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Two main ideas

© Graph-based auxiliary random variable

@ Reinforcement learning for computing feedback capacity
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Auxiliary random variable (r.v.)

@ Auxiliary r.v. plays an important role in multi-users
problems
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Auxiliary random variable (r.v.)

@ Auxiliary r.v. plays an important role in multi-users
problems

Gelfand-Pinsker:  C' = max I(U;Y)—I(U;S)
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Wyner-Ziv: R = r?iln) I(X;U|Y)
P(ulz
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Auxiliary random variable (r.v.)

@ Auxiliary r.v. plays an important role in multi-users
problems

Gelfand-Pinsker:  C' = max I(U;Y)—I(U;S)

P(uls)P(z|u,s)

Wyner-Ziv: R = r?iln) I(X;U|Y)
P(ulz

@ Auxiliary r.v. converts multi-letter into single-letter

@ Auxiliary r.v. are i.i.d.
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Graph-based auxiliary r.v.

@ Non i.i.d auxiliary r.v.

Haim Permuter



Graph-based auxiliary r.v.

@ Non i.i.d auxiliary r.v.

@ The auxiliary is represented by a graph

(OmmO

Haim Permuter



Graph-based auxiliary r.v.

@ Non i.i.d auxiliary r.v.

@ The auxiliary is represented by a graph

(OmmO

@ The graph induces a Markov process

Haim Permuter



Graph-based auxiliary r.v.

@ Non i.i.d auxiliary r.v.

@ The auxiliary is represented by a graph

(OmmO

@ The graph induces a Markov process

@ The single-letter expression is evaluated with the
stationary distribution
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Reinforcement Learning

Agent

L

LA R,

Environment

@ /,_1 - current state
@ U, - action
o R; - reward

@ /; - next state
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Reinforcement Learning

Agent
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LA R,

Channel

@ /,_1 - current state
@ U, - action
o R; - reward

@ /; - next state
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Reinforcement Learning

Agent
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Reinforcement Learning

Agent

7 Transmitter
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P(St’yt> Zt
Channel

@ /,_1 - current state
@ U, - action
o R; - reward

@ /; - next state
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Communication with Feedback
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@ Unifilar finite state channel (FSC):

p(%ll‘u 5t—1>
St = f(l't, Yt Stfl)

Haim Permuter



Communication with Feedback

Xy

——>{Transmittet > Channel

A

Receiver

A

A

Delay

Yioa Y

@ Unifilar finite state channel (FSC):

p(%ll‘u 5t—1>
St = f(l't, Yt Stfl)

@ The goal: compute the capacity and coding scheme
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Trapdoor Channel [Blackwell61]
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The Capacity

Theorem (P—CufF—Van Roy-Weissman'08, P—Weissman—GoIdsmith'O9)
The feedback capacity of unifilar FSC

1
Cp = lim max —[ (X" —=>Y")

n—=00 {p(zilsi—1,y° 1)} g T

@ The directed information (Massey 1990)
[(X" = Y") =Y I(X5Y[y'
i=1

@ This is a multi-letter expression
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The (Q-graph

@ A Q-graph is an irreducible directed graph.
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The (Q-graph

@ A (Q-graph is an irreducible directed graph.
Each node has | )| different labelled edges.
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The (Q-graph

@ A (Q-graph is an irreducible directed graph.
Each node has | )| different labelled edges.
@ For instance, if Y = {0,1,7}:
=1

S OSHNS

y=0/7/1
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The (Q-graph

@ A (Q-graph is an irreducible directed graph.
Each node has | )| different labelled edges.
@ For instance, if Y = {0,1,7}:

=1

S OSHNS

y=0/7/1
@ The ()-graph defines a mapping:

D : Y —=Q (or, g:9QxY— Q)
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The (Q-graph

@ A (Q-graph is an irreducible directed graph.
Each node has | )| different labelled edges.
@ For instance, if Y = {0,1,7}:
=1

o f]
y=0/7/1

@ The ()-graph defines a mapping:
Y= Q (or, g:QxY—Q)

@ Each outputs sequence is Q-uantized
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Feedback capacity

Theorem [Sabag/P./Pfisterl7]
The feedback capacity of a unifilar FSC is bounded by

C’fbg sup I(X7 SaY|Q)7 VQ'graph

p(z|s,q)
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Feedback capacity

Theorem [Sabag/P./Pfisterl7]
The feedback capacity of a unifilar FSC is bounded by

Cfbg sup I(X7 SaY|Q)7 VQ'graph

p(z|s,q)

Q-graph defines a mapping: (Q;_1,)i) — Q;

y=0

The Q-graph and P(z|s,q) induces

p(s,q,z,y) = (s, q)p(xls, ¢)p(y|s, x)
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Feedback capacity

Theorem [Sabag/P./Pfiser16]
The feedback capacity of a unifilar FSC is bounded by

Cp < sup I(X,S;Y|Q), VQ-graph

p(z(s,9)
o If |Q| unbounded then its also achievable, i.e.,

Cpp = igf sup 1(X,S;Y|Q)

p(zls,9)
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Feedback capacity

Theorem [Sabag/P./Pfiser16]
The feedback capacity of a unifilar FSC is bounded by

Cp < sup I(X,S;Y|Q), VQ-graph

p(z(s,9)
o If |Q| unbounded then its also achievable, i.e.,

Cpp = igf sup 1(X,S;Y|Q)

p(zls,q)

@ For all known cases the upper bound is tight |Q| < 4,
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Sketch Proof

1
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Sketch Proof

1
Cp = max —I[(X" —>Y")
P(zi|lzi—Lyi—) 1
I : :
= max  — Y I(X5YYH)
P(xi‘mi717yi71) n =
1 <& . A . ,
= max  — Y I(X S (XTLY"hH: v yth

P(z;|zi~1yi-1) N —
i=1

Haim Permuter



Sketch Proof

1
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Sketch Proof

1
Cp = max —I[(X" —>Y")
P(zi|lzi—Lyi—) 1
1 <& , .
£ max — I(XL YY)
P(xi|xi71,yi71) n i1
1< i—1
= max — » I(X;,Si_; YY)
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Sketch Proof

1
Cp = max —[(X" = Y")
P(z;|lzi~lyi—) 1

= max —Z[ XLy |y
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P(xg|si—1,yt~

= max o Z](Xi,Si_l;YAY"‘l)
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Sketch Proof
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P(xg|si—1,yt~
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max )—ZI(Xz‘,Si—l;Yi|Qz’—1(YZ_1))
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Sketch Proof

1
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Sketch Proof

1
Cp = max —[(X" = Y")
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Sketch Proof

1
Cp = max —[(X" = Y")
P(Ii‘Il_l 2—1) n

2 max —Z[ X27K|Yl 1)

(l’z|$2 1

- max EZ](XuSi—BYHYi_l)

P(zi|si—1,y*~

< max —Z (X, Si1; Yi|Qi1)

(mz|51 1,9i—
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Examples

Theorem [Sabag/P./Pfisterl7]

Cpp < sup I(X,S;Y|Q), VQ-graph

p(z]s,9)
Ex1: Memoryless channel, |S| = 1. Choose () constant.

Cp < sup I(X,S;Y]Q) =sup [(X;Y)

p(z]s,q) p(z)
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Examples

Theorem [Sabag/P./Pfisterl7]

Cpp < sup I(X,S;Y|Q), VQ-graph

p(z]s,9)
Ex1: Memoryless channel, |S| = 1. Choose () constant.

Cp < sup I(X,S;Y]Q) =sup [(X;Y)

p(z|s,9) p(z)

Ex2: State known at the decoder and encoder. Choose () = S

Cpy < sup I(X,5:Y,5]|Q) = sup I(X;Y]9)

p(zls,q) p(zls)
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Upper bound
A unifying capacity formula

For all solved channels in the literature,

Cwp = max I(X, S;Y]Q).
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Upper bound
A unifying capacity formula

For all solved channels in the literature,

Cwp = max I(X, S;Y]Q).

1. Discrete memoryless channels Ch, = maxI(X;Y)

2. Markov channels Ciy = maxy(,5) [(X;Y]S)
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3. Trapdoor channel Cqp, = log ( - )
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Upper bound
A unifying capacity formula

For all solved channels in the literature,

Cwp = max I(X, S;Y]Q).

1. Discrete memoryless channels Ch, = maxI(X;Y)
2. Markov channels Ciy = maxy(,5) [(X;Y]S)
_ 1+v5
3. Trapdoor channel Cq = log ( 3 )
4. B. Symmetric Ising channel Cf, = max %&l&)
5. Input-constrained BEC Ctp(€) = max, (ffi@
1—e

6. B. Ising channels Ci(p) = Ho ( : ) - 2}52(1(511
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Upper bound
A unifying capacity formula

For all solved channels in the literature,

Cwp = max I(X, S;Y]Q).

1. Discrete memoryless channels Ch, = maxI(X;Y)
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Upper bound
A unifying capacity formula

For all solved channels in the literature,

Cwp = max I(X, S;Y]Q).

1. Discrete memoryless channels Ch, = maxI(X;Y)
2. Markov channels Ciy = maxy(,5) [(X;Y]S)
3. Trapdoor channel Ct, = log (HQ\/g)
4. B. Symmetric Ising channel Cf, = max %&l&)
5. Input-constrained BEC Ctp(€) = max, (ffi@
1—e
6. B. Ising channels Cy(p) = Ho <2H2<1p)+1) — 2fg2(1(7§))+1
H +aH. a(l—a)
7. Input-constrained BSC max, () aljg 2 ) — Hy(a)

For these channels, capacity is attained with |Q] < 4
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Markov Decision Process (MDP) Formulation

Theorem (P-Cuff-Van Roy-Weissman'08)

The feedback capacity of a unifilar FSC can be formulated as
a Markov decision process
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Markov Decision Process (MDP) Formulation

Theorem (P-Cuff-Van Roy-Weissman'08)

The feedback capacity of a unifilar FSC can be formulated as
a Markov decision process

@ MDP's state: p(s;|y")

Solution methods:

@ Dynamic programming - value iteration algorithm
Effective only for binary alphabet

@ Reinforcement learning (RL)
Effective for large alphabets
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Reinforcement Learning

Agent

LT

LA R,

Environment

@ /,_1 - current state
@ U, - action
o R; - reward

@ /; - next state
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Reinforcement Learning

Agent
s
Zya

[A] R, b

Z
4@—

@ The goal: maximize the expected average reward

E.[G] = lim —ZE [Ry]

T—o0 T
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Reinforcement Learning

Agent
s
Zya

[A] Rl b

Z
4@—

@ The goal: maximize the expected average reward

E.[G] = lim —ZE [Ry]

T—o0 T

@ The state-action value function

Qr(z,u) =B, [G|Z) = z,U; = u]
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Q-Learning Approach

; Actor
Agent _n
n
Zi—
[ ] ‘
Improve
Qu(zu)
Experience
Buffer
Critic
Environment
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The DDPG Algorithm

Deep Deterministic Policy Gradient, (Lillicrap et al.’16)

@ Draw N interactions from experience (z;, u;, 7, 2})

@ Train critic: minimize by w

N
5 2 1Qu () — i — e+ Qo ()]
=1

@ Improve actor: maximize by p

~ Z Vqu Zi, U |u WH(ZI)V,LLW,UI (’Z’L)
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The Ising Channel

@ Defined by Berger and Bonomi (1990):

S, w.p. 0.5
}/; = ! WP ) Si—l = Xi—l

@ Models channel with ISI, magnetic recording
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The Ising Channel

@ Defined by Berger and Bonomi (1990):

S, w.p. 0.5
}/; = ! WP ) Si—l = Xi—l

@ Models channel with ISI, magnetic recording

@ Solved the binary case (Elischo-P'14, Sharov-Roth'16)
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The Ising Channel

@ Defined by Berger and Bonomi (1990):
Si1 ,wp. 0.5
}/; = ' P ) Si—l = Xi—l
@ Models channel with ISI, magnetic recording

@ Solved the binary case (Elischo-P'14, Sharov-Roth'16)

©

The goal: apply RL methodology to larger alphabets
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Back to the Feedback Capacity

Agent
s
Zios ")
)
Ry

U

Environment

The goal: maximize average reward
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Back to the Feedback Capacity

p(xe]se—1,y" )

Transmitter
plsialy™) l J
I:A:I I(Xy, S Y|V = i)

p(sely’)

Channel

The goal: maximize achievable rate

Haim Permuter



Numerical results - Achievable Rate
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@ Reveal the structure of the optimal solution



Properties of the Estimated Solution

State histogram of estimated transmitter

x10°

#of visits
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Properties of the Estimated Solution

State histogram of estimated transmitter

x10°

#of visits

-
]

p(se =1y
@ Optimal input distribution structure
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Properties of the Estimated Solution

State histogram of estimated transmitter

x10°

#of visits

-
]

@ Optimal input distribution structure
@ Transitions between states as function of channel’s output
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Transitions of states by a Q-graph
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Transitions of states by a Q-graph

@ Design coding scheme
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Transitions of states by a Q-graph

@ Design coding scheme
@ Prove upper-bound
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Coding scheme

@ Pre-transmission: generate an information sequence s.t.

- Ti-1 yW.pp
' Unif[X\x;—1] ,wpl—p
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Coding scheme

@ Pre-transmission: generate an information sequence s.t.
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decoder knows s
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repeat x
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Coding scheme

@ Pre-transmission: generate an information sequence s.t.

- Ti-1 yW.pp
' Unif[X\x;—1] ,wpl—p

o At the beginning: assume
decoder knows s

o Encoder:
Transmit z, if y = s,
repeat x

o Decoder:
Receive y, if y # s store
1y, else store next output
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Coding scheme

@ Pre-transmission: generate an information sequence s.t.

- Ti-1 yW.pp
' Unif[X\x;—1] ,wpl—p

o At the beginning: assume
decoder knows s

o Encoder:
Transmit z, if y = s,
repeat x

o Decoder:
Receive y, if y # s store
1y, else store next output

@ The rate of the scheme:
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Upper-bound

Theorem (Sabag-P-Pfister'17)
For any choice of Q-graph

Cp < max I(X,5;Y|Q)

p(z|s,q)EPx
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Upper-bound

Theorem (Sabag-P-Pfister'17)
For any choice of Q-graph

Cp < max I(X,5;Y|Q)

p(z|s,q)EPx

Theorem (Duality bound)
For any FSC channel and Ty g

1 n
Cy < lim max — ZE [D (PY|X:XZ-,X*=XZ-_1||TY|Q=Q1‘71)}

n—00 max,n 1, 4 :
1=
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The feedback capacity

For all |X| < 8, the feedback capacity of the Ising channel is
given by

H 1—p)l Xl -1
O () = mi 2720+ (L= p) log (%] — 1)
pE[0,1] p+3
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The feedback capacity

For all |X| < 8, the feedback capacity of the Ising channel is
given by

H. 1—p)l X|—1
€ () — g 220 (=P log (%] = 1)
pe[0,1] p+3

@ What happens for |X'| > 97
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The feedback capacity

For all |X| < 8, the feedback capacity of the Ising channel is
given by

H 1—p)l Xl -1
O () = mi 2720+ (L= p) log (%] — 1)
pE[0,1] p+3

@ What happens for |X'| > 97
@ Asymptotic better rate

X

R(X)o<—log 5

4
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The DDPG Algorithm

Deep Deterministic Policy Gradient, (Lillicrap et al.’16)

@ Draw N interactions from experience (z;, u;, 74, 2})

@ Train critic: minimize by w

% Z_: [Qw (Zi7 ul) — [7”1- — pPu+ Qu (21{7 WH(ZQ))] ]

@ Improve actor: maximize by p

~r Z quw Ziy U |u Wu(zz)vuﬂ-u (Zz)
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The DDPG Algorithm with planing

Deep Deterministic Policy Gradient, (Lillicrap et al.’16)

@ Draw N interactions from experience (z;, u;, 74, 2})

@ Train critic: minimize by w

%Z [Q” (25, ui) = [Ti —PuTt Zp(z’\zi,ui)Qw (, W“(zl))] ]

@ Improve actor: maximize by p

~r Z quw Ziy U |u Wu(zl)vuﬂ-u (Zz)

Haim Permuter



Improving RL: DDPG without planning
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Improving RL: DDPG with planing
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Conclusions

@ The idea of graph-based auxilary r.v.
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Transitions of states by a directed graph
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The DDPG Algorithm

Deep Deterministic Policy Gradient, (Lillicrap et al.’16)

@ Draw N interactions from experience (z;, u;, 74, 2})

@ Train critic: minimize by w
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@ Improve actor: maximize by p
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