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Given:

a matrixA of sizem × n over the reals;

a vector x of length n over the reals.

Task: compute the vector y of lengthm over the reals, where

y ≜ A ⋅ x .

Explicitly:
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Idea:

Use coding theory to alleviate delay issues because of stragglers.
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Idea:

Use coding theory to alleviate delay issues because of stragglers.

Unavailable partial results can be seen as erasures.
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Idea:

Coding scheme should take advantage of the fact that erasures are correlated.

Erasures are correlated because

if a partial result by one of the workers is not available,

then all subsequent results by the sameworker are not available either.
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Idea:

Base coding scheme on so-called universally decodable matrices (UDMs).

Use companionmatrices in order to reduce issues with condition numbers

when adapting a coding scheme over some finite field to a coding scheme over

the reals.



Motivation
Bad condition number of unsuitably chosen encoding matrices is an issue.
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Motivation

A communication system withL parallel channels

⇒ Coding for this system using universally decodable matrices

Embedding into the reals

⇒ Companion matrices

For more details:

A. Ramamoorthy, L. Tang, and P. O. Vontobel, “Universally decodable

matrices for distributed matrix-vector multiplication,” Proc. IEEE Int.

Symp. Inf. Theory, Paris, France, pp. 1777-1781, July 2019.

arXiv: 1901.10674
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Comm. SystemwithL Parallel Channels

Encoder

x0

xL−1

y0

yL−1

Decoder Sink
û
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The channels are such that if yℓ,t is erased then also yℓ,t′ is erased for all t
′
> t.
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We want unique decodability as long as∑ℓ∈[L] kℓ ≥ n,

here: k0 + k1 + k2 + k3 ≥ 3.
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For reasons of simplicity, we would like the encoding to be linear:

x0 = u ⋅G0, . . . , xL−1 = u ⋅GL−1,

whereG0, . . . ,GL−1 are n × nmatrices.
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For reasons of simplicity, we would like the encoding to be linear:

x0 = u ⋅G0, . . . , xL−1 = u ⋅GL−1,

whereG0, . . . ,GL−1 are n × nmatrices.

Definition: If the above matrices lead to unique decodability for any k0, . . . , kL−1 with

∑ℓ∈[L] kℓ ≥ n, then we call these matrices universally decodable matrices (UDMs).
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û

Source
u ...

...

0-th Channel

(L−1)-th Channel

...

k0

kL−1

E.g.L = 2, n = 5, any q. The matricesG0 andG1 are UDMs:

G0=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, G1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

u = (u0 u1 u2 u3 u4) ,
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u = (u0 u1 u2 u3 u4) , x0 = (u0 u1 u2 u3 u4) , x1 = (u4 u3 u2 u1 u0) .
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0 1 0

0 0 1

⎞
⎟⎟⎟⎟
⎠
, G1 =

⎛
⎜⎜⎜⎜
⎝

0 0 1

0 1 0

1 0 0

⎞
⎟⎟⎟⎟
⎠
, G2 =

⎛
⎜⎜⎜⎜
⎝

1 0 0

1 1 0

1 2 1

⎞
⎟⎟⎟⎟
⎠
, G3 =

⎛
⎜⎜⎜⎜
⎝

1 0 0

2 1 0

1 1 1

⎞
⎟⎟⎟⎟
⎠
.
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kL−1k1k0

· · ·

u y0 y1 yL−1

yû

G0 G1 GL−1

G
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What does unique decodability imply for the matricesG0, . . .,GL−1?

kL−1k1k0

· · ·

u y0 y1 yL−1

yû

G0 G1 GL−1

G

For any k0, . . . , kL−1 with∑ℓ∈[L] kℓ ≥ n the matrixGmust have full rank.
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Another motivation for this channel model: paper by Tavildar and Viswanath,

“Approximately universal codes over slow fading channels”, IEEE Trans. Inf.

Theory, IT–52, no. 7, pp. 3233–3258, July 2006.

Consider slow-fading (point-to-point) MIMO channel

y[m] =H ⋅ x[m] +w[m].
The complex matrix of fading gainsH stays constant over the time-scale of

communication; we suppose the exact characterization ofH is known to the

receiver while the transmitter has only access to its statistical characterization.

The focus in the paper is on the high-SNR regime.

Coding for this channel can be seen as space-time coding.
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Depending on what hℓ is, we can recover more or fewer of

the most-significant bits.

AssumeL = 2: channel is not in outage if

log (1 + ∣h0∣2SNR) + log (1 + ∣h1∣2SNR) > 2R.

Assume that h0 and h1 are such that

log (1 + ∣h0∣2SNR) > 2k0, log (1 + ∣h1∣2SNR) > 2k1.
for some k0 and k1, i.e. we can recover k0 bits from the

zeroth channel and k1 bits from the first channel.

Not being in outage means that k0 + k1 ≥ R.
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β0 β2

x

f(x)

β7

We have to show that the mapping

(u0, u1, u2)↦ (f(β0), f(β2), f(β7))
is injective.

Because the above mapping is linear it is sufficient to show that the kernel is

trivial.
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β0 β2

x

f(x)

β7 β0 β2

x

f(x)

β7

Case 1:

f(x) = 0,
⇒ (u0, u1, u2) = (0,0,0).

Case 2:

f(x) ≠ 0with at least three zeros.
The fundamental theorem of algebra

implies that deg(f(x)) ≥ 3. However,
no quadratic function can have more

than two zeros.
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β0 β1 β2 β8· · ·
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Encoding map (evaluation map):

(u0, u1, u2) ↦ (f(β0), f(β1), f(β2), f(β3), f(β4), f(β5), f(β6), f(β7), f(β8)),

where f(x) = u0x
0 + u1x

1 + u2x
2.

Note: the codes that result from this evaluation map are the well-known

Reed-Solomon codes.
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β0 β1 β2 β8· · ·
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β0 β1 β2 β8· · ·

x

f(x)

Encoding map (evaluation map):

(u0, u1, u2) ↦ (f(β0), f(β1), f(β2), f(β3), f(β4), f(β5), f(β6), f(β7), f(β8)),

where f(x) = u0x
0 + u1x

1 + u2x
2.

A way to find (u0, u1, u2) is to specify at least three function values.
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For example, knowing

the function value plus the value of the function derivative for one place and

the function value at another place,

is sufficient to find (u0, u1, u2).
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However, there are also other quantities that we can specify

so that we can find out (u0, u1, u2).

β0 β1 β2 β8· · ·

x

f(x)

β2

x

f(x)

β7

Consider the following new evaluation map:

(u0 u1 u2) ↦
⎛⎜⎜⎜⎜⎝

f(β0) f ′(β0)
⋮ ⋮

f(β8) f ′(β8)

⎞⎟⎟⎟⎟⎠
where f(x) = u0x

0 + u1x
1 + u2x

2 and f ′(x) = u1x
0 + 2u2x

1 .
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t for 0 ≤ i ≤ n − 1.
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General formula for the evaluation map:
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t for 0 ≤ i ≤ n − 1.

There is a problem if we want to use this approach when we work over finite fields: if p

is the characteristic of Fq then the i-th formal derivative is zero for i ≥ p and the

corresponding channel symbols do not carry any information.

However, replacing the formal derivative by the Hasse derivative, this approach

works!
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General formula for the evaluation map:

(u0 u1 u2) ↦
⎛⎜⎜⎜⎜⎝

f̃ (0)(β0) f̃ (1)(β0) ⋯ f̃ (n−1)(β0)
⋮ ⋮ ⋮ ⋮

f̃ (0)(βL−1) f̃ (1)(βL−1) ⋯ f̃ (n−1)(βL−1)

⎞⎟⎟⎟⎟⎠
where we used the Hasse derivatives

f̃ (i)(x) = n−1

∑
t=0

(t
i
)utx

t
=

n−1

∑
t=0

t!

i!(t − i)!utx
t for 0 ≤ i ≤ n − 1.
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We have to show that the mapping

(u0, u1, u2)↦ (f̃ (0)(β2), f̃ (1)(β2), f̃ (0)(β7)) is injective.
Because the above mapping is linear it is sufficient to show that the kernel is

trivial.
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β2

x

f(x)

β7 β2

x

f(x)

β7

Case 1:

f(x) = 0,
⇒ (u0, u1, u2) = (0,0,0).

Case 2:

f(x) ≠ 0with at least three zeros
(counting with multiplicities).

The fundamental theorem of algebra

implies that deg(f(x)) ≥ 3. However,
no quadratic function can have more

than two zeros.
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Note that this second interpolation setup is not simply a special case of the first

interpolation setup:

β2

x

β7β0

f(x)

β2

x

β7β0

f(x)

???

Knowing three pointswhere a parabola

goes through is sufficient to find out

the parameters of the parabola.

Knowing e.g. the derivatives at three

points of a parabola is not sufficient

to find out the parameters of the

parabola.
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Universally Decodable Matrices

Proposition

Let n be some positive integer, let q be some prime power.

Let α be a primitive element in Fq .

(I.e. α is an (q − 1)-th primitive root of unity.)

IfL ≤ q + 1 then the followingLmatrices over Fq of size n × n are

(L,n, q)-UDMs:
G0 ≜ In , G1 ≜ Jn , G2 , . . . , GL−1 ,

where

Jn is an n × nmatrix with ones in the anti-diagonal and zeros otherwise;

[Gℓ+2]t,i ≜ (ti)αℓ(t−i), (ℓ, t, i) ∈ [L − 2] × [n] × [n] .
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E.g.L = 4, n = 3, q = 3.

G0 =

⎛⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞⎟⎟⎟⎟⎠
, G1 =

⎛⎜⎜⎜⎜⎝

0 0 1

0 1 0

1 0 0

⎞⎟⎟⎟⎟⎠
,

G2 =

⎛⎜⎜⎜⎜⎝

1 0 0

1 1 0

1 2 1
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, G3 =

⎛⎜⎜⎜⎜⎝

1 0 0

2 1 0

1 1 1

⎞⎟⎟⎟⎟⎠
.
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E.g.L = 4, n = 3, q = 3.

G0 =

⎛⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞⎟⎟⎟⎟⎠
, G1 =

⎛⎜⎜⎜⎜⎝

0 0 1

0 1 0

1 0 0
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,

G2 =

⎛⎜⎜⎜⎜⎝

1 0 0

1 1 0

1 2 1
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, G3 =
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1 0 0

2 1 0

1 1 1

⎞⎟⎟⎟⎟⎠
.

Note that [G2]t,i ≜ (ti), therefore Pascal’s triangle plays an important role when

constructing these matrices.
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Comments

An explicit construction of UDMs was given in [Vontobel and Ganesan, 2006],

[Ganesan and Vontobel, 2007].

Earlier on, and in a different context, the resulting codes have also been defined

by Rosenbloom and Tsfasman (PPI, 1997).

In the last ten years, the resulting codes have also appeared under the name

“multiplicity codes” in the theoretical computer science literature.

The mathematics that is needed is very similar to the mathematics that is

needed when studying so-called repeated-root cyclic codes [Castagnoli et al.,

1991].

Are there other constructions of UDMs that are not simply reformulations of the

above UDMs? Note that one can show that the given construction is in a certain

sense a unique extension of Reed-Solomon codes [Vontobel and Ganesan,

2006].
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Efficient Decoding
Decoding means that we have to solve the system of linear equations

y = u ⋅G.

Using Gaussian elimination, the decoding complexity isO(n3).

However, decoding is obviously related to finding an interpolation polynomial:

the problem at hand can be solved with a variant of Newton’s interpolation

algorithm. This results in a decoding complexity ofO(n2).
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Remember the encoding that we are using

u ∈ Fn
q ↦ xℓ ∈ F

n
q , ℓ ∈ [L].

Generalization: for any 1 ≤ n′ ≤ nwe can also send vectors of length n′:

u ∈ Fn
q ↦ xℓ ∈ F

n
′

q , ℓ ∈ [L].

⇒ The above construction of UDMs can be extended straightforwardly to this

new setup.
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Generalizations (Part 2/2)

Remember that for any k0, . . . , kL−1 with∑k∈[L] kℓ ≥ nwe required that we can

decode uniquely.

Generalization: for any k0, . . . , kL−1 with∑k∈[L] kℓ ≥ n + g we require that we
can decode uniquely for some g ≥ 0.

⇒ In the same way as Goppa codes / algebraic-geometry codes are generalizations of

Reed-Solomon codes, one can construct UDMs that are generalizations of the above

UDMs.

Riemann-Roch theorem gives new proof.

Hasse-Weil-Serre bound can be used to give new necessary conditions forL.



Back to the setup of interest



Motivation
We can split up the task into several submatrix-vector-multiplication tasks:

·=
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Idea:

Coding scheme should take advantage of the fact that erasures are correlated.

Erasures are correlated because

if a partial result by one of the workers is not available,

then all subsequent results by the sameworker are not available either.
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Motivation
We can split up the task into several submatrix-vector-multiplication tasks:

·=
A1,0

A1,1
x

y1,0

y1,1
Worker 1

A0,0

A0,1

y0,0

y0,1
Worker 0

A2,0

A2,1y2,1

y2,0Worker 2

Idea:

Base coding scheme on so-called universally decodable matrices (UDMs).

Use companionmatrices in order to reduce issues with condition numbers

when adapting a coding scheme over some finite field to a coding scheme over

the reals.



Embedding into the reals:

companionmatrices



Companion Matrices

Assume that the field ⟨Fps ,+, ⋅ ⟩ is constructed based on the primitive polynomial

π(X) = X
s + πs−1X

s−1 +⋯+ π1X + π0 ∈ Fp[X] .

The companion matrix associated with π(X) is defined to be the following matrix of

size s × s over Fp:

C ≜

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 ⋯ 0 −π0

1 0 ⋯ 0 −π1

0 1 ⋯ 0 −π2

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 −πs−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This matrix yields the following field isomorphism:

⟨Fps ,+, ⋅ ⟩ ≅ ⟨{0,C,C2,C3, . . . ,Cp
s−1},+, ⋅ ⟩ .



Companion Matrices
Lemma: letM be a square matrix with entries in Z.

IfM satisfies

det(M) ≠ 0 (mod p) ,

then also

det(M) ≠ 0 (in Z) ,

and with that

det(M) ≠ 0 (inR) .



Companion Matrices
Lemma: letM be a square matrix with entries in Z.

IfM satisfies

det(M) ≠ 0 (mod p) ,

then also

det(M) ≠ 0 (in Z) ,

and with that

det(M) ≠ 0 (inR) .

The above observations can be used to embed matrices over Fps intoR, and then give

guarantees on them.



Performance comparison



Performance Comparison (Part 1/2)

Setup: N = 6, γ = 3/4, andQb = 4.



Performance Comparison (Part 2/2)

Setup: N = 15, γ = 1/2, andQb = 4.
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Thank you!
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