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Non-Interactive Simulation Problem

Given PXY , let (X,Y) ∼ Pn
XY be correlated memoryless sources

i.e., (X,Y) are n i.i.d. copies of (X,Y ) ∼ PXY

Assume (U,V) onU ×V are two random variables such that U −X −Y − V
forms a Markov chain, i.e.,

PUXYV = PU |XPn
XYPV |Y

Y
P

n

XY
PV |Y

VX
PU |X

U

A natural question: What are the possible joint distributions PUV of (U,V)?

Q (U ×V|PXY ) := {PUV ∈ P (U ×V) : U −X −Y − V}

This problem is termed Non-Interactive Simulation of Random Variables
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Background and Motivation
Background:

Used to define common information
Gács-Körner (1972) restricted U,V s.t. P (U = V) → 1 as n→∞
Wyner (1975) considered X = Y ∼ Bern

(
1
2

)

Converse results derived by data processing inequalities:
Witsenhausen (1975) derived a converse result by maximal correlation:
ρm (U;V) ≤ ρm (X;Y )

Kamath-Anantharam (2016) derived a converse result by hypercontractivity:
R (U;V) ⊇ R (X;Y ) (R(X;Y ) is the hypercontractivity ribbon between X,Y )

Related Problems:
Non-interactive correlation distillation (Mossel-O’Donnell 2005, Yang 2007):
U,V ∼ Bern

(
1
2

)
and maximize EUV

Noise-sensitivity of Boolean functions (Mossel-O’Donnell 2005):

X ∼ Bern
(
1
2

)
, Y = X ⊕ E with E ∼ Bern (p) ind. of X

U = f (X), V = f (Y) with f : {−1, 1}n → {−1, 1} being a balanced Boolean
function (i.e., P (U = 1) = P (V = 1) = 1

2 )
maximize P (U = V) (or EUV)
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Non-Interactive Simulation: Boolean Version

Non-Interactive simulation problem is difficult in general

So in this work, we focus on the binary case:

X,Y,U,V are Boolean random variables taking values in {−1, 1}
PXY is a Boolean symmetric distribution with correlation coefficient ρ ∈ [0, 1],
i.e.,

−1 1

PXY =
−1
1

[
1+ρ
4

1−ρ
4

1−ρ
4

1+ρ
4

]
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Non-Interactive Simulation: Boolean Version

For this case, PUV is determined by the triple

(P (U = 1) , P (V = 1) , P (U = V = 1))

The region of the triple above is determined by

p+n(a, b) := max
U,V :U−X−Y−V
P(U=1)=a,
P(V=1)=b

P (U = V = 1)

p−n(a, b) := min
U,V :U−X−Y−V
P(U=1)=a,
P(V=1)=b

P (U = V = 1)

If we restrict U = f (X),V = g(Y) for f , g : {−1, 1}n → {−1, 1}, we obtain

q+n (a, b) := max
f ,g:P( f (X)=1)=an,
P(g(Y)=1)=bn

P ( f (X) = g(Y) = 1)

q−n (a, b) := min
f ,g:P( f (X)=1)=an,
P(g(Y)=1)=bn

P ( f (X) = g(Y) = 1)

where an := b2
nac
2n and bn := b2

nbc
2n .
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Replace
(
PU |X, PV |Y

)
with Boolean functions ( f , g)

Lemma

We have
0 ≤ p+n(a, b) − q+n (a, b) ≤ 2−(n−1)

0 ≤ p−n(a, b) − q−n (a, b) ≤ 2−(n−1).

In particular, if a = M
2n and b = N

2n for some M, N ∈ N, then

p+n(a, b) = q+n (a, b)

p−n(a, b) = q−n (a, b).

Proof: Observe that optimizations in p±n(a, b), q
±
n (a, b) are linear programs. This

lemma follows by the simplex method.

Restricting U = f (X),V = g(Y) is asymptotically optimal in attaining
p+n(a, b), p−n(a, b)
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Connection to Coding Theory

A ⊆ {−1, 1}n is called a binary code

For a Boolean function f , A := {x : f (x) = 1} is a binary code
f and A are uniquely determined by each other.

In coding theory, the distance distribution between A, B ⊆ {−1, 1}n is ,

P(A,B)(i) :=
1

|A| |B|
|{(x, x′) ∈ A × B : dH (x, x′) = i}| , i ∈ {0, 1, ..., n}

where dH (x, x′) :=
��{i : xi , x ′i

}�� denotes the Hamming distance

In particular, if A = B, then

P(A,A)(i) :=
1

|A|2
��{ (x, x′) ∈ A2 : dH

(
x, x′

)
= i

}�� , i ∈ {0, 1, ..., n}

is the distance distribution of a single code A ⊆ {−1, 1}n
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Distance Enumerators and Average Distances

Define the distance enumerator between A, B ⊆ {−1, 1}n as

Γz (A, B) :=
1

|A| |B |

∑
x∈A

∑
x′∈B

zdH(x,x
′) =

n∑
i=0

P(A,B)(i) · zi .

Clearly, Γz (A, B) is the probability-generating function of P(A,B).

The dual distance enumerator between A, B ⊆ {−1, 1}n is defined as

Πz (A, B) := (1 + z)n Γ1−z
1+z
(A, B) .

The average distance between A, B ⊆ {−1, 1}n is defined as

D (A, B) :=
1

|A| |B |

∑
x∈A

∑
x′∈B

dH (x, x′) =
n∑
i=0

P(A,B)(i) · i

Clearly, D (A, B) is the mean of P(A,B).
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Equivalence

Lemma
For a = M

2n and b = N
2n for some M, N ∈ N, we have

P ( f (X) = g(Y) = 1) = ab (1 + ρ)n Γ1−ρ
1+ρ
(A, B) = abΠρ (A, B)

where A := {x : f (x) = 1} and B := {x : g(x) = 1}.

Given a, b, ρ, characterizing the possible range of P ( f (X) = g(Y) = 1) is
equivalent to characterizing the possible range of Γ1−ρ

1+ρ
(A, B) or Πρ (A, B)

The (Boolean function version of) non-interactive simulation problem⇐⇒ the
problem of determining the possible range of the (dual) distance enumerator
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Main Result
Assume a = b = M

2n for some M ∈ N. Denote q := P ( f (X) = g(Y) = 1) .

Theorem (Symmetric Case: a = b)

θ−(a) ≤ q ≤ θ+(a),

where
θ+(a) := min

{
a, a2 +

a
2
ρ +

( a
2
− a2

)
ρ2

}
θ−(a) := max

{
0, a2 −

a
2
ρ −

( a
2
− a2

)
ρ2

}
.

In particular, for a = 1
2 , (Witsenhausen’s result (1975))

1 − ρ

4
≤ q ≤

1 + ρ

4
,

and for a = 1
4 , (new) 1 − 2ρ − ρ2

16
≤ q ≤

(
1 + ρ

4

)2
.

Our bounds also hold for q := P (U = V = 1) (stochastic version).
Our results for asymmetric cases can be found in our paper.
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Main Result
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4
≤ q ≤

1 + ρ

4
,

and for a = 1
4 , (new)

1 − 2ρ − ρ2

16
≤ q ≤

(
1 + ρ

4

)2
.

Both the upper and lower bounds for the case a = 1
2 are sharp:

the upper bound is attained by g(x) = f (x) = 1 {x1 = 1} (symmetric subcube
functions)
the lower bound is attained by g(−x) = f (x) = 1 {x1 = 1} (anti-symmetric
subcube functions)

The upper bound for the case a = 1
4 is sharp:

attained by g(x) = f (x) = 1 {x1 = x2 = 1}
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Numerical Result: Upper Bounds
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Proof Idea – Fourier Analysis

Consider the Fourier/Hadamard basis

χS(x) :=
∏
i∈S

xi, S ⊆ [n] := {1, ..., n}

For a Boolean function f : {−1, 1}n → {−1, 1}, its Fourier/Hadamard
transform is f̂S := Ex∼Unif {−1,1}n [ f (x)χS(x)], S ⊆ [n]. (1)

The inverse Fourier transform is

f (x) =
∑
S⊆[n]

f̂S χS(x)

Then we can rewrite

P ( f (X) = g(Y) = 1) = ab +
1

4

n∑
k=1

Q(k)ρk

where Q(k) :=
∑

S⊆[n]: |S |=k

f̂S ĝS, 1 ≤ k ≤ n (2)

To bound P ( f (X) = g(Y) = 1), we only need to bound
∑n

k=1 Q(k)ρk
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Proof Idea – Fourier Analysis

Now we bound
∑n

k=1 Q(k)ρk :

Step 1: Bound Q(1):
We show that

Q(1) = 8ab
( n
2
− D (A, B)

)
���n
2
− D (A, B)

��� ≤ n
2
−
1

2
(D (A, A) + D (B, B)) .

Fu-Wei-Yeung (2001) showed the following (linear programming) bound on
average distance

min
A: |A|=M

D (A, A) ≥
n
2
−

1

4a

where a = M
2n .

Combining the results above gives

|Q(1)| ≤ a + b
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Proof Idea – Fourier Analysis

Step 2: Bound
∑n

k=2 Q(k)ρk :

Following Pichler-Piantanida-Matz’s idea (2018), we define

τ+ :=
∑
S∈P

f̂S ĝS, τ− :=
∑
S∈N

f̂S ĝS

where P := {S ⊆ [n] : |S | ≥ 2, f̂S ĝS ≥ 0} and N := {S ⊆ [n] : |S | ≥ 2, f̂S ĝS < 0}
Then

n∑
k=2

Q(k)ρk =
∑

S⊆[n]: |S | ≥2

f̂S ĝS ρ
|S | ∈

[
τ−ρ2, τ+ρ2

]
Now we only need to bound τ+, τ−:

We show τ+ − τ− ≤ 4
√
aabb −Q(1) by using Parseval’s Theorem (

∑
S:|S |≥0 f̂ 2

S
= 1)

We show −4ab −Q(1) ≤ τ+ + τ− ≤ 4ab −Q(1)

Finally, combining Steps 1 and 2 yields our bounds: θ−(a) ≤ q ≤ θ+(a),
where

θ+(a) = min
{
a, a2 +

a
2
ρ +

( a
2
− a2

)
ρ2

}
θ−(a) = max

{
0, a2 −

a
2
ρ −

( a
2
− a2

)
ρ2

}
.
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where P := {S ⊆ [n] : |S | ≥ 2, f̂S ĝS ≥ 0} and N := {S ⊆ [n] : |S | ≥ 2, f̂S ĝS < 0}

Then
n∑

k=2

Q(k)ρk =
∑

S⊆[n]: |S | ≥2

f̂S ĝS ρ
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f̂S ĝS ρ
|S | ∈

[
τ−ρ2, τ+ρ2

]
Now we only need to bound τ+, τ−:

We show τ+ − τ− ≤ 4
√
aabb −Q(1) by using Parseval’s Theorem (

∑
S:|S |≥0 f̂ 2

S
= 1)

We show −4ab −Q(1) ≤ τ+ + τ− ≤ 4ab −Q(1)

Finally, combining Steps 1 and 2 yields our bounds: θ−(a) ≤ q ≤ θ+(a),
where

θ+(a) = min
{
a, a2 +

a
2
ρ +

( a
2
− a2

)
ρ2

}
θ−(a) = max

{
0, a2 −

a
2
ρ −

( a
2
− a2

)
ρ2

}
.

Lei Yu (NUS) On Binary Codes and Non-Interactive Simulation 16 / 21



Proof Idea – Fourier Analysis

Step 2: Bound
∑n

k=2 Q(k)ρk :

Following Pichler-Piantanida-Matz’s idea (2018), we define

τ+ :=
∑
S∈P
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where P := {S ⊆ [n] : |S | ≥ 2, f̂S ĝS ≥ 0} and N := {S ⊆ [n] : |S | ≥ 2, f̂S ĝS < 0}
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We show −4ab −Q(1) ≤ τ+ + τ− ≤ 4ab −Q(1)

Finally, combining Steps 1 and 2 yields our bounds: θ−(a) ≤ q ≤ θ+(a),
where

θ+(a) = min
{
a, a2 +

a
2
ρ +

( a
2
− a2

)
ρ2

}
θ−(a) = max

{
0, a2 −

a
2
ρ −

( a
2
− a2

)
ρ2

}
.
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f̂S ĝS ρ
|S | ∈

[
τ−ρ2, τ+ρ2

]
Now we only need to bound τ+, τ−:

We show τ+ − τ− ≤ 4
√
aabb −Q(1) by using Parseval’s Theorem (

∑
S:|S |≥0 f̂ 2

S
= 1)

We show −4ab −Q(1) ≤ τ+ + τ− ≤ 4ab −Q(1)

Finally, combining Steps 1 and 2 yields our bounds: θ−(a) ≤ q ≤ θ+(a),
where

θ+(a) = min
{
a, a2 +

a
2
ρ +

( a
2
− a2

)
ρ2

}
θ−(a) = max

{
0, a2 −

a
2
ρ −

( a
2
− a2

)
ρ2

}
.

Lei Yu (NUS) On Binary Codes and Non-Interactive Simulation 16 / 21



Why our proof works?

In our Step 2, we use the following bounds:

n∑
k=2

Q(k)ρk =
∑

S⊆[n]: |S | ≥2

f̂S ĝSρ |S | ∈
[
τ−ρ2, τ+ρ2

]
This implies that we discard Q(k), k ≥ 3

Conjecture: Given a = b = 2−m, the optimal f , g are subcube functions, i.e.,
g(±x) = f (x) = 1 {x1 = ... = xm = 1}

Subcube functions satisfy Q(k) = 0, k ≥ m + 1
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A New Bound on Average Distances

Until now, we have shown the equivalence

P ( f (X) = g(Y) = 1) = ab (1 + ρ)n Γ1−ρ
1+ρ
(A, B) = abΠρ (A, B)

Non-interactive simulation is equivalent to some coding-theoretic problem

We have applied coding-theoretic results to non-interactive simulation
Next, in turn, we apply techniques for non-interactive simulation to a
coding-theoretic problem

Specifically, apply hypercontractivity inequalities to bound average distances

Recall that: The average distance between A, B is defined as

D (A, B) :=
1

|A| |B |

∑
x∈A

∑
x′∈B

dH (x, x′) =
n∑
i=0

P(A,B)(i) · i
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Main Result: A New Bound on Average Distances

By hypercontractivity inequalities, we obtain:

Theorem

For 1 ≤ M ≤ 2n, we have

min
A: |A |=M

D (A, A) ≥
n
2
− ψ (a),

where a := M
2n and

ψ (a) := inf
t>0,t,1

(ta + a) [at log t − (ta + a) log (ta + a)]

a2 (t − 1)2
.

Best known result: Fu-Wei-Yeung (2001) showed the following (linear
programming) bound

min
A: |A |=M

D (A, A) ≥
n
2
−

1

4a
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Numerical Result
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Conclusion

For coding-theoretic problems, Fourier analysis and linear programming
techniques are very useful

For non-interactive simulation problem, data processing inequalities (DPIs)
are very useful

In this work:

Equivalence: non-interactive simulation problem⇐⇒ some coding-theoretic
problem
We applied Fourier analysis (combined with linear programming) to the
non-interactive simulation problem

Our bounds are sharp for some cases and tighter than existing results for some
other cases

In turn, applied DPIs (hypercontractivity) to the minimal average-distance
problem

Our bound is tighter than the best known result for some cases
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