On Binary Codes and Non-Interactive Simulation

Lei Yu
Joint Work with Vincent Tan
Department of ECE
National University of Singapore

Non-Interactive Simulation Problem

- Given $P_{X Y}$, let $(\mathbf{X}, \mathbf{Y}) \sim P_{X Y}^{n}$ be correlated memoryless sources
- i.e., (\mathbf{X}, \mathbf{Y}) are n i.i.d. copies of $(X, Y) \sim P_{X Y}$

Non-Interactive Simulation Problem

- Given $P_{X Y}$, let $(\mathbf{X}, \mathbf{Y}) \sim P_{X Y}^{n}$ be correlated memoryless sources
- i.e., (\mathbf{X}, \mathbf{Y}) are n i.i.d. copies of $(X, Y) \sim P_{X Y}$
- Assume (U, V) on $\mathcal{U} \times \mathcal{V}$ are two random variables such that $U-\mathbf{X}-\mathbf{Y}-V$ forms a Markov chain, i.e.,

$$
P_{U X Y V}=P_{U \mid \mathbf{X}} P_{X Y}^{n} P_{V \mid \mathbf{Y}}
$$

Non-Interactive Simulation Problem

- Given $P_{X Y}$, let $(\mathbf{X}, \mathbf{Y}) \sim P_{X Y}^{n}$ be correlated memoryless sources
- i.e., (\mathbf{X}, \mathbf{Y}) are n i.i.d. copies of $(X, Y) \sim P_{X Y}$
- Assume (U, V) on $\mathcal{U} \times \mathcal{V}$ are two random variables such that $U-\mathbf{X}-\mathbf{Y}-V$ forms a Markov chain, i.e.,

$$
P_{U X Y V}=P_{U \mid \mathbf{X}} P_{X Y}^{n} P_{V \mid \mathbf{Y}}
$$

- A natural question: What are the possible joint distributions $P_{U V}$ of (U, V) ?

$$
Q\left(\mathcal{U} \times \mathcal{V} \mid P_{X Y}\right):=\left\{P_{U V} \in \mathcal{P}(\mathcal{U} \times \mathcal{V}): U-\mathbf{X}-\mathbf{Y}-V\right\}
$$

Non-Interactive Simulation Problem

- Given $P_{X Y}$, let $(\mathbf{X}, \mathbf{Y}) \sim P_{X Y}^{n}$ be correlated memoryless sources
- i.e., (\mathbf{X}, \mathbf{Y}) are n i.i.d. copies of $(X, Y) \sim P_{X Y}$
- Assume (U, V) on $\mathcal{U} \times \mathcal{V}$ are two random variables such that $U-\mathbf{X}-\mathbf{Y}-V$ forms a Markov chain, i.e.,

$$
P_{U X Y V}=P_{U \mid \mathbf{X}} P_{X Y}^{n} P_{V \mid \mathbf{Y}}
$$

- A natural question: What are the possible joint distributions $P_{U V}$ of (U, V) ?

$$
Q\left(\mathcal{U} \times \mathcal{V} \mid P_{X Y}\right):=\left\{P_{U V} \in \mathcal{P}(\mathcal{U} \times \mathcal{V}): U-\mathbf{X}-\mathbf{Y}-V\right\}
$$

- This problem is termed Non-Interactive Simulation of Random Variables

Background and Motivation

Background:

- Used to define common information
- Gács-Körner (1972) restricted U, V s.t. $\mathbb{P}(U=V) \rightarrow 1$ as $n \rightarrow \infty$
- Wyner (1975) considered $X=Y \sim \operatorname{Bern}\left(\frac{1}{2}\right)$

Background and Motivation

Background:

- Used to define common information
- Gács-Körner (1972) restricted U, V s.t. $\mathbb{P}(U=V) \rightarrow 1$ as $n \rightarrow \infty$
- Wyner (1975) considered $X=Y \sim \operatorname{Bern}\left(\frac{1}{2}\right)$
- Converse results derived by data processing inequalities:

Background and Motivation

Background:

- Used to define common information
- Gács-Körner (1972) restricted U, V s.t. $\mathbb{P}(U=V) \rightarrow 1$ as $n \rightarrow \infty$
- Wyner (1975) considered $X=Y \sim \operatorname{Bern}\left(\frac{1}{2}\right)$
- Converse results derived by data processing inequalities:
- Witsenhausen (1975) derived a converse result by maximal correlation:

$$
\rho_{\mathrm{m}}(U ; V) \leq \rho_{\mathrm{m}}(X ; Y)
$$

Background and Motivation

Background:

- Used to define common information
- Gács-Körner (1972) restricted U, V s.t. $\mathbb{P}(U=V) \rightarrow 1$ as $n \rightarrow \infty$
- Wyner (1975) considered $X=Y \sim \operatorname{Bern}\left(\frac{1}{2}\right)$
- Converse results derived by data processing inequalities:
- Witsenhausen (1975) derived a converse result by maximal correlation:

$$
\rho_{\mathrm{m}}(U ; V) \leq \rho_{\mathrm{m}}(X ; Y)
$$

- Kamath-Anantharam (2016) derived a converse result by hypercontractivity: $\mathcal{R}(U ; V) \supseteq \mathcal{R}(X ; Y)(\mathcal{R}(X ; Y)$ is the hypercontractivity ribbon between $X, Y)$

Background and Motivation

Background:

- Used to define common information
- Gács-Körner (1972) restricted U, V s.t. $\mathbb{P}(U=V) \rightarrow 1$ as $n \rightarrow \infty$
- Wyner (1975) considered $X=Y \sim \operatorname{Bern}\left(\frac{1}{2}\right)$
- Converse results derived by data processing inequalities:
- Witsenhausen (1975) derived a converse result by maximal correlation:

$$
\rho_{\mathrm{m}}(U ; V) \leq \rho_{\mathrm{m}}(X ; Y)
$$

- Kamath-Anantharam (2016) derived a converse result by hypercontractivity: $\mathcal{R}(U ; V) \supseteq \mathcal{R}(X ; Y)(\mathcal{R}(X ; Y)$ is the hypercontractivity ribbon between $X, Y)$
Related Problems:
- Non-interactive correlation distillation (Mossel-O'Donnell 2005, Yang 2007): $U, V \sim \operatorname{Bern}\left(\frac{1}{2}\right)$ and maximize $\mathbb{E} U V$

Background and Motivation

Background:

- Used to define common information
- Gács-Körner (1972) restricted U, V s.t. $\mathbb{P}(U=V) \rightarrow 1$ as $n \rightarrow \infty$
- Wyner (1975) considered $X=Y \sim \operatorname{Bern}\left(\frac{1}{2}\right)$
- Converse results derived by data processing inequalities:
- Witsenhausen (1975) derived a converse result by maximal correlation: $\rho_{\mathrm{m}}(U ; V) \leq \rho_{\mathrm{m}}(X ; Y)$
- Kamath-Anantharam (2016) derived a converse result by hypercontractivity: $\mathcal{R}(U ; V) \supseteq \mathcal{R}(X ; Y)(\mathcal{R}(X ; Y)$ is the hypercontractivity ribbon between $X, Y)$
Related Problems:
- Non-interactive correlation distillation (Mossel-O'Donnell 2005, Yang 2007):
$U, V \sim \operatorname{Bern}\left(\frac{1}{2}\right)$ and maximize $\mathbb{E} U V$
- Noise-sensitivity of Boolean functions (Mossel-O'Donnell 2005):
- $X \sim \operatorname{Bern}\left(\frac{1}{2}\right), Y=X \oplus E$ with $E \sim \operatorname{Bern}(p)$ ind. of X
- $U=f(\mathbf{X}), V=f(\mathbf{Y})$ with $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ being a balanced Boolean function (i.e., $\left.\mathbb{P}(U=1)=\mathbb{P}(V=1)=\frac{1}{2}\right)$
- maximize $\mathbb{P}(U=V)$ (or $\mathbb{E} U V)$

Non-Interactive Simulation: Boolean Version

- Non-Interactive simulation problem is difficult in general

Non-Interactive Simulation: Boolean Version

- Non-Interactive simulation problem is difficult in general
- So in this work, we focus on the binary case:

Non-Interactive Simulation: Boolean Version

- Non-Interactive simulation problem is difficult in general
- So in this work, we focus on the binary case:
- X, Y, U, V are Boolean random variables taking values in $\{-1,1\}$
- $P_{X Y}$ is a Boolean symmetric distribution with correlation coefficient $\rho \in[0,1]$, i.e.,

$$
P_{X Y}=\begin{gathered}
-1 \\
1
\end{gathered}\left[\begin{array}{cc}
-1 & 1 \\
\frac{1+\rho}{4} & \frac{1-\rho}{4} \\
\frac{1-\rho}{4} & \frac{1+\rho}{4}
\end{array}\right]
$$

Non-Interactive Simulation: Boolean Version

- For this case, $P_{U V}$ is determined by the triple

$$
(\mathbb{P}(U=1), \mathbb{P}(V=1), \mathbb{P}(U=V=1))
$$

Non-Interactive Simulation: Boolean Version

- For this case, $P_{U V}$ is determined by the triple

$$
(\mathbb{P}(U=1), \mathbb{P}(V=1), \mathbb{P}(U=V=1))
$$

- The region of the triple above is determined by

$$
\left.p_{n}^{+}(a, b):=\max _{\substack{U, V: U-\mathbf{X}-\mathbf{Y}-V \\ \mathbb{P} P(U=1)=a, \mathbb{P}(V=1)=b}} \mathbb{P}(U=V=1), \quad p_{n}^{-}(a, b):=\min _{\substack{U, V, U-\mathbf{X}-\mathbf{Y}-V \\ \mathbb{P} P \\ \mathbb{P}(U=1)=a,}} \mathbb{P}(U=V=1)=b=1\right)
$$

Non-Interactive Simulation: Boolean Version

- For this case, $P_{U V}$ is determined by the triple

$$
(\mathbb{P}(U=1), \mathbb{P}(V=1), \mathbb{P}(U=V=1))
$$

- The region of the triple above is determined by

$$
p_{n}^{+}(a, b):=\max _{\substack{U, V: U-\mathbf{X}-\mathbf{Y}-V \\ \mathbb{P}(U=1)=a, \mathbb{P}(V=1)=b}} \mathbb{P}(U=V=1), \quad p_{n}^{-}(a, b):=\min _{\substack{U, V: U-\mathbf{X}-\mathbf{Y}-V \\ \mathbb{P}(U=1)=a, \mathbb{P}(V=1)=b}} \mathbb{P}(U=V=1),
$$

- If we restrict $U=f(\mathbf{X}), V=g(\mathbf{Y})$ for $f, g:\{-1,1\}^{n} \rightarrow\{-1,1\}$, we obtain

$$
\begin{aligned}
& q_{n}^{+}(a, b):=\max _{\substack{f, g: \mathbb{P}(f(\mathbf{X})=1)=a_{n}, \mathbb{P}(g(\mathbf{Y})=1)=b_{n}}} \mathbb{P}(f(\mathbf{X})=g(\mathbf{Y})=1) \\
& q_{n}^{-}(a, b):=\min _{f, g: \mathbb{P}(f)=1)=a_{n},}^{\mathbb{P}(g(\mathbf{Y})=1)=b_{n}}, \\
& \mathbb{P}(f(\mathbf{X})=g(\mathbf{Y})=1)
\end{aligned}
$$

where $a_{n}:=\frac{\left\lfloor 2^{n} a\right\rfloor}{2^{n}}$ and $b_{n}:=\frac{\left\lfloor 2^{n} b\right\rfloor}{2^{n}}$.

Replace $\left(P_{U \mid \mathbf{X}}, P_{V \mid \mathbf{Y}}\right)$ with Boolean functions (f, g)

Lemma

We have

$$
\begin{aligned}
0 & \leq p_{n}^{+}(a, b)-q_{n}^{+}(a, b) \leq 2^{-(n-1)} \\
0 & \leq p_{n}^{-}(a, b)-q_{n}^{-}(a, b) \leq 2^{-(n-1)}
\end{aligned}
$$

In particular, if $a=\frac{M}{2^{n}}$ and $b=\frac{N}{2^{n}}$ for some $M, N \in \mathbb{N}$, then

$$
\begin{aligned}
& p_{n}^{+}(a, b)=q_{n}^{+}(a, b) \\
& p_{n}^{-}(a, b)=q_{n}^{-}(a, b)
\end{aligned}
$$

Replace $\left(P_{U \mid \mathbf{X}}, P_{V \mid \mathbf{Y}}\right)$ with Boolean functions (f, g)

Lemma

We have

$$
\begin{aligned}
0 & \leq p_{n}^{+}(a, b)-q_{n}^{+}(a, b) \leq 2^{-(n-1)} \\
0 & \leq p_{n}^{-}(a, b)-q_{n}^{-}(a, b) \leq 2^{-(n-1)}
\end{aligned}
$$

In particular, if $a=\frac{M}{2^{n}}$ and $b=\frac{N}{2^{n}}$ for some $M, N \in \mathbb{N}$, then

$$
\begin{aligned}
& p_{n}^{+}(a, b)=q_{n}^{+}(a, b) \\
& p_{n}^{-}(a, b)=q_{n}^{-}(a, b)
\end{aligned}
$$

Proof: Observe that optimizations in $p_{n}^{ \pm}(a, b), q_{n}^{ \pm}(a, b)$ are linear programs. This lemma follows by the simplex method.

Replace $\left(P_{U \mid \mathbf{X}}, P_{V \mid \mathbf{Y}}\right)$ with Boolean functions (f, g)

Lemma

We have

$$
\begin{aligned}
0 & \leq p_{n}^{+}(a, b)-q_{n}^{+}(a, b) \leq 2^{-(n-1)} \\
0 & \leq p_{n}^{-}(a, b)-q_{n}^{-}(a, b) \leq 2^{-(n-1)}
\end{aligned}
$$

In particular, if $a=\frac{M}{2^{n}}$ and $b=\frac{N}{2^{n}}$ for some $M, N \in \mathbb{N}$, then

$$
\begin{aligned}
& p_{n}^{+}(a, b)=q_{n}^{+}(a, b) \\
& p_{n}^{-}(a, b)=q_{n}^{-}(a, b)
\end{aligned}
$$

Proof: Observe that optimizations in $p_{n}^{ \pm}(a, b), q_{n}^{ \pm}(a, b)$ are linear programs. This lemma follows by the simplex method.

- Restricting $U=f(\mathbf{X}), V=g(\mathbf{Y})$ is asymptotically optimal in attaining $p_{n}^{+}(a, b), p_{n}^{-}(a, b)$

Connection to Coding Theory

- $A \subseteq\{-1,1\}^{n}$ is called a binary code

Connection to Coding Theory

- $A \subseteq\{-1,1\}^{n}$ is called a binary code
- For a Boolean function $f, A:=\{\mathrm{x}: f(\mathrm{x})=1\}$ is a binary code
- f and A are uniquely determined by each other.

Connection to Coding Theory

- $A \subseteq\{-1,1\}^{n}$ is called a binary code
- For a Boolean function $f, A:=\{\mathrm{x}: f(\mathrm{x})=1\}$ is a binary code
- f and A are uniquely determined by each other.
- In coding theory, the distance distribution between $A, B \subseteq\{-1,1\}^{n}$ is ,

$$
P^{(A, B)}(i):=\frac{1}{|A||B|}\left|\left\{\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \in A \times B: d_{\mathrm{H}}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=i\right\}\right|, \quad i \in\{0,1, \ldots, n\}
$$

where $d_{\mathrm{H}}\left(\mathrm{x}, \mathrm{x}^{\prime}\right):=\left|\left\{i: x_{i} \neq x_{i}^{\prime}\right\}\right|$ denotes the Hamming distance

Connection to Coding Theory

- $A \subseteq\{-1,1\}^{n}$ is called a binary code
- For a Boolean function $f, A:=\{\mathrm{x}: f(\mathrm{x})=1\}$ is a binary code
- f and A are uniquely determined by each other.
- In coding theory, the distance distribution between $A, B \subseteq\{-1,1\}^{n}$ is ,

$$
P^{(A, B)}(i):=\frac{1}{|A||B|}\left|\left\{\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \in A \times B: d_{\mathrm{H}}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=i\right\}\right|, \quad i \in\{0,1, \ldots, n\}
$$

where $d_{\mathrm{H}}\left(\mathrm{x}, \mathrm{x}^{\prime}\right):=\left|\left\{i: x_{i} \neq x_{i}^{\prime}\right\}\right|$ denotes the Hamming distance

- In particular, if $A=B$, then

$$
P^{(A, A)}(i):=\frac{1}{|A|^{2}}\left|\left\{\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \in A^{2}: d_{\mathrm{H}}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=i\right\}\right|, \quad i \in\{0,1, \ldots, n\}
$$

is the distance distribution of a single code $A \subseteq\{-1,1\}^{n}$

Distance Enumerators and Average Distances

- Define the distance enumerator between $A, B \subseteq\{-1,1\}^{n}$ as

$$
\Gamma_{z}(A, B):=\frac{1}{|A||B|} \sum_{\mathrm{x} \in A} \sum_{\mathrm{x}^{\prime} \in B} z^{d_{\mathrm{H}}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)}=\sum_{i=0}^{n} P^{(A, B)}(i) \cdot z^{i}
$$

- Clearly, $\Gamma_{z}(A, B)$ is the probability-generating function of $P^{(A, B)}$.

Distance Enumerators and Average Distances

- Define the distance enumerator between $A, B \subseteq\{-1,1\}^{n}$ as

$$
\Gamma_{z}(A, B):=\frac{1}{|A||B|} \sum_{\mathrm{x} \in A} \sum_{\mathrm{x}^{\prime} \in B} z^{d_{\mathrm{H}}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)}=\sum_{i=0}^{n} P^{(A, B)}(i) \cdot z^{i}
$$

- Clearly, $\Gamma_{Z}(A, B)$ is the probability-generating function of $P^{(A, B)}$.
- The dual distance enumerator between $A, B \subseteq\{-1,1\}^{n}$ is defined as

$$
\Pi_{z}(A, B):=(1+z)^{n} \Gamma_{\frac{1-z}{1+z}}(A, B) .
$$

Distance Enumerators and Average Distances

- Define the distance enumerator between $A, B \subseteq\{-1,1\}^{n}$ as

$$
\Gamma_{z}(A, B):=\frac{1}{|A||B|} \sum_{\mathbf{x} \in A} \sum_{\mathbf{x}^{\prime} \in B} z^{d_{\mathrm{H}}\left(\mathbf{x}, \mathrm{x}^{\prime}\right)}=\sum_{i=0}^{n} P^{(A, B)}(i) \cdot z^{i}
$$

- Clearly, $\Gamma_{z}(A, B)$ is the probability-generating function of $P^{(A, B)}$.
- The dual distance enumerator between $A, B \subseteq\{-1,1\}^{n}$ is defined as

$$
\Pi_{z}(A, B):=(1+z)^{n} \Gamma_{\frac{1-z}{1+z}}(A, B) .
$$

- The average distance between $A, B \subseteq\{-1,1\}^{n}$ is defined as

$$
D(A, B):=\frac{1}{|A||B|} \sum_{\mathrm{x} \in A} \sum_{\mathrm{x}^{\prime} \in B} d_{\mathrm{H}}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=\sum_{i=0}^{n} P^{(A, B)}(i) \cdot i
$$

- Clearly, $D(A, B)$ is the mean of $P^{(A, B)}$.

Equivalence

Lemma

For $a=\frac{M}{2^{n}}$ and $b=\frac{N}{2^{n}}$ for some $M, N \in \mathbb{N}$, we have

$$
\mathbb{P}(f(\mathbf{X})=g(\mathbf{Y})=1)=a b(1+\rho)^{n} \Gamma_{\frac{1-\rho}{1+\rho}}(A, B)=a b \Pi_{\rho}(A, B)
$$

where $A:=\{\mathbf{x}: f(\mathbf{x})=1\}$ and $B:=\{\mathbf{x}: g(\mathbf{x})=1\}$.

Equivalence

Lemma

For $a=\frac{M}{2^{n}}$ and $b=\frac{N}{2^{n}}$ for some $M, N \in \mathbb{N}$, we have

$$
\mathbb{P}(f(\mathbf{X})=g(\mathbf{Y})=1)=a b(1+\rho)^{n} \Gamma_{\frac{1-\rho}{1+\rho}}(A, B)=a b \Pi_{\rho}(A, B)
$$

where $A:=\{\mathbf{x}: f(\mathbf{x})=1\}$ and $B:=\{\mathbf{x}: g(\mathbf{x})=1\}$.

- Given a, b, ρ, characterizing the possible range of $\mathbb{P}(f(\mathbf{X})=g(\mathbf{Y})=1)$ is equivalent to characterizing the possible range of $\Gamma_{\frac{1-\rho}{1+\rho}}(A, B)$ or $\Pi_{\rho}(A, B)$

Equivalence

Lemma

For $a=\frac{M}{2^{n}}$ and $b=\frac{N}{2^{n}}$ for some $M, N \in \mathbb{N}$, we have

$$
\mathbb{P}(f(\mathbf{X})=g(\mathbf{Y})=1)=a b(1+\rho)^{n} \Gamma_{\frac{1-\rho}{1+\rho}}(A, B)=a b \Pi_{\rho}(A, B)
$$

where $A:=\{\mathbf{x}: f(\mathbf{x})=1\}$ and $B:=\{\mathbf{x}: g(\mathbf{x})=1\}$.

- Given a, b, ρ, characterizing the possible range of $\mathbb{P}(f(\mathbf{X})=g(\mathbf{Y})=1)$ is equivalent to characterizing the possible range of $\Gamma_{\frac{1-\rho}{1+\rho}}(A, B)$ or $\Pi_{\rho}(A, B)$
- The (Boolean function version of) non-interactive simulation problem \Longleftrightarrow the problem of determining the possible range of the (dual) distance enumerator

Main Result

Assume $a=b=\frac{M}{2^{n}}$ for some $M \in \mathbb{N}$. Denote $q:=\mathbb{P}(f(\mathbf{X})=g(\mathbf{Y})=1)$.

Main Result

Assume $a=b=\frac{M}{2^{n}}$ for some $M \in \mathbb{N}$. Denote $q:=\mathbb{P}(f(\mathbf{X})=g(\mathbf{Y})=1)$.
Theorem (Symmetric Case: $a=b$)

$$
\theta^{-}(a) \leq q \leq \theta^{+}(a)
$$

where

$$
\begin{aligned}
\theta^{+}(a) & :=\min \left\{a, a^{2}+\frac{a}{2} \rho+\left(\frac{a}{2}-a^{2}\right) \rho^{2}\right\} \\
\theta^{-}(a) & :=\max \left\{0, a^{2}-\frac{a}{2} \rho-\left(\frac{a}{2}-a^{2}\right) \rho^{2}\right\}
\end{aligned}
$$

Main Result

Assume $a=b=\frac{M}{2^{n}}$ for some $M \in \mathbb{N}$. Denote $q:=\mathbb{P}(f(\mathbf{X})=g(\mathbf{Y})=1)$.

Theorem (Symmetric Case: $a=b$)

$$
\theta^{-}(a) \leq q \leq \theta^{+}(a)
$$

where

$$
\begin{aligned}
\theta^{+}(a) & :=\min \left\{a, a^{2}+\frac{a}{2} \rho+\left(\frac{a}{2}-a^{2}\right) \rho^{2}\right\} \\
\theta^{-}(a) & :=\max \left\{0, a^{2}-\frac{a}{2} \rho-\left(\frac{a}{2}-a^{2}\right) \rho^{2}\right\} .
\end{aligned}
$$

In particular, for $a=\frac{1}{2}$, (Witsenhausen's result (1975))

$$
\frac{1-\rho}{4} \leq q \leq \frac{1+\rho}{4}
$$

and for $a=\frac{1}{4}$, (new)

$$
\frac{1-2 \rho-\rho^{2}}{16} \leq q \leq\left(\frac{1+\rho}{4}\right)^{2}
$$

Main Result

Assume $a=b=\frac{M}{2^{n}}$ for some $M \in \mathbb{N}$. Denote $q:=\mathbb{P}(f(\mathbf{X})=g(\mathbf{Y})=1)$.

Theorem (Symmetric Case: $a=b$)

$$
\theta^{-}(a) \leq q \leq \theta^{+}(a)
$$

where

$$
\begin{aligned}
\theta^{+}(a) & :=\min \left\{a, a^{2}+\frac{a}{2} \rho+\left(\frac{a}{2}-a^{2}\right) \rho^{2}\right\} \\
\theta^{-}(a) & :=\max \left\{0, a^{2}-\frac{a}{2} \rho-\left(\frac{a}{2}-a^{2}\right) \rho^{2}\right\} .
\end{aligned}
$$

In particular, for $a=\frac{1}{2}$, (Witsenhausen's result (1975))

$$
\begin{gathered}
\frac{1-\rho}{4} \leq q \leq \frac{1+\rho}{4} \\
\frac{1-2 \rho-\rho^{2}}{16} \leq q \leq\left(\frac{1+\rho}{4}\right)^{2} .
\end{gathered}
$$

and for $a=\frac{1}{4}$, (new)

- Our bounds also hold for $q:=\mathbb{P}(U=V=1)$ (stochastic version).
- Our results for asymmetric cases can be found in our paper.

Main Result

For $a=\frac{1}{2}$, (Witsenhausen's result (1975))

$$
\frac{1-\rho}{4} \leq q \leq \frac{1+\rho}{4}
$$

and for $a=\frac{1}{4}$, (new)

$$
\frac{1-2 \rho-\rho^{2}}{16} \leq q \leq\left(\frac{1+\rho}{4}\right)^{2} .
$$

Main Result

For $a=\frac{1}{2}$, (Witsenhausen's result (1975))

$$
\frac{1-\rho}{4} \leq q \leq \frac{1+\rho}{4}
$$

and for $a=\frac{1}{4}$, (new)

$$
\frac{1-2 \rho-\rho^{2}}{16} \leq q \leq\left(\frac{1+\rho}{4}\right)^{2}
$$

- Both the upper and lower bounds for the case $a=\frac{1}{2}$ are sharp:
- the upper bound is attained by $g(\mathbf{x})=f(\mathbf{x})=1\left\{x_{1}=1\right\}$ (symmetric subcube functions)
- the lower bound is attained by $g(-\mathbf{x})=f(\mathbf{x})=1\left\{x_{1}=1\right\}$ (anti-symmetric subcube functions)

Main Result

For $a=\frac{1}{2}$, (Witsenhausen's result (1975))

$$
\frac{1-\rho}{4} \leq q \leq \frac{1+\rho}{4}
$$

and for $a=\frac{1}{4}$, (new)

$$
\frac{1-2 \rho-\rho^{2}}{16} \leq q \leq\left(\frac{1+\rho}{4}\right)^{2}
$$

- Both the upper and lower bounds for the case $a=\frac{1}{2}$ are sharp:
- the upper bound is attained by $g(\mathbf{x})=f(\mathbf{x})=1\left\{x_{1}=1\right\}$ (symmetric subcube functions)
- the lower bound is attained by $g(-\mathbf{x})=f(\mathbf{x})=1\left\{x_{1}=1\right\}$ (anti-symmetric subcube functions)
- The upper bound for the case $a=\frac{1}{4}$ is sharp:
- attained by $g(\mathbf{x})=f(\mathbf{x})=1\left\{x_{1}=x_{2}=1\right\}$

Numerical Result: Upper Bounds

Numerical Result: Lower Bounds

Proof Idea - Fourier Analysis

- Consider the Fourier/Hadamard basis

$$
\chi_{S}(\mathbf{x}):=\prod_{i \in S} x_{i}, \quad S \subseteq[n]:=\{1, \ldots, n\}
$$

Proof Idea - Fourier Analysis

- Consider the Fourier/Hadamard basis

$$
\chi_{S}(\mathbf{x}):=\prod_{i \in S} x_{i}, \quad S \subseteq[n]:=\{1, \ldots, n\}
$$

- For a Boolean function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$, its Fourier/Hadamard transform is

$$
\begin{equation*}
\hat{f}_{S}:=\mathbb{E}_{\mathbf{x} \sim U n i f}\{-1,1\}^{n}\left[f(\mathbf{x}) \chi_{S}(\mathbf{x})\right], \quad S \subseteq[n] \tag{1}
\end{equation*}
$$

Proof Idea - Fourier Analysis

- Consider the Fourier/Hadamard basis

$$
\chi_{S}(\mathbf{x}):=\prod_{i \in S} x_{i}, \quad S \subseteq[n]:=\{1, \ldots, n\}
$$

- For a Boolean function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$, its Fourier/Hadamard transform is

$$
\begin{equation*}
\hat{f}_{S}:=\mathbb{E}_{\mathbf{x} \sim \operatorname{Unif}\{-1,1\}^{n}}\left[f(\mathbf{x}) \chi_{S}(\mathbf{x})\right], \quad S \subseteq[n] . \tag{1}
\end{equation*}
$$

- The inverse Fourier transform is

$$
f(\mathbf{x})=\sum_{S \subseteq[n]} \hat{f}_{S} \chi_{S}(\mathbf{x})
$$

Proof Idea - Fourier Analysis

- Consider the Fourier/Hadamard basis

$$
\chi_{S}(\mathbf{x}):=\prod_{i \in S} x_{i}, \quad S \subseteq[n]:=\{1, \ldots, n\}
$$

- For a Boolean function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$, its Fourier/Hadamard transform is

$$
\begin{equation*}
\hat{f}_{S}:=\mathbb{E}_{\mathbf{x} \sim U n i f}\{-1,1\}^{n}\left[f(\mathbf{x}) \chi_{S}(\mathbf{x})\right], \quad S \subseteq[n] . \tag{1}
\end{equation*}
$$

- The inverse Fourier transform is
- Then we can rewrite

$$
f(\mathbf{x})=\sum_{S \subseteq[n]} \hat{f}_{S} \chi_{S}(\mathbf{x})
$$

$$
\mathbb{P}(f(\mathbf{X})=g(\mathbf{Y})=1)=a b+\frac{1}{4} \sum_{k=1}^{n} Q(k) \rho^{k}
$$

where

$$
\begin{equation*}
Q(k):=\sum_{S \subseteq[n]|:|S|=k} \hat{f}_{S} \hat{g}_{S}, \quad 1 \leq k \leq n \tag{2}
\end{equation*}
$$

Proof Idea - Fourier Analysis

- Consider the Fourier/Hadamard basis

$$
\chi_{S}(\mathbf{x}):=\prod_{i \in S} x_{i}, \quad S \subseteq[n]:=\{1, \ldots, n\}
$$

- For a Boolean function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$, its Fourier/Hadamard transform is

$$
\begin{equation*}
\hat{f}_{S}:=\mathbb{E}_{\mathrm{x} \sim \mathrm{Unif}\{-1,1\}^{n}}\left[f(\mathrm{x}) \chi_{S}(\mathrm{x})\right], \quad S \subseteq[n] . \tag{1}
\end{equation*}
$$

- The inverse Fourier transform is
- Then we can rewrite

$$
f(\mathbf{x})=\sum_{S \subseteq[n]} \hat{f}_{S} \chi_{S}(\mathbf{x})
$$

$$
\mathbb{P}(f(\mathbf{X})=g(\mathbf{Y})=1)=a b+\frac{1}{4} \sum_{k=1}^{n} Q(k) \rho^{k}
$$

where

$$
\begin{equation*}
Q(k):=\sum_{S \subseteq[n]|:|S|=k} \hat{f}_{S} \hat{g}_{S}, \quad 1 \leq k \leq n \tag{2}
\end{equation*}
$$

- To bound $\mathbb{P}(f(\mathbf{X})=g(\mathbf{Y})=1)$, we only need to bound $\sum_{k=1}^{n} Q(k) \rho^{k}$

Proof Idea - Fourier Analysis

Now we bound $\sum_{k=1}^{n} Q(k) \rho^{k}$:

Proof Idea - Fourier Analysis

Now we bound $\sum_{k=1}^{n} Q(k) \rho^{k}$:

- Step 1: Bound $Q(1)$:
- We show that

$$
\begin{aligned}
Q(1) & =8 a b\left(\frac{n}{2}-D(A, B)\right) \\
\left|\frac{n}{2}-D(A, B)\right| & \leq \frac{n}{2}-\frac{1}{2}(D(A, A)+D(B, B)) .
\end{aligned}
$$

Proof Idea - Fourier Analysis

Now we bound $\sum_{k=1}^{n} Q(k) \rho^{k}$:

- Step 1: Bound $Q(1)$:
- We show that

$$
\begin{gathered}
Q(1)=8 a b\left(\frac{n}{2}-D(A, B)\right) \\
\left|\frac{n}{2}-D(A, B)\right| \leq \frac{n}{2}-\frac{1}{2}(D(A, A)+D(B, B))
\end{gathered}
$$

- Fu-Wei-Yeung (2001) showed the following (linear programming) bound on average distance

$$
\min _{A:|A|=M} D(A, A) \geq \frac{n}{2}-\frac{1}{4 a}
$$

where $a=\frac{M}{2^{n}}$.

Proof Idea - Fourier Analysis

Now we bound $\sum_{k=1}^{n} Q(k) \rho^{k}$:

- Step 1: Bound $Q(1)$:
- We show that

$$
\begin{gathered}
Q(1)=8 a b\left(\frac{n}{2}-D(A, B)\right) \\
\left|\frac{n}{2}-D(A, B)\right| \leq \frac{n}{2}-\frac{1}{2}(D(A, A)+D(B, B))
\end{gathered}
$$

- Fu-Wei-Yeung (2001) showed the following (linear programming) bound on average distance

$$
\min _{A:|A|=M} D(A, A) \geq \frac{n}{2}-\frac{1}{4 a}
$$

where $a=\frac{M}{2^{n}}$.

- Combining the results above gives

$$
|Q(1)| \leq a+b
$$

Proof Idea - Fourier Analysis

- Step 2: Bound $\sum_{k=2}^{n} Q(k) \rho^{k}$:

Proof Idea - Fourier Analysis

- Step 2: Bound $\sum_{k=2}^{n} Q(k) \rho^{k}$:
- Following Pichler-Piantanida-Matz's idea (2018), we define

$$
\tau^{+}:=\sum_{S \in \mathcal{P}} \hat{f}_{S} \hat{g}_{S}, \quad \tau^{-}:=\sum_{S \in \mathcal{N}} \hat{f}_{S} \hat{g}_{S}
$$

where $\mathcal{P}:=\left\{S \subseteq[n]:|S| \geq 2, \hat{f}_{S} \hat{g}_{S} \geq 0\right\}$ and $\mathcal{N}:=\left\{S \subseteq[n]:|S| \geq 2, \hat{f}_{S} \hat{g}_{S}<0\right\}$

Proof Idea - Fourier Analysis

- Step 2: Bound $\sum_{k=2}^{n} Q(k) \rho^{k}$:
- Following Pichler-Piantanida-Matz's idea (2018), we define

$$
\tau^{+}:=\sum_{S \in \mathcal{P}} \hat{f}_{S} \hat{g}_{S}, \quad \tau^{-}:=\sum_{S \in \mathcal{N}} \hat{f}_{S} \hat{g}_{S}
$$

where $\mathcal{P}:=\left\{S \subseteq[n]:|S| \geq 2, \hat{f}_{S} \hat{g}_{S} \geq 0\right\}$ and $\mathcal{N}:=\left\{S \subseteq[n]:|S| \geq 2, \hat{f}_{S} \hat{g}_{S}<0\right\}$

- Then

$$
\sum_{k=2}^{n} Q(k) \rho^{k}=\sum_{S \subseteq[n]:|S| \geq 2} \hat{f}_{S} \hat{g}_{S} \rho^{|S|} \in\left[\tau^{-} \rho^{2}, \tau^{+} \rho^{2}\right]
$$

Proof Idea - Fourier Analysis

- Step 2: Bound $\sum_{k=2}^{n} Q(k) \rho^{k}$:
- Following Pichler-Piantanida-Matz's idea (2018), we define

$$
\tau^{+}:=\sum_{S \in \mathcal{P}} \hat{f}_{S} \hat{g}_{S}, \quad \tau^{-}:=\sum_{S \in \mathcal{N}} \hat{f}_{S} \hat{g}_{S}
$$

where $\mathcal{P}:=\left\{S \subseteq[n]:|S| \geq 2, \hat{f}_{S} \hat{g}_{S} \geq 0\right\}$ and $\mathcal{N}:=\left\{S \subseteq[n]:|S| \geq 2, \hat{f}_{S} \hat{g}_{S}<0\right\}$

- Then

$$
\sum_{k=2}^{n} Q(k) \rho^{k}=\sum_{S \subseteq[n]:|S| \geq 2} \hat{f}_{S} \hat{g}_{S} \rho^{|S|} \in\left[\tau^{-} \rho^{2}, \tau^{+} \rho^{2}\right]
$$

- Now we only need to bound τ^{+}, τ^{-}:

Proof Idea - Fourier Analysis

- Step 2: Bound $\sum_{k=2}^{n} Q(k) \rho^{k}$:
- Following Pichler-Piantanida-Matz's idea (2018), we define

$$
\tau^{+}:=\sum_{S \in \mathcal{P}} \hat{f}_{S} \hat{g}_{S}, \quad \tau^{-}:=\sum_{S \in \mathcal{N}} \hat{f}_{S} \hat{g}_{S}
$$

where $\mathcal{P}:=\left\{S \subseteq[n]:|S| \geq 2, \hat{f}_{S} \hat{g}_{S} \geq 0\right\}$ and $\mathcal{N}:=\left\{S \subseteq[n]:|S| \geq 2, \hat{f}_{S} \hat{g}_{S}<0\right\}$

- Then

$$
\sum_{k=2}^{n} Q(k) \rho^{k}=\sum_{S \subseteq[n]:|S| \geq 2} \hat{f}_{S} \hat{g}_{S} \rho^{|S|} \in\left[\tau^{-} \rho^{2}, \tau^{+} \rho^{2}\right]
$$

- Now we only need to bound τ^{+}, τ^{-}:
- We show $\tau^{+}-\tau^{-} \leq 4 \sqrt{a \bar{a} b \bar{b}}-Q(1)$ by using Parseval's Theorem $\left(\sum_{S:|S| \geq 0} \hat{f}_{S}^{2}=1\right)$
- We show $-4 a b-Q(1) \leq \tau^{+}+\tau^{-} \leq 4 a \bar{b}-Q(1)$

Proof Idea - Fourier Analysis

- Step 2: Bound $\sum_{k=2}^{n} Q(k) \rho^{k}$:
- Following Pichler-Piantanida-Matz's idea (2018), we define

$$
\tau^{+}:=\sum_{S \in \mathcal{P}} \hat{f}_{S} \hat{g}_{S}, \quad \tau^{-}:=\sum_{S \in \mathcal{N}} \hat{f}_{S} \hat{g}_{S}
$$

where $\mathcal{P}:=\left\{S \subseteq[n]:|S| \geq 2, \hat{f}_{S} \hat{g}_{S} \geq 0\right\}$ and $\mathcal{N}:=\left\{S \subseteq[n]:|S| \geq 2, \hat{f}_{S} \hat{g}_{S}<0\right\}$

- Then

$$
\sum_{k=2}^{n} Q(k) \rho^{k}=\sum_{S \subseteq[n]:|S| \geq 2} \hat{f}_{S} \hat{g}_{S} \rho^{|S|} \in\left[\tau^{-} \rho^{2}, \tau^{+} \rho^{2}\right]
$$

- Now we only need to bound τ^{+}, τ^{-}:
- We show $\tau^{+}-\tau^{-} \leq 4 \sqrt{a \bar{a} b \bar{b}}-Q(1)$ by using Parseval's Theorem $\left(\sum_{S:|S| \geq 0} \hat{f}_{S}^{2}=1\right)$
- We show $-4 a b-Q(1) \leq \tau^{+}+\tau^{-} \leq 4 a \bar{b}-Q(1)$
- Finally, combining Steps 1 and 2 yields our bounds: $\theta^{-}(a) \leq q \leq \theta^{+}(a)$, where

$$
\begin{aligned}
& \theta^{+}(a)=\min \left\{a, a^{2}+\frac{a}{2} \rho+\left(\frac{a}{2}-a^{2}\right) \rho^{2}\right\} \\
& \theta^{-}(a)=\max \left\{0, a^{2}-\frac{a}{2} \rho-\left(\frac{a}{2}-a^{2}\right) \rho^{2}\right\}
\end{aligned}
$$

Why our proof works?

- In our Step 2, we use the following bounds:

$$
\sum_{k=2}^{n} Q(k) \rho^{k}=\sum_{S \subseteq[n]:|S| \geq 2} \hat{f}_{S} \hat{g}_{S} \rho^{|S|} \in\left[\tau^{-} \rho^{2}, \tau^{+} \rho^{2}\right]
$$

- This implies that we discard $Q(k), k \geq 3$

Why our proof works?

- In our Step 2, we use the following bounds:

$$
\sum_{k=2}^{n} Q(k) \rho^{k}=\sum_{S \subseteq[n]:|S| \geq 2} \hat{f}_{S} \hat{g}_{S} \rho^{|S|} \in\left[\tau^{-} \rho^{2}, \tau^{+} \rho^{2}\right]
$$

- This implies that we discard $Q(k), k \geq 3$
- Conjecture: Given $a=b=2^{-m}$, the optimal f, g are subcube functions, i.e., $g(\pm \mathrm{x})=f(\mathrm{x})=1\left\{x_{1}=\ldots=x_{m}=1\right\}$

Why our proof works?

- In our Step 2, we use the following bounds:

$$
\sum_{k=2}^{n} Q(k) \rho^{k}=\sum_{S \subseteq[n]:|S| \geq 2} \hat{f}_{S} \hat{g}_{S} \rho^{|S|} \in\left[\tau^{-} \rho^{2}, \tau^{+} \rho^{2}\right]
$$

- This implies that we discard $Q(k), k \geq 3$
- Conjecture: Given $a=b=2^{-m}$, the optimal f, g are subcube functions, i.e., $g(\pm \mathbf{x})=f(\mathbf{x})=1\left\{x_{1}=\ldots=x_{m}=1\right\}$
- Subcube functions satisfy $Q(k)=0, k \geq m+1$

A New Bound on Average Distances

- Until now, we have shown the equivalence

$$
\mathbb{P}(f(\mathbf{X})=g(\mathbf{Y})=1)=a b(1+\rho)^{n} \Gamma_{\frac{1-\rho}{1+\rho}}(A, B)=a b \Pi_{\rho}(A, B)
$$

- Non-interactive simulation is equivalent to some coding-theoretic problem

A New Bound on Average Distances

- Until now, we have shown the equivalence

$$
\mathbb{P}(f(\mathbf{X})=g(\mathbf{Y})=1)=a b(1+\rho)^{n} \Gamma_{\frac{1-\rho}{1+\rho}}(A, B)=a b \Pi_{\rho}(A, B)
$$

- Non-interactive simulation is equivalent to some coding-theoretic problem
- We have applied coding-theoretic results to non-interactive simulation

A New Bound on Average Distances

- Until now, we have shown the equivalence

$$
\mathbb{P}(f(\mathbf{X})=g(\mathbf{Y})=1)=a b(1+\rho)^{n} \Gamma_{\frac{1-\rho}{1+\rho}}(A, B)=a b \Pi_{\rho}(A, B)
$$

- Non-interactive simulation is equivalent to some coding-theoretic problem
- We have applied coding-theoretic results to non-interactive simulation
- Next, in turn, we apply techniques for non-interactive simulation to a coding-theoretic problem
- Specifically, apply hypercontractivity inequalities to bound average distances
- Recall that: The average distance between A, B is defined as

$$
D(A, B):=\frac{1}{|A||B|} \sum_{\mathrm{x} \in A} \sum_{\mathrm{x}^{\prime} \in B} d_{\mathrm{H}}\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=\sum_{i=0}^{n} P^{(A, B)}(i) \cdot i
$$

Main Result: A New Bound on Average Distances

By hypercontractivity inequalities, we obtain:

Theorem

For $1 \leq M \leq 2^{n}$, we have

$$
\min _{A:|A|=M} D(A, A) \geq \frac{n}{2}-\psi(a)
$$

where $a:=\frac{M}{2^{n}}$ and

$$
\psi(a):=\inf _{t>0, t \neq 1} \frac{(t a+\bar{a})[a t \log t-(t a+\bar{a}) \log (t a+\bar{a})]}{a^{2}(t-1)^{2}} .
$$

Main Result: A New Bound on Average Distances

By hypercontractivity inequalities, we obtain:

Theorem

For $1 \leq M \leq 2^{n}$, we have

$$
\min _{A:|A|=M} D(A, A) \geq \frac{n}{2}-\psi(a)
$$

where $a:=\frac{M}{2^{n}}$ and

$$
\psi(a):=\inf _{t>0, t \neq 1} \frac{(t a+\bar{a})[a t \log t-(t a+\bar{a}) \log (t a+\bar{a})]}{a^{2}(t-1)^{2}} .
$$

- Best known result: Fu-Wei-Yeung (2001) showed the following (linear programming) bound

$$
\min _{A:|A|=M} D(A, A) \geq \frac{n}{2}-\frac{1}{4 a}
$$

Numerical Result

Numerical Result

Numerical Result

Numerical Result

Conclusion

- For coding-theoretic problems, Fourier analysis and linear programming techniques are very useful

Conclusion

- For coding-theoretic problems, Fourier analysis and linear programming techniques are very useful
- For non-interactive simulation problem, data processing inequalities (DPIs) are very useful

Conclusion

- For coding-theoretic problems, Fourier analysis and linear programming techniques are very useful
- For non-interactive simulation problem, data processing inequalities (DPIs) are very useful

In this work:

Conclusion

- For coding-theoretic problems, Fourier analysis and linear programming techniques are very useful
- For non-interactive simulation problem, data processing inequalities (DPIs) are very useful

In this work:

- Equivalence: non-interactive simulation problem \Longleftrightarrow some coding-theoretic problem

Conclusion

- For coding-theoretic problems, Fourier analysis and linear programming techniques are very useful
- For non-interactive simulation problem, data processing inequalities (DPIs) are very useful

In this work:

- Equivalence: non-interactive simulation problem \Longleftrightarrow some coding-theoretic problem
- We applied Fourier analysis (combined with linear programming) to the non-interactive simulation problem
- Our bounds are sharp for some cases and tighter than existing results for some other cases

Conclusion

- For coding-theoretic problems, Fourier analysis and linear programming techniques are very useful
- For non-interactive simulation problem, data processing inequalities (DPIs) are very useful
In this work:
- Equivalence: non-interactive simulation problem \Longleftrightarrow some coding-theoretic problem
- We applied Fourier analysis (combined with linear programming) to the non-interactive simulation problem
- Our bounds are sharp for some cases and tighter than existing results for some other cases
- In turn, applied DPIs (hypercontractivity) to the minimal average-distance problem
- Our bound is tighter than the best known result for some cases

