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Non-Interactive Simulation Problem

@ Given Pxy, let (X,Y) ~ Py, be correlated memoryless sources
e ie,(X,Y)areni.id. copies of (X,Y) ~ Pxy
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Non-Interactive Simulation Problem

@ Given Pxy, let (X,Y) ~ Py, be correlated memoryless sources
e ie,(X,Y)areni.id. copies of (X,Y) ~ Pxy

@ Assume (U, V) on U x V are two random variables such that U = X - Y -V
forms a Markov chain, i.e.,

Puxyv = PuixPxyPviy
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Non-Interactive Simulation Problem

@ Given Pxy, let (X,Y) ~ Py, be correlated memoryless sources
e ie,(X,Y)areni.id. copies of (X,Y) ~ Pxy

@ Assume (U, V) on U x V are two random variables such that U = X - Y -V
forms a Markov chain, i.e.,

Puxyv = PuixPxyPviy

X

n Y
<7PU|X<7PXY
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@ A natural question: What are the possible joint distributions Py of (U, V)?

Q((L{X(lexy) = {PUV GP(WX(V)IU—X—Y—V}
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Non-Interactive Simulation Problem

@ Given Pxy, let (X,Y) ~ Py, be correlated memoryless sources
e ie,(X,Y)areni.id. copies of (X,Y) ~ Pxy

@ Assume (U, V) on U x V are two random variables such that U = X - Y -V
forms a Markov chain, i.e.,

Puxyv = PuixPxyPviy

X

n Y
<7PU|X<7PXY

Pyyvl— »

@ A natural question: What are the possible joint distributions Py of (U, V)?

Q((L{X(lexy) = {PUV GP(WX(V)IU—X—Y—V}

@ This problem is termed Non-Interactive Simulation of Random Variables
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Background and Motivation

Background:
@ Used to define common information
o Gacs-Korner (1972) restricted U,Vst. P(U=V) - lasn —

o Wyner (1975) considered X = ¥ ~ Bern (%)
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@ Converse results derived by data processing inequalities:
e Witsenhausen (1975) derived a converse result by maximal correlation:
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Background and Motivation

Background:
@ Used to define common information
o Gacs-Korner (1972) restricted U,Vst. P(U=V) - lasn —

o Wyner (1975) considered X = ¥ ~ Bern (%)
@ Converse results derived by data processing inequalities:
e Witsenhausen (1975) derived a converse result by maximal correlation:
Pm (U; V) < pm (X;Y)
o Kamath-Anantharam (2016) derived a converse result by hypercontractivity:
RU; V)2 R(X;Y) (R(X;Y) is the hypercontractivity ribbon between X,Y)
Related Problems:

@ Non-interactive correlation distillation (Mossel-O’Donnell 2005, Yang 2007):
U,V ~ Bern (3) and maximize EUV
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Background and Motivation

Background:
@ Used to define common information
o Gacs-Korner (1972) restricted U,V st. P(U=V) - lasn — o
o Wyner (1975) considered X = ¥ ~ Bern (%)
@ Converse results derived by data processing inequalities:
e Witsenhausen (1975) derived a converse result by maximal correlation:
Pm (U; V) < pm (X;Y)
o Kamath-Anantharam (2016) derived a converse result by hypercontractivity:
RU; V)2 R(X;Y) (R(X;Y) is the hypercontractivity ribbon between X,Y)
Related Problems:
@ Non-interactive correlation distillation (Mossel-O’Donnell 2005, Yang 2007):
U,V ~ Bern (3) and maximize EUV
@ Noise-sensitivity of Boolean functions (Mossel-O’'Donnell 2005):
o X ~Bern(}),¥ = X @ E with £ ~ Bern (p) ind. of X

e U= f(X),V=f(Y)with f: {-1,1}"* — {-1,1} being a balanced Boolean
function (i.e,P(U=1)=P(V =1) = %)
e maximize P(U = V) (or EUV)

Lei Yu (NUS) On Binary Codes and Non-Interactive Simulation



Non-Interactive Simulation: Boolean Version

@ Non-Interactive simulation problem is difficult in general
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Non-Interactive Simulation: Boolean Version

@ Non-Interactive simulation problem is difficult in general

@ So in this work, we focus on the binary case:

e X,Y,U,V are Boolean random variables taking values in {-1,1}
o Pxy is a Boolean symmetric distribution with correlation coefficient p € [0, 1],

i.e.,
-1 1
-1 Itp  1-p
Pxy= | | 1% 1%
i 3
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Non-Interactive Simulation: Boolean Version

@ For this case, Pyy is determined by the triple

PU=1),P(Vv=1,PU=V=1)
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Non-Interactive Simulation: Boolean Version

@ For this case, Pyy is determined by the triple
EWU=10,P(V=1),PU=V=1)
@ The region of the triple above is determined by

+ o _v -
pn(a;b) = U,v:(l}lgi}invP(U =v=1

P(U=1)=a,
P(V=1)=b

Pnla;b) = U,V:l?l—an—Y—VP(U =V=1
P(U=1)=a,
P(V=1)=b
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Non-Interactive Simulation: Boolean Version

@ For this case, Pyy is determined by the triple
EWU=10,P(V=1),PU=V=1)
@ The region of the triple above is determined by

+ — _Vv—
pnla, b) = U,V:(IJII,%(}EY,VP(U =V=1)
P(U=1)=a,
P(V=1)=b

min PU=V=1)
U,V:U-X-Y-V

P(U=1)=a,

P(V=1)=b

o Ifwerestrict U = f(X),V = g(Y) for f,g : {-1,1}'* — {-1,1}, we obtain
4y (a,b) := max P(fX)=g(Y)=1)

S8 P(f(X)=1)=an,
P(g(Y)=1)=b,

pa(a,b):

(a,b) := min P(f(X)=g(Y¥)=1

4, (a,b) fon o (fX)=g(Y)=1)
P(g(Y)=1)=bn

where a,, := l2;n“J and b, := LQ;an.
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Replace (Pyx, Pyvjy) with Boolean functions (f, g)

Lemma

We have

0 < pt(a,b)— gt(a,b) < 27V
0 < py(a,b)— g (a,b) < 27"V,
In particular, ifa = % and b = & for some M, N € N, then
pn(a,b) = q,(a, b)

pn(a, b) = g, (a,b).
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Replace (Pyx, Pyvjy) with Boolean functions (f, g)

Lemma

We have
0 < pi(a,b)—q;(ab) < =1y

02 pa(a b) = gy(ab) < 2770,

In particular, ifa = % and b = & for some M, N € N, then
pn(a,b) = q,(a, b)
Pu(a,b) = q,(a,b).

Proof: Observe that optimizations in p}(a, b), ¢ (a, b) are linear programs. This
lemma follows by the simplex method.
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Replace (Pyx, Pyvjy) with Boolean functions (f, g)

Lemma

We have
0 < pi(a,b)—q;(ab) < =1y

0 < py(a,b)— g (a,b) < 27"V,

In particular, ifa = % and b = & for some M, N € N, then
pn(a,b) = q,(a, b)
Pu(a,b) = q,(a,b).

Proof: Observe that optimizations in p}(a, b), ¢ (a, b) are linear programs. This
lemma follows by the simplex method.
@ Restricting U = f(X), V = g(Y) is asymptotically optimal in attaining
pn(a,b), p,(a,b)
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Connection to Coding Theory

@ A C {-1,1}"is called a binary code
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e f and A are uniquely determined by each other.
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Connection to Coding Theory

@ A C {-1,1}"is called a binary code

@ For a Boolean function f, A := {x: f(x) = 1} is a binary code
e f and A are uniquely determined by each other.

@ In coding theory, the distance distribution between A, B € {-1,1}" is,

. 1 , ~ .
PABYG) = TATE H(xx") € AXB:dy(x,x') =i}, i€{0,1,..,n}

where dy (x,x') := |{i : x; # x/}| denotes the Hamming distance
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Connection to Coding Theory

@ A C {-1,1}"is called a binary code

@ For a Boolean function f, A := {x: f(x) = 1} is a binary code
e f and A are uniquely determined by each other.

@ In coding theory, the distance distribution between A, B € {-1,1}" is

PAB)) = |AI1W|{(X,X)€A><B dy (x,x") =i}, ie{0,1,...n}

where dy (x,x') := |{i : x; # x/}| denotes the Hamming distance
@ In particular, if A = B, then

P(A’A)(i): |{ xx’) EA s dy (x,x7) z}

IAI2 i€{0,1,...n}

is the distance distribution of a single code A C {-1,1}"
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Distance Enumerators and Average Distances

@ Define the distance enumerator between A, B C {—1,1}" as

— 1 du(x,x') _ N (A,B)/: i
Fo(AB) = D) ) 2 —Z;P RS

xeAX' €B i=

e Clearly, I'; (A, B) is the probability-generating function of P(A-5).
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Distance Enumerators and Average Distances

@ Define the distance enumerator between A, B C {—1,1}" as

— 1 du(x,x') _ N (A,B)/: i
Fo(AB) = D) ) 2 —Z;P RS

xeAX' €B i=

e Clearly, I'; (A, B) is the probability-generating function of P(A-5).
@ The dual distance enumerator between A, B C {—1, 1}" is defined as

. (4, B) := (1+2)" Tz (4, B).
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Distance Enumerators and Average Distances

@ Define the distance enumerator between A, B C {—1,1}" as

— 1 du(x,x') _ N (A,B)/: i
Fo(AB) = D) ) 2 —Z;P RS

xeAX' €B i=

e Clearly, I'; (A, B) is the probability-generating function of P(A-5).
@ The dual distance enumerator between A, B C {—1, 1}" is defined as

. (4, B) := (1+2)" Tz (4, B).

@ The average distance between A, B C {1, 1}" is defined as

D(AB) := m D duxx) =Y PG

x€EAX €B i=0

e Clearly, D (A, B) is the mean of P(A-B),
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Equivalence

Fora =2 and b = £ for some M, N € N, we have

P(f(X)=g(Y)=1) = ab(1 +p)' Tip (A B) = abll, (A, B)

where A := {x: f(x) =1} and B := {x: g(x) = 1}.
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Equivalence

Fora =2 and b = £ for some M, N € N, we have

P(f(X)=g(Y)=1) = ab(1 +p)' Tip (A B) = abll, (A, B)

where A := {x: f(x) =1} and B := {x: g(x) = 1}.

@ Given q, b, p, characterizing the possible range of P (f(X) = g(Y) =1)is
equivalent to characterizing the possible range of I'1» (A, B) or I1,, (A, B)
1+p
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Equivalence

Fora =2 and b = £ for some M, N € N, we have

P(f(X) = g(Y) = 1) = ab(1 + p)" T (4, B) = abll, (4, B)

where A := {x: f(x) =1} and B := {x: g(x) = 1}.

@ Given q, b, p, characterizing the possible range of P (f(X) = g(Y) =1)is
equivalent to characterizing the possible range of F}l (A,B)orIl, (A B)
+o

@ The (Boolean function version of) non-interactive simulation problem <= the
problem of determining the possible range of the (dual) distance enumerator
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Main Result

Assume a = b = &£ for some M € N. Denote ¢ := P (f(X) = g(Y) = 1).
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Main Result

Assume a = b = &£ for some M € N. Denote ¢ := P (f(X) = g(Y) = 1).

Theorem (Symmetric Case: a = b)

0 (a) < q < 0%(a),

where
0*(a) := min {a,a2 + gp+ (g - a2) pQ}
= o 2 4 (a9 2}
H(a).—maX{O,a 5P (2 a)p .
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Main Result

Assume a = b = &£ for some M € N. Denote ¢ := P (f(X) = g(Y) = 1).

Theorem (Symmetric Case: a = b)

0 (a) < q < 0%(a),

where
0*(a) := min {a,a2 + gp+ (g - a2) pQ}
= o 2 4 (a4 9 2}
H(a).—maX{O,a 5P (2 a)p .

In particular, for a = % (Witsenhausen’s result (1975))
1P gt
4 4

_1 9 2 2
and fora = 7, (new) 1 21% 0 ng(lZp)'
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Main Result

Assume a = b = &£ for some M € N. Denote ¢ := P (f(X) = g(Y) = 1).

Theorem (Symmetric Case: a = b)

0 (a) < q < 0%(a),

where
0*(a) := min {a,a2 + gp+ (g - a2) p2}
= o 2 a4 (a9 2}
G(a).—maX{O,a 5P (2 a)p .

In particular, for a = % (Witsenhausen’s result (1975))
1P gt
4 4

_1 9 2 2
and fora = 7, (new) 1 21% 0 ng(lZp)'

@ Our bounds also hold for ¢ := P(U = V = 1) (stochastic version).
@ Our results for asymmetric cases can be found in our paper.
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Main Result

Fora = % (Witsenhausen’s result (1975))

and for a = 1, (new)
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Main Result

Fora = % (Witsenhausen’s result (1975))

and for a = 1, (new)

@ Both the upper and lower bounds for the case a = % are sharp:
o the upper bound is attained by g(x) = f(x) = 1 {x1 = 1} (symmetric subcube
functions)
o the lower bound is attained by g(—x) = f(x) = 1 {x; = 1} (anti-symmetric
subcube functions)
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Main Result

Fora = % (Witsenhausen’s result (1975))

and for a = 1, (new)

@ Both the upper and lower bounds for the case a = % are sharp:
o the upper bound is attained by g(x) = f(x) = 1 {x1 = 1} (symmetric subcube
functions)
o the lower bound is attained by g(—x) = f(x) = 1 {x; = 1} (anti-symmetric
subcube functions)

@ The upper bound for the case a = 1 is sharp:
o attained by g(x) = f(x) = 1 {x1 = x2 = 1}
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Numerical Result: Upper Bounds
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Numerical Result: Upper Bounds

0.4

Our Bounds
035 — — — — Hypercontractivity Bounds p

0.25 / 1

01 » ]

Lei Yu (NUS) On Binary Codes and Non-Interactive Simulation 12/21



Numerical Result: Upper Bounds
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Numerical Result: Upper Bounds
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Numerical Result: Lower Bounds
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Numerical Result: Lower Bounds
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Numerical Result: Lower Bounds

0.4

Our Bounds

0.35 — — — — Hypercontractivity Bounds
———— Maximal Correlation Bounds
A Symmetric Subcube Schemes

0.3

0.25

0.15

0.1

Lei Yu (NUS) On Binary Codes and Non-Interactive Simulation 13/21



Numerical Result: Lower Bounds

0.4

Our Bounds

0.35 — — — — Hypercontractivity Bounds
———— Maximal Correlation Bounds
A Symmetric Subcube Schemes

0.3

0.25

0.15

0.1

Lei Yu (NUS) On Binary Codes and Non-Interactive Simulation 13/21



Numerical Result: Lower Bounds

0.4
N
Our Bounds
0.35 — — — = Hypercontractivity Bounds
———~ Maximal Correlation Bounds
L A Symmetric Subcube Schemes ]
03 O Anti-Symmetric Subcube Schemes
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Proof Idea — Fourier Analysis

@ Consider the Fourier/Hadamard basis

xs(x) = nxi, Scln]:={1,..,n}

ieS
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Proof Idea — Fourier Analysis

@ Consider the Fourier/Hadamard basis

xs(x) = nxi, Scln]:={1,..,n}

ieS
@ For a Boolean function f : {-1,1}* — {-1, 1}, its Fourier/Hadamard
transf [ ;
ransiom s fs = By vmir -1y [fGxs )], S € [n]. (1
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Proof Idea — Fourier Analysis

@ Consider the Fourier/Hadamard basis

xs(x) = nxi, Scln]:={1,..,n}

ieS
@ For a Boolean function f : {-1,1}* — {-1, 1}, its Fourier/Hadamard
f i ~
ranstomis - f = By vy [F®xs@] S € [n]. (1)

@ The inverse Fourier transform is

e = > fsxs®)

Sc[n]
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Proof Idea — Fourier Analysis

@ Consider the Fourier/Hadamard basis

xs(x) = nxi, Scln]:={1,..,n}

ieS
@ For a Boolean function f : {-1,1}* — {-1, 1}, its Fourier/Hadamard
f i ~
ranstomis - f = By vy [F®xs@] S € [n]. (1)
@ The inverse Fourier transform is
e = > fsxs®)

. SC[n
@ Then we can rewrite a

1 n
P(f(X)=g(Y)=1)=ab+ ; sz 0(k)pt

where ok)y= > fsés. 1sk<n (2)
Sc[n]:|S|=k
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Proof Idea — Fourier Analysis

@ Consider the Fourier/Hadamard basis

xs(x) := nxi, Scln]:={1,..,n}

ieS
@ For a Boolean function f : {-1,1}* — {-1, 1}, its Fourier/Hadamard
f i ~
ranstomis - f = By vy [F®xs@] S € [n]. (1)
@ The inverse Fourier transform is
e = > fsxs®)

. SC[n
@ Then we can rewrite a

1 n
P(f(X)=g(Y)=1)=ab+ ; sz 0(k)pt

where ok)y= > fsés. 1sk<n (2)
Sc[n]:|S|=k

@ To bound P (f(X) = g(Y) = 1), we only need to bound ¥}_, Q(k)p*
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Proof Idea — Fourier Analysis

Now we bound Y7, O(k)p*:
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Proof Idea — Fourier Analysis

Now we bound Y7, O(k)p*:

@ Step 1: Bound QO(1):
e We show that .
0(1) = Sab (5 ~D(A B))

’g—D(A,B)) sg—%(D(A,A)+D(B,B)).
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Proof Idea — Fourier Analysis

Now we bound Y7, O(k)p*:
@ Step 1: Bound QO(1):

o We show that .
0(1) = Sab (5 ~D(A B))

’g —D(A,B)) < g - %(D(A,A)+D(B,B)).

e Fu-Wei-Yeung (2001) showed the following (linear programming) bound on

average distance

1
min D(A,A)ZE——
A:|A|=M 2 da

where a = 2.
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Proof Idea — Fourier Analysis

Now we bound Y7, O(k)p*:

@ Step 1: Bound QO(1):

o We show that .
0(1) = Sab (5 ~D(A B))

’g —D(A,B)) < g - %(D(A,A)+D(B,B)).

e Fu-Wei-Yeung (2001) showed the following (linear programming) bound on

average distance

1
min D (A A) > b=
A:|A|=M 2 da

where a = 2.

e Combining the results above gives

QD) <a+b
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Proof Idea — Fourier Analysis

@ Step 2: Bound 3}_, Q(k)p*:
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Proof Idea — Fourier Analysis

@ Step 2: Bound 3}_, Q(k)p*:
e Following Pichler-Piantanida-Matz’s idea (2018), we define

= Z fsgs, 1= Z fsés

SeP SeN

where P := {S C [n] : S| > 2, fsgs > 0} and N := {S C [n] : |S| > 2, fsgs < O}
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Proof Idea — Fourier Analysis

@ Step 2: Bound 3}_, Q(k)p*:
e Following Pichler-Piantanida-Matz’s idea (2018), we define

T Z fsgs, T = Z fsgs

SeP SeN

where P := {S C [n] : |S| = Q,fsgs >0and N :={SC[n]:|S| =2 fsgs <0}
e Then

Dot = > fsaspBSle [rph et
k=2

Scln]:|S|=2
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Proof Idea — Fourier Analysis

@ Step 2: Bound 3}_, Q(k)p*:
e Following Pichler-Piantanida-Matz’s idea (2018), we define

T Z fsgs, T = Z fsgs

SeP SeN

where P := {S C [n] : |S| = Q,fsgs >0and N :={SC[n]:|S| =2 fsgs <0}
e Then

n

Dot = > fsaspBSle [rph et
k=2 Scln]:|S|=2

e Now we only need to bound 7+, 77:
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e Following Pichler-Piantanida-Matz’s idea (2018), we define

where P := {S C [n] : |S| = Q,fsgs >0and N :={SC[n]:|S| =2 fsgs <0}
e Then

n

Dot = > fsaspBSle [rph et
k=2 Scln]:|S|=2

e Now we only need to bound 7+, 77:

e We show 7+ — 7~ < 4Vaabb - Q(1) by using Parseval's Theorem (¥ 5. 5|20 /2 = 1)
@ We show —4ab — Q(1) < 7+ + 7~ < 4ab - O(1)
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Proof Idea — Fourier Analysis

@ Step 2: Bound 3}_, Q(k)p*:
e Following Pichler-Piantanida-Matz’s idea (2018), we define

= Z fsgs, 1= Z fsgs

SeP SeN

where P := {S C [n] : |S| = 2,fsgs >0and N :={SC[n]:|S| =2 fsgs <0}
e Then

n

Dot = > fsaspBSle [rph et
k=2 Scln]:|S|=2

e Now we only need to bound 7+, 77:

e We show 7+ — 7~ < 4Vaabb - Q(1) by using Parseval's Theorem (¥ 5. 5|20 /2 = 1)
@ We show —4ab — Q(1) < 7+ + 7~ < 4ab - O(1)

@ Finally, combining Steps 1 and 2 yields our bounds: 67 (a) < g < 6*(a),

where
6% (a) = min {a, a’+ gp + (g - a2) pz}
a a
(@) = max {0,a 2p 5 a’|p
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Why our proof works?

@ In our Step 2, we use the following bounds:

Yowpt = Y fsasplle [rph 7
k=2

Scn]:|S|=2

e This implies that we discard Q(k), k > 3
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Why our proof works?

@ In our Step 2, we use the following bounds:
n
D000k = > fsgsplle [t o’
k=2 sclnl:|S|>2
e This implies that we discard Q(k), k > 3

@ Conjecture: Given a = b = 27", the optimal f, g are subcube functions, i.e.,
gEx) = fx)=1{xy =...=x,, = 1}
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Why our proof works?

@ In our Step 2, we use the following bounds:
n
D000k = > fsgsplle [t o’
k=2 sclnl:|S|>2
e This implies that we discard Q(k), k > 3

@ Conjecture: Given a = b = 27", the optimal f, g are subcube functions, i.e.,
gEx) = fx)=1{xy =...=x,, = 1}

@ Subcube functions satisfy Q(k) = 0,k > m + 1
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A New Bound on Average Distances

@ Until now, we have shown the equivalence

P(f(X)=g(Y)=1) = ab(1+p)" Trs (4, B) = abll, (4, B)

e Non-interactive simulation is equivalent to some coding-theoretic problem
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A New Bound on Average Distances

@ Until now, we have shown the equivalence

P(f(X) = g(Y)=1)=ab(1 +p)' Tip (A B) = abll, (A, B)

e Non-interactive simulation is equivalent to some coding-theoretic problem

@ We have applied coding-theoretic results to non-interactive simulation

@ Next, in turn, we apply techniques for non-interactive simulation to a
coding-theoretic problem

e Specifically, apply hypercontractivity inequalities to bound average distances
@ Recall that: The average distance between A, B is defined as

D(A B) = ﬁ Z Z dy (x,x) = Z PAB Gy .

xeAX €B i=0

Lei Yu (NUS) On Binary Codes and Non-Interactive Simulation



Main Result: A New Bound on Average Distances

By hypercontractivity inequalities, we obtain:

Theorem

Forl < M < 2", we have

Iln}zl D(AA) > ——w(a)

where a := 2 and

— inf (ta +a)[atlogt — (ta + a)log (ta + a)]
¥ (a) = nf 217
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Main Result: A New Bound on Average Distances

By hypercontractivity inequalities, we obtain:

Theorem

Forl < M < 2", we have

Iln}n D(AA) > ——w(a)

M

where a := 5 and

— inf (ta +a)[atlogt — (ta + a)log (ta + a)]
¥ (a) = nf 217

@ Best known result: Fu-Wei-Yeung (2001) showed the following (linear
programming) bound

min D (A, A) >

n 1
A:|Al=M 2 4da
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Numerical Result
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Numerical Result

Hypercontractivity Bound
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Numerical Result

n/2—D
=
o
%
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——— = Fu-Wei-Yeung Bound

Hypercontractivity Bound
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Numerical Result

I Hypercontractivity Bound
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Conclusion

@ For coding-theoretic problems, Fourier analysis and linear programming
techniques are very useful
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Conclusion

@ For coding-theoretic problems, Fourier analysis and linear programming
techniques are very useful

@ For non-interactive simulation problem, data processing inequalities (DPIs)
are very useful

In this work:

@ Equivalence: non-interactive simulation problem <= some coding-theoretic
problem
@ We applied Fourier analysis (combined with linear programming) to the
non-interactive simulation problem
@ Our bounds are sharp for some cases and tighter than existing results for some
other cases
@ In turn, applied DPIs (hypercontractivity) to the minimal average-distance
problem
o Our bound is tighter than the best known result for some cases
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