-1} ; Y_{i} \mid Q_{i-1}\left(Y^{i-1}\right)\right)
\end{aligned}
$$

Sketch Proof

$$
\begin{aligned}
C_{f b} & =\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} I\left(X^{n} \rightarrow Y^{n}\right) \\
& \triangleq \max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right) \\
& =\max _{P\left(x_{i} \mid s_{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X_{i}, S_{i-1} ; Y_{i} \mid Y^{i-1}\right) \\
& \leq \max _{P\left(x_{i} \mid s_{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X_{i}, S_{i-1} ; Y_{i} \mid Q_{i-1}\right)
\end{aligned}
$$

Sketch Proof

$$
\begin{aligned}
C_{f b} & =\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} I\left(X^{n} \rightarrow Y^{n}\right) \\
& \triangleq \max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right) \\
& =\max _{P\left(x_{i} \mid s_{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X_{i}, S_{i-1} ; Y_{i} \mid Y^{i-1}\right) \\
& \leq \max _{P\left(x_{i} \mid s_{i-1}, q_{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X_{i}, S_{i-1} ; Y_{i} \mid Q_{i-1}\right)
\end{aligned}
$$

Sketch Proof

$$
\begin{aligned}
C_{f b} & =\max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} I\left(X^{n} \rightarrow Y^{n}\right) \\
& \triangleq \max _{P\left(x_{i} \mid x^{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X^{i} ; Y_{i} \mid Y^{i-1}\right) \\
& =\max _{P\left(x_{i} \mid s_{i-1}, y^{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X_{i}, S_{i-1} ; Y_{i} \mid Y^{i-1}\right) \\
& \leq \max _{P\left(x_{i} \mid s_{i-1}, q_{i-1}\right)} \frac{1}{n} \sum_{i=1}^{n} I\left(X_{i}, S_{i-1} ; Y_{i} \mid Q_{i-1}\right) \\
& =\max _{P(x \mid s, q)} I(X, S ; Y \mid Q)
\end{aligned}
$$

Examples

Theorem

[Sabag/P./Pfister17]

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q), \quad \forall Q \text {-graph }
$$

Ex1: Memoryless channel, $|\mathcal{S}|=1$. Choose Q constant.

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q)=\sup _{p(x)} I(X ; Y)
$$

Examples

Theorem

[Sabag/P./Pfister17]

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q), \quad \forall Q \text {-graph }
$$

Ex1: Memoryless channel, $|\mathcal{S}|=1$. Choose Q constant.

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y \mid Q)=\sup _{p(x)} I(X ; Y)
$$

Ex2: State known at the decoder and encoder. Choose $Q=S$

$$
C_{f b} \leq \sup _{p(x \mid s, q)} I(X, S ; Y, S \mid Q)=\sup _{p(x \mid s)} I(X ; Y \mid S)
$$

Upper bound

A unifying capacity formula
For all solved channels in the literature,

$$
C_{\mathrm{fb}}=\max I(X, S ; Y \mid Q)
$$

Upper bound

A unifying capacity formula

For all solved channels in the literature,

$$
C_{\mathrm{fb}}=\max I(X, S ; Y \mid Q)
$$

1. Discrete memoryless channels
2. Markov channels

$$
\begin{aligned}
& C_{\mathrm{fb}}=\max I(X ; Y) \\
& C_{\mathrm{fb}}=\max _{p(x \mid s)} I(X ; Y \mid S)
\end{aligned}
$$

Upper bound

A unifying capacity formula

For all solved channels in the literature,

$$
C_{\mathrm{fb}}=\max I(X, S ; Y \mid Q)
$$

1. Discrete memoryless channels
2. Markov channels

$$
\begin{aligned}
& C_{\mathrm{fb}}=\max I(X ; Y) \\
& C_{\mathrm{fb}}=\max _{p(x \mid s)} I(X ; Y \mid S) \\
& C_{\mathrm{fb}}=\log \left(\frac{1+\sqrt{5}}{2}\right)
\end{aligned}
$$

3. Trapdoor channel

Upper bound

A unifying capacity formula

For all solved channels in the literature,

$$
C_{\mathrm{fb}}=\max I(X, S ; Y \mid Q)
$$

1. Discrete memoryless channels

$$
\begin{aligned}
& C_{\mathrm{fb}}=\max I(X ; Y) \\
& C_{\mathrm{fb}}=\max _{p(x \mid s)} I(X ; Y \mid S) \\
& C_{\mathrm{fb}}=\log \left(\frac{1+\sqrt{5}}{2}\right) \\
& C_{\mathrm{fb}}=\max \frac{2 H_{2}(a)}{3+a}
\end{aligned}
$$

3. Trapdoor channel
4. B. Symmetric Ising channel

Upper bound

A unifying capacity formula

For all solved channels in the literature,

$$
C_{\mathrm{fb}}=\max I(X, S ; Y \mid Q)
$$

1. Discrete memoryless channels

$$
\begin{aligned}
& C_{\mathrm{fb}}=\max I(X ; Y) \\
& C_{\mathrm{fb}}=\max _{p(x \mid s)} I(X ; Y \mid S) \\
& C_{\mathrm{fb}}=\log \left(\frac{1+\sqrt{5}}{2}\right)
\end{aligned}
$$

2. Markov channels
3. Trapdoor channel
4. B. Symmetric Ising channel
5. Input-constrained BEC

$$
C_{\mathrm{fb}}=\max \frac{2 \mathrm{H}_{2}(a)}{3+a}
$$

$$
C_{\mathrm{fb}}(\epsilon)=\max _{a} \frac{H_{2}(a)}{a+\frac{1}{1-\epsilon}}
$$

Upper bound

A unifying capacity formula

For all solved channels in the literature,

$$
C_{\mathrm{fb}}=\max I(X, S ; Y \mid Q)
$$

1. Discrete memoryless channels

$$
\begin{aligned}
& C_{\mathrm{fb}}=\max I(X ; Y) \\
& C_{\mathrm{fb}}=\max _{p(x \mid s)} I(X ; Y \mid S) \\
& C_{\mathrm{fb}}=\log \left(\frac{1+\sqrt{5}}{2}\right) \\
& C_{\mathrm{fb}}=\max \frac{2 H_{2}(a)}{3+a}
\end{aligned}
$$

2. Markov channels
3. Trapdoor channel
4. B. Symmetric Ising channel
5. Input-constrained BEC

$$
C_{\mathrm{fb}}(\epsilon)=\max _{a} \frac{H_{2}(a)}{a+\frac{1}{1-\epsilon}}
$$

6. B. Ising channels

$$
C_{\mathrm{fb}}(p)=H_{2}\left(\frac{1}{2^{H_{2}(p)}+1}\right)-\frac{H_{2}(p)}{2^{H_{2}(p)}+1}
$$

Upper bound

A unifying capacity formula

For all solved channels in the literature,

$$
C_{\mathrm{fb}}=\max I(X, S ; Y \mid Q)
$$

1. Discrete memoryless channels

$$
\begin{aligned}
& C_{\mathrm{fb}}=\max I(X ; Y) \\
& C_{\mathrm{fb}}=\max _{p(x \mid s)} I(X ; Y \mid S) \\
& C_{\mathrm{fb}}=\log \left(\frac{1+\sqrt{5}}{2}\right) \\
& C_{\mathrm{fb}}=\max \frac{2 H_{2}(a)}{3+a}
\end{aligned}
$$

2. Markov channels
3. Trapdoor channel
4. B. Symmetric Ising channel
5. Input-constrained BEC

$$
C_{\mathrm{fb}}(\epsilon)=\max _{a} \frac{H_{2}(a)}{a+\frac{1}{1-\epsilon}}
$$

6. B. Ising channels
7. Input-constrained BSC

$$
\begin{aligned}
& C_{\mathrm{fb}}(p)=H_{2}\left(\frac{1}{2^{H_{2}(p)}+1}\right)-\frac{H_{2}(p)}{2^{H_{2}(p)}+1} \\
& \max _{a} \frac{H_{2}(a)+a H_{2}\left(\frac{\alpha(1-\alpha)}{a}\right)}{1+a}-H_{2}(\alpha)
\end{aligned}
$$

Upper bound

A unifying capacity formula

For all solved channels in the literature,

$$
C_{\mathrm{fb}}=\max I(X, S ; Y \mid Q)
$$

1. Discrete memoryless channels

$$
\begin{aligned}
& C_{\mathrm{fb}}=\max I(X ; Y) \\
& C_{\mathrm{fb}}=\max _{p(x \mid s)} I(X ; Y \mid S) \\
& C_{\mathrm{fb}}=\log \left(\frac{1+\sqrt{5}}{2}\right) \\
& C_{\mathrm{fb}}=\max \frac{2 H_{2}(a)}{3+a}
\end{aligned}
$$

2. Markov channels
3. Trapdoor channel
4. B. Symmetric Ising channel
5. Input-constrained BEC

$$
C_{\mathrm{fb}}(\epsilon)=\max _{a} \frac{H_{2}(a)}{a+\frac{1}{1-\epsilon}}
$$

6. B. Ising channels

$$
\begin{aligned}
& C_{\mathrm{fb}}(p)=H_{2}\left(\frac{1}{2^{H_{2}(p)}+1}\right)-\frac{H_{2}(p)}{2^{H_{2}(p)}+1} \\
& \max _{a} \frac{H_{2}(a)+a H_{2}\left(\frac{\alpha(1-\alpha)}{a}\right)}{1+a}-H_{2}(\alpha)
\end{aligned}
$$

7. Input-constrained BSC

For these channels, capacity is attained with $|\mathcal{Q}| \leq 4$

Markov Decision Process (MDP) Formulation

Theorem (P-Cuff-Van Roy-Weissman'08)
The feedback capacity of a unifilar FSC can be formulated as a Markov decision process

Markov Decision Process (MDP) Formulation

Theorem (P-Cuff-Van Roy-Weissman'08)

The feedback capacity of a unifilar FSC can be formulated as a Markov decision process

- MDP's state: $p\left(s_{t} \mid y^{t}\right)$

Markov Decision Process (MDP) Formulation

Theorem (P-Cuff-Van Roy-Weissman'08)

The feedback capacity of a unifilar FSC can be formulated as a Markov decision process

- MDP's state: $p\left(s_{t} \mid y^{t}\right)$

Solution methods:

- Dynamic programming - value iteration algorithm

Effective only for binary alphabet

Markov Decision Process (MDP) Formulation

Theorem (P-Cuff-Van Roy-Weissman'08)

The feedback capacity of a unifilar FSC can be formulated as a Markov decision process

- MDP's state: $p\left(s_{t} \mid y^{t}\right)$

Solution methods:

- Dynamic programming - value iteration algorithm

Effective only for binary alphabet

- Reinforcement learning (RL)

Effective for large alphabets

Reinforcement Learning

- Z_{t-1} - current state
- U_{t} - action
- R_{t} - reward
- Z_{t} - next state

Reinforcement Learning

- The goal: maximize the expected average reward

$$
\mathbb{E}_{\pi}[G]=\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{\pi}\left[R_{t}\right]
$$

Reinforcement Learning

- The goal: maximize the expected average reward

$$
\mathbb{E}_{\pi}[G]=\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{\pi}\left[R_{t}\right]
$$

- The state-action value function

$$
Q_{\pi}(z, u)=\mathbb{E}_{\pi}\left[G \mid Z_{1}=z, U_{1}=u\right]
$$

Q-Learning Approach

The DDPG Algorithm

Deep Deterministic Policy Gradient, (Lillicrap et al.'16)

- Draw N interactions from experience $\left(z_{i}, u_{i}, r_{i}, z_{i}^{\prime}\right)$
- Train critic: minimize by ω

$$
\frac{1}{N} \sum_{i=1}^{N}\left[Q_{\omega}\left(z_{i}, u_{i}\right)-\left[r_{i}-\rho_{\mu}+Q_{\omega}\left(z_{i}^{\prime}, \pi_{\mu}\left(z_{i}^{\prime}\right)\right)\right]\right]^{2}
$$

- Improve actor: maximize by μ

$$
\left.\frac{1}{N} \sum_{i=1}^{N} \nabla_{u} Q_{\omega}\left(z_{i}, u\right)\right|_{u=\pi_{\mu}\left(z_{i}\right)} \nabla_{\mu} \pi_{\mu}\left(z_{i}\right)
$$

The Ising Channel

- Defined by Berger and Bonomi (1990):

$$
Y_{i}=\left\{\begin{array}{ll}
S_{i-1} & \text {, w.p. } 0.5 \\
X_{i} & \text {,w.p. } 0.5
\end{array}, \quad S_{i-1}=X_{i-1}\right.
$$

- Models channel with ISI, magnetic recording

The Ising Channel

- Defined by Berger and Bonomi (1990):

$$
Y_{i}=\left\{\begin{array}{ll}
S_{i-1} & \text {,w.p. } 0.5 \\
X_{i} & \text {,w.p. } 0.5
\end{array}, \quad S_{i-1}=X_{i-1}\right.
$$

- Models channel with ISI, magnetic recording
- Solved the binary case (Elischo-P'14, Sharov-Roth'16)

The Ising Channel

- Defined by Berger and Bonomi (1990):

$$
Y_{i}=\left\{\begin{array}{ll}
S_{i-1} & \text {,w.p. } 0.5 \\
X_{i} & \text {,w.p. } 0.5
\end{array}, \quad S_{i-1}=X_{i-1}\right.
$$

- Models channel with ISI, magnetic recording
- Solved the binary case (Elischo-P'14, Sharov-Roth'16)
- The goal: apply RL methodology to larger alphabets

Back to the Feedback Capacity

The goal: maximize average reward

Back to the Feedback Capacity

The goal: maximize achievable rate

Numerical results - Achievable Rate

Ising channel with alphabet size 3

- Reveal the structure of the optimal solution

Properties of the Estimated Solution

State histogram of estimated transmitter

Properties of the Estimated Solution

State histogram of estimated transmitter

- Optimal input distribution structure

Properties of the Estimated Solution

State histogram of estimated transmitter

- Optimal input distribution structure
- Transitions between states as function of channel's output

Transitions of states by a Q-graph

Transitions of states by a Q-graph

- Design coding scheme

Transitions of states by a Q-graph

- Design coding scheme
- Prove upper-bound

Coding scheme

- Pre-transmission: generate an information sequence s.t.

$$
x_{i}= \begin{cases}x_{i-1} & , \text { w.p } p \\ \operatorname{Unif}\left[\mathcal{X} \backslash x_{i-1}\right] & , \text { w.p } 1-p\end{cases}
$$

Coding scheme

- Pre-transmission: generate an information sequence s.t.

$$
x_{i}= \begin{cases}x_{i-1} & , \text { w.p } p \\ \operatorname{Unif}\left[\mathcal{X} \backslash x_{i-1}\right] & , \text { w.p } 1-p\end{cases}
$$

- At the beginning: assume decoder knows s

Coding scheme

- Pre-transmission: generate an information sequence s.t.

$$
x_{i}= \begin{cases}x_{i-1} & , \text { w.p } p \\ \operatorname{Unif}\left[\mathcal{X} \backslash x_{i-1}\right] & , \text { w.p } 1-p\end{cases}
$$

- At the beginning: assume decoder knows s
- Encoder:

Transmit x, if $y=s$, repeat x

Coding scheme

- Pre-transmission: generate an information sequence s.t.

$$
x_{i}= \begin{cases}x_{i-1} & , \text { w.p } p \\ \operatorname{Unif}\left[\mathcal{X} \backslash x_{i-1}\right] & , \text { w.p } 1-p\end{cases}
$$

- At the beginning: assume decoder knows s
- Encoder:

Transmit x, if $y=s$, repeat x

- Decoder:

Receive y, if $y \neq s$ store y, else store next output

Coding scheme

- Pre-transmission: generate an information sequence s.t.

$$
x_{i}= \begin{cases}x_{i-1} & , \text { w.p } p \\ \operatorname{Unif}\left[\mathcal{X} \backslash x_{i-1}\right] & , \text { w.p } 1-p\end{cases}
$$

- At the beginning: assume decoder knows s
- Encoder:

Transmit x, if $y=s$, repeat x

- Decoder:

Receive y, if $y \neq s$ store y, else store next output

- The rate of the scheme:

$$
R(\mathcal{X})=\max _{p \in[0,1]} 2 \frac{H_{2}(p)+(1-p) \log (|\mathcal{X}|-1)}{p+3}
$$

Upper-bound

Theorem (Sabag-P-Pfister'17)

For any choice of Q-graph

$$
C_{f b} \leq \max _{p(x \mid s, q) \in \mathcal{P}_{\pi}} I(X, S ; Y \mid Q)
$$

Upper-bound

Theorem (Sabag-P-Pfister'17)

For any choice of Q-graph

$$
C_{f b} \leq \max _{p(x \mid s, q) \in \mathcal{P}_{\pi}} I(X, S ; Y \mid Q)
$$

Theorem (Duality bound)

For any FSC channel and $T_{Y \mid Q}$

$$
C_{f b} \leq \lim _{n \rightarrow \infty} \max _{\max _{x^{n}}} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[D\left(P_{Y \mid X=X_{i}, X^{-}=X_{i-1}} \| T_{Y \mid Q=Q_{i-1}}\right)\right]
$$

The feedback capacity

Theorem

For all $|\mathcal{X}| \leq 8$, the feedback capacity of the Ising channel is given by

$$
C_{f b}(\mathcal{X})=\max _{p \in[0,1]} 2 \frac{H_{2}(p)+(1-p) \log (|\mathcal{X}|-1)}{p+3}
$$

The feedback capacity

Theorem

For all $|\mathcal{X}| \leq 8$, the feedback capacity of the Ising channel is given by

$$
C_{f b}(\mathcal{X})=\max _{p \in[0,1]} 2 \frac{H_{2}(p)+(1-p) \log (|\mathcal{X}|-1)}{p+3}
$$

- What happens for $|\mathcal{X}| \geq 9$?

The feedback capacity

Theorem

For all $|\mathcal{X}| \leq 8$, the feedback capacity of the Ising channel is given by

$$
C_{f b}(\mathcal{X})=\max _{p \in[0,1]} 2 \frac{H_{2}(p)+(1-p) \log (|\mathcal{X}|-1)}{p+3}
$$

- What happens for $|\mathcal{X}| \geq 9$?
- Asymptotic better rate

$$
R(\mathcal{X}) \propto \frac{3}{4} \log \frac{|\mathcal{X}|}{2}
$$

The DDPG Algorithm

Deep Deterministic Policy Gradient, (Lillicrap et al.'16)

- Draw N interactions from experience $\left(z_{i}, u_{i}, r_{i}, z_{i}^{\prime}\right)$
- Train critic: minimize by ω

$$
\frac{1}{N} \sum_{i=1}^{N}\left[Q_{\omega}\left(z_{i}, u_{i}\right)-\left[r_{i}-\rho_{\mu}+\quad Q_{\omega}\left(z_{i}^{\prime}, \pi_{\mu}\left(z_{i}^{\prime}\right)\right)\right]\right]^{2}
$$

- Improve actor: maximize by μ

$$
\left.\frac{1}{N} \sum_{i=1}^{N} \nabla_{u} Q_{\omega}\left(z_{i}, u\right)\right|_{u=\pi_{\mu}\left(z_{i}\right)} \nabla_{\mu} \pi_{\mu}\left(z_{i}\right)
$$

The DDPG Algorithm with planing

Deep Deterministic Policy Gradient, (Lillicrap et al.'16)

- Draw N interactions from experience $\left(z_{i}, u_{i}, r_{i}, z_{i}^{\prime}\right)$
- Train critic: minimize by ω

$$
\frac{1}{N} \sum_{i=1}^{N}\left[Q_{\omega}\left(z_{i}, u_{i}\right)-\left[r_{i}-\rho_{\mu}+\sum_{z^{\prime}} p\left(z^{\prime} \mid z_{i}, u_{i}\right) Q_{\omega}\left(z^{\prime}, \pi_{\mu}\left(z^{\prime}\right)\right)\right]\right]^{2}
$$

- Improve actor: maximize by μ

$$
\left.\frac{1}{N} \sum_{i=1}^{N} \nabla_{u} Q_{\omega}\left(z_{i}, u\right)\right|_{u=\pi_{\mu}\left(z_{i}\right)} \nabla_{\mu} \pi_{\mu}\left(z_{i}\right)
$$

Improving RL: DDPG without planning

Improving RL: DDPG with planing

Conclusions

- The idea of graph-based auxilary r.v.
- RL methodology for computing feedback capacity
- Problem setting for improving RL

Conclusions

- The idea of graph-based auxilary r.v.
- RL methodology for computing feedback capacity
- Problem setting for improving RL

Future Work:

- What is the solution for $|\mathcal{X}| \geq 9$?

Conclusions

- The idea of graph-based auxilary r.v.
- RL methodology for computing feedback capacity
- Problem setting for improving RL

Future Work:

- What is the solution for $|\mathcal{X}| \geq 9$?
- Use insights of IT to improve RL.

Conclusions

- The idea of graph-based auxilary r.v.
- RL methodology for computing feedback capacity
- Problem setting for improving RL

Future Work:

- What is the solution for $|\mathcal{X}| \geq 9$?
- Use insights of IT to improve RL.
- Graph-based auxiliary r.v. beyond feedback.

Conclusions

- The idea of graph-based auxilary r.v.
- RL methodology for computing feedback capacity
- Problem setting for improving RL

Future Work:

- What is the solution for $|\mathcal{X}| \geq 9$?
- Use insights of IT to improve RL.
- Graph-based auxiliary r.v. beyond feedback.
- Cardinality bound on Q.

Conclusions

- The idea of graph-based auxilary r.v.
- RL methodology for computing feedback capacity
- Problem setting for improving RL

Future Work:

- What is the solution for $|\mathcal{X}| \geq 9$?
- Use insights of IT to improve RL.
- Graph-based auxiliary r.v. beyond feedback.
- Cardinality bound on Q.

Thank You!

Transitions of states by a directed graph

The DDPG Algorithm

Deep Deterministic Policy Gradient, (Lillicrap et al.'16)

- Draw N interactions from experience $\left(z_{i}, u_{i}, r_{i}, z_{i}^{\prime}\right)$
- Train critic: minimize by ω

$$
\frac{1}{N} \sum_{i=1}^{N}\left[Q_{\omega}\left(z_{i}, u_{i}\right)-\left[r_{i}-\rho_{\mu}+\sum_{z^{\prime}} p\left(z^{\prime} \mid z_{i}, u_{i}\right) Q_{\omega}\left(z^{\prime}, \pi_{\mu}\left(z^{\prime}\right)\right)\right] .\right.
$$

- Improve actor: maximize by μ

$$
\left.\frac{1}{N} \sum_{i=1}^{N} \nabla_{u} Q_{\omega}\left(z_{i}, u\right)\right|_{u=\pi_{\mu}\left(z_{i}\right)} \nabla_{\mu} \pi_{\mu}\left(z_{i}\right)
$$

