

Pascal O. Vontobel (joint work with Aditya Ramamoorthy and Li Tang)

Department of Information Engineering
The Chinese University of Hong Kong

WPI 2019, Hong Kong, August 19, 2019

Given:

- a matrix **A** of size $m \times n$ over the reals;
- a vector $\mathbf x$ of length n over the reals.

Task: compute the vector ${\bf y}$ of length m over the reals, where

$$\mathbf{y} \triangleq \mathbf{A} \cdot \mathbf{x}$$
.

Explicitly:

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} \triangleq \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \cdots & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

We can split up the task into several submatrix-vector-multiplication tasks:

We can split up the task into several submatrix-vector-multiplication tasks:

Idea:

Use coding theory to alleviate delay issues because of stragglers.

Idea:

- Use coding theory to alleviate delay issues because of stragglers.
- Unavailable partial results can be seen as erasures.

We can split up the task into several submatrix-vector-multiplication tasks:

We can split up the task into several submatrix-vector-multiplication tasks:

We can split up the task into several submatrix-vector-multiplication tasks:

Idea:

Coding scheme should take advantage of the fact that erasures are correlated.

Erasures are correlated because

if a partial result by one of the workers is not available, then **all subsequent results by the same worker** are not available either.

We can split up the task into several submatrix-vector-multiplication tasks:

Idea:

Base coding scheme on so-called universally decodable matrices (UDMs).

We can split up the task into several submatrix-vector-multiplication tasks:

Idea:

- Base coding scheme on so-called universally decodable matrices (UDMs).
- Use companion matrices in order to reduce issues with condition numbers when adapting a coding scheme over some finite field to a coding scheme over the reals.

Bad condition number of unsuitably chosen encoding matrices is an issue.

Context (Part 1/2)

- Q. Yu, M. Maddah-Ali, and S. Avestimehr, "Polynomial codes: an optimal design for high-dimensional coded matrix multiplication," in Proc. of Adv. in Neural Inf. Proc. Sys. (NIPS), 2017, pp. 4403–4413.
- L. Tang, K. Konstantinidis, and A. Ramamoorthy, "Erasure coding for distributed matrix multiplication for matrices with bounded entries," IEEE Comm. Lett., vol. 23, no. 1, pp. 8–11, 2019.
- K. Lee, C. Suh, and K. Ramchandran, "High-dimensional coded matrix multiplication," in IEEE Int. Symp. Inf. Theory, 2017, pp. 2418–2422.
- K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, "Speeding up distributed machine learning using codes," IEEE Trans. Inf. Theory, vol. 64, no. 3, pp. 1514–1529, 2018.
- S. Dutta, V. Cadambe, and P. Grover, "Short-dot: Computing large linear transforms distributedly using coded short dot products," in Proc. of Adv. in Neural Inf. Proc. Sys. (NIPS), 2016, pp. 2100–2108.

Context (Part 2/2)

- A. Mallick, M. Chaudhari, and G. Joshi, "Rateless codes for near-perfect load balancing in distributed matrix-vector multiplication," preprint, 2018. arXiv: 1804.10331.
- S. Wang, J. Liu, and N. B. Shroff, "Coded sparse matrix multiplication," in Proc. 35th Int. Conf. Mach. Learning, ICML, 2018, pp. 5139–5147.
- S. Kiani, N. Ferdinand, and S. C. Draper, "Exploitation of stragglers in coded computation," in IEEE Int. Symp. Inf. Theory, 2018, pp. 1988–1992.
- A. B. Das, L. Tang, and A. Ramamoorthy, "C³LES: Codes for coded computation that leverage stragglers," in IEEE Inf. Th. Workshop, 2018, pp. 1–5.
- N. Raviv, Y. Cassuto, R. Cohen, and M. Schwartz, "Erasure correction of scalar codes in the presence of stragglers," in IEEE Int. Symp. Inf. Theory, 2018, pp. 1983–1987.
- N. Raviv, Q. Yu, J. Bruck, and S. Avestimehr, "Download and access tradeoffs in Lagrange coded computing," in IEEE Int. Symp. Inf. Theory, 2019.

Overview

Overview

- Motivation
- ullet A communication system with L parallel channels
 - ⇒ Coding for this system using universally decodable matrices
- Embedding into the reals
 - ⇒ Companion matrices

For more details:

- A. Ramamoorthy, L. Tang, and P. O. Vontobel, "Universally decodable matrices for distributed matrix-vector multiplication," Proc. IEEE Int.
 Symp. Inf. Theory, Paris, France, pp. 1777-1781, July 2019.
- arXiv: 1901.10674

Communication system with \boldsymbol{L} parallel channels

E.g.
$$L = 4$$
, $n = 3$.

$$\begin{pmatrix} u_0 & u_1 & u_2 \end{pmatrix} \mapsto \begin{pmatrix} x_{0,0} & x_{0,1} & x_{0,2} \\ x_{1,0} & x_{1,1} & x_{1,2} \\ x_{2,0} & x_{2,1} & x_{2,2} \\ x_{3,0} & x_{3,1} & x_{3,2} \end{pmatrix} \Rightarrow \begin{pmatrix} y_{0,0} & y_{0,1} & y_{0,2} \\ y_{1,0} & y_{1,1} & y_{1,2} \\ y_{2,0} & y_{2,1} & y_{2,2} \\ y_{3,0} & y_{3,1} & y_{3,2} \end{pmatrix} \Rightarrow \begin{pmatrix} \hat{u}_0 & \hat{u}_1 & \hat{u}_2 \end{pmatrix}$$

E.g.
$$L = 4$$
, $n = 3$, $q = 3$.

$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 0 & 2 \end{pmatrix} \Rightarrow \begin{pmatrix} ? & ? & ? \\ \mathbf{2} & ? & ? \\ ? & ? & ? \\ \mathbf{2} & \mathbf{0} & ? \end{pmatrix} \Rightarrow \begin{pmatrix} \hat{u}_0 & \hat{u}_1 & \hat{u}_2 \end{pmatrix}$$

E.g.
$$L = 4$$
, $n = 3$, $q = 3$.

$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 0 & 2 \end{pmatrix} \Rightarrow \begin{pmatrix} ? & ? & ? \\ \mathbf{2} & ? & ? \\ ? & ? & ? \\ \mathbf{2} & \mathbf{0} & ? \end{pmatrix} \Rightarrow \begin{pmatrix} \hat{u}_0 & \hat{u}_1 & \hat{u}_2 \end{pmatrix}$$

The channels are such that if $y_{\ell,t}$ is erased then also $y_{\ell,t'}$ is erased for all t' > t.

E.g.
$$L = 4$$
, $n = 3$, $q = 3$.

$$\begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 0 & 2 \end{pmatrix} \Rightarrow \begin{pmatrix} ? & ? & ? \\ \mathbf{2} & ? & ? \\ ? & ? & ? \\ \mathbf{2} & 0 & ? \end{pmatrix} k_0 = 0$$

$$k_1 = 1 \\ k_2 = 0 \Rightarrow (\hat{u}_0 \quad \hat{u}_1 \quad \hat{u}_2)$$

$$k_3 = 2$$

E.g.
$$L = 4$$
, $n = 3$, $q = 3$.

$$\begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 0 & 2 \end{pmatrix} \Rightarrow \begin{pmatrix} ? & ? & ? \\ \mathbf{2} & ? & ? \\ \mathbf{2} & ? & ? \\ ? & ? & ? \\ \mathbf{2} & \mathbf{0} & ? \end{pmatrix} k_{0} = 0$$

$$k_{1} = 1 \\ k_{2} = 0 \\ k_{2} = 0$$

$$k_{3} = 2$$

We want unique decodability as long as $\sum_{\ell \in [L]} k_{\ell} \geq n$,

E.g.
$$L = 4$$
, $n = 3$, $q = 3$.

$$\begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 0 & 2 \end{pmatrix} \Rightarrow \begin{pmatrix} ? & ? & ? \\ \mathbf{2} & ? & ? \\ \mathbf{2} & ? & ? \\ ? & ? & ? \\ \mathbf{2} & \mathbf{0} & ? \end{pmatrix} k_{0} = 0$$

$$k_{1} = 1$$

$$k_{2} = 0$$

$$k_{2} = 0$$

$$k_{3} = 2$$

We want unique decodability as long as $\sum_{\ell \in [L]} k_{\ell} \geq n$,

here: $k_0 + k_1 + k_2 + k_3 \ge 3$.

For reasons of simplicity, we would like the encoding to be linear:

$$\mathbf{x}_0 = \mathbf{u} \cdot \mathbf{G}_0, \quad \dots, \quad \mathbf{x}_{L-1} = \mathbf{u} \cdot \mathbf{G}_{L-1},$$

where G_0, \ldots, G_{L-1} are $n \times n$ matrices.

For reasons of simplicity, we would like the encoding to be linear:

$$\mathbf{x}_0 = \mathbf{u} \cdot \mathbf{G}_0, \quad \dots, \quad \mathbf{x}_{L-1} = \mathbf{u} \cdot \mathbf{G}_{L-1},$$

where G_0, \ldots, G_{L-1} are $n \times n$ matrices.

Definition: If the above matrices lead to unique decodability for any k_0, \ldots, k_{L-1} with $\sum_{\ell \in [L]} k_\ell \ge n$, then we call these matrices universally decodable matrices (UDMs).

$$\mathbf{G}_0 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \ \mathbf{G}_1 = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$\mathbf{G}_0 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \ \mathbf{G}_1 = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$\mathbf{u} = \begin{pmatrix} u_0 & u_1 & u_2 & u_3 & u_4 \end{pmatrix},$$

$$\mathbf{G}_0 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \ \mathbf{G}_1 = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$\mathbf{u} = \begin{pmatrix} u_0 & u_1 & u_2 & u_3 & u_4 \end{pmatrix}, \quad \mathbf{x}_0 = \begin{pmatrix} u_0 & u_1 & u_2 & u_3 & u_4 \end{pmatrix},$$

$$\mathbf{G}_{0} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \ \mathbf{G}_{1} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$\mathbf{u} = \begin{pmatrix} u_{0} & u_{1} & u_{2} & u_{3} & u_{4} \end{pmatrix}, \ \mathbf{x}_{0} = \begin{pmatrix} u_{0} & u_{1} & u_{2} & u_{3} & u_{4} \end{pmatrix}, \ \mathbf{x}_{1} = \begin{pmatrix} u_{4} & u_{3} & u_{2} & u_{1} & u_{0} \end{pmatrix}.$$

$$\mathbf{G}_0 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \ \mathbf{G}_1 = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$\mathbf{G}_0 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \ \mathbf{G}_1 = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$\mathbf{u} = \begin{pmatrix} u_0 & u_1 & u_2 & u_3 & u_4 \end{pmatrix},$$

E.g. L=2, n=5, any q. The matrices G_0 and G_1 are UDMs:

$$\mathbf{G}_0 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \ \mathbf{G}_1 = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$\mathbf{u} = \begin{pmatrix} u_0 & u_1 & u_2 & u_3 & u_4 \end{pmatrix}, \quad \mathbf{y}_0 = \begin{pmatrix} u_0 & u_1 & u_2 & ? & ? \end{pmatrix},$$

E.g. L=2, n=5, any q. The matrices G_0 and G_1 are UDMs:

$$\mathbf{G}_0 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}, \ \mathbf{G}_1 = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$\mathbf{u} = \begin{pmatrix} u_0 & u_1 & u_2 & u_3 & u_4 \end{pmatrix}, \quad \mathbf{y}_0 = \begin{pmatrix} u_0 & u_1 & u_2 & ? & ? \end{pmatrix}, \quad \mathbf{x}_1 = \begin{pmatrix} u_4 & u_3 & ? & ? & ? \end{pmatrix}.$$

E.g. L=4, n=3, q=3. The matrices G_0 , G_1 , G_2 , G_3 are UDMs:

$$\mathbf{G}_0 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \mathbf{G}_1 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \mathbf{G}_2 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{pmatrix}, \quad \mathbf{G}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$

What does unique decodability imply for the matrices G_0, \ldots, G_{L-1} ?

For any k_0, \ldots, k_{L-1} with $\sum_{\ell \in [L]} k_\ell \ge n$ the matrix **G** must have full rank.

• Another motivation for this channel model: paper by Tavildar and Viswanath, "Approximately universal codes over slow fading channels", IEEE Trans. Inf. Theory, IT—52, no. 7, pp. 3233—3258, July 2006.

- Another motivation for this channel model: paper by Tavildar and Viswanath, "Approximately universal codes over slow fading channels", IEEE Trans. Inf.
 Theory, IT-52, no. 7, pp. 3233-3258, July 2006.
- Consider slow-fading (point-to-point) MIMO channel

$$\mathbf{y}[m] = \mathbf{H} \cdot \mathbf{x}[m] + \mathbf{w}[m].$$

The complex matrix of fading gains \mathbf{H} stays constant over the time-scale of communication; we suppose the exact characterization of \mathbf{H} is known to the receiver while the transmitter has only access to its statistical characterization.

- Another motivation for this channel model: paper by Tavildar and Viswanath, "Approximately universal codes over slow fading channels", IEEE Trans. Inf. Theory, IT-52, no. 7, pp. 3233-3258, July 2006.
- Consider slow-fading (point-to-point) MIMO channel

$$\mathbf{y}[m] = \mathbf{H} \cdot \mathbf{x}[m] + \mathbf{w}[m].$$

The complex matrix of fading gains \mathbf{H} stays constant over the time-scale of communication; we suppose the exact characterization of \mathbf{H} is known to the receiver while the transmitter has only access to its statistical characterization.

The focus in the paper is on the high-SNR regime.

- Another motivation for this channel model: paper by Tavildar and Viswanath, "Approximately universal codes over slow fading channels", IEEE Trans. Inf. Theory, IT-52, no. 7, pp. 3233-3258, July 2006.
- Consider slow-fading (point-to-point) MIMO channel

$$\mathbf{y}[m] = \mathbf{H} \cdot \mathbf{x}[m] + \mathbf{w}[m].$$

The complex matrix of fading gains \mathbf{H} stays constant over the time-scale of communication; we suppose the exact characterization of \mathbf{H} is known to the receiver while the transmitter has only access to its statistical characterization.

- The focus in the paper is on the high-SNR regime.
- Coding for this channel can be seen as space-time coding.

lacktriangle Depending on what h_ℓ is, we can recover more or fewer of the most-significant bits.

- Depending on what h_{ℓ} is, we can recover more or fewer of the most-significant bits.
- Assume L = 2: channel is not in outage if

$$\log (1 + |h_0|^2 SNR) + \log (1 + |h_1|^2 SNR) > 2R.$$

- Depending on what h_{ℓ} is, we can recover more or fewer of the most-significant bits.
- Assume L = 2: channel is not in outage if

$$\log (1 + |h_0|^2 SNR) + \log (1 + |h_1|^2 SNR) > 2R.$$

• Assume that h_0 and h_1 are such that

$$\log (1 + |h_0|^2 SNR) > 2k_0, \quad \log (1 + |h_1|^2 SNR) > 2k_1.$$

for some k_0 and k_1 , i.e. we can recover k_0 bits from the zeroth channel and k_1 bits from the first channel.

- Depending on what h_{ℓ} is, we can recover more or fewer of the most-significant bits.
- Assume L = 2: channel is not in outage if

$$\log (1 + |h_0|^2 SNR) + \log (1 + |h_1|^2 SNR) > 2R.$$

• Assume that h_0 and h_1 are such that

$$\log(1+|h_0|^2 SNR) > 2k_0, \quad \log(1+|h_1|^2 SNR) > 2k_1.$$

for some k_0 and k_1 , i.e. we can recover k_0 bits from the zeroth channel and k_1 bits from the first channel.

• Not being in outage means that $k_0 + k_1 \ge R$.

Coding via Evaluation

Encoding map (evaluation map):

$$(u_0, u_1, u_2) \mapsto (f(\beta_0), f(\beta_1), f(\beta_2), f(\beta_3), f(\beta_4), f(\beta_5), f(\beta_6), f(\beta_7), f(\beta_8)),$$

Encoding map (evaluation map):

$$(u_0, u_1, u_2) \mapsto (f(\beta_0), f(\beta_1), f(\beta_2), f(\beta_3), f(\beta_4), f(\beta_5), f(\beta_6), f(\beta_7), f(\beta_8)),$$

Encoding map (evaluation map):

$$(u_0, u_1, u_2) \mapsto (f(\beta_0), f(\beta_1), f(\beta_2), f(\beta_3), f(\beta_4), f(\beta_5), f(\beta_6), f(\beta_7), f(\beta_8)),$$

Encoding map (evaluation map):

$$(u_0, u_1, u_2) \mapsto (f(\beta_0), f(\beta_1), f(\beta_2), f(\beta_3), f(\beta_4), f(\beta_5), f(\beta_6), f(\beta_7), f(\beta_8)),$$

Encoding map (evaluation map):

$$(u_0, u_1, u_2) \mapsto (f(\beta_0), f(\beta_1), f(\beta_2), f(\beta_3), f(\beta_4), f(\beta_5), f(\beta_6), f(\beta_7), f(\beta_8)),$$

Encoding map (evaluation map):

$$(u_0, u_1, u_2) \mapsto (f(\beta_0), f(\beta_1), f(\beta_2), f(\beta_3), f(\beta_4), f(\beta_5), f(\beta_6), f(\beta_7), f(\beta_8)),$$

Assume that we only receive the function values for $x = \beta_0, \beta_2, \beta_7$.

Assume that we only receive the function values for $x = \beta_0, \beta_2, \beta_7$.

We have to show that the mapping

$$(u_0, u_1, u_2) \mapsto (f(\beta_0), f(\beta_2), f(\beta_7))$$

is injective.

Assume that we only receive the function values for $x = \beta_0, \beta_2, \beta_7$.

We have to show that the mapping

$$(u_0, u_1, u_2) \mapsto (f(\beta_0), f(\beta_2), f(\beta_7))$$

is injective.

 Because the above mapping is linear it is sufficient to show that the kernel is trivial.

Case 2:

 $f(x) \neq 0$ with at least three zeros.

Case 2:

 $f(x) \neq 0$ with at least three zeros.

The fundamental theorem of algebra implies that $deg(f(x)) \ge 3$.

Case 2:

 $f(x) \neq 0$ with at least three zeros.

The fundamental theorem of algebra implies that $deg(f(x)) \ge 3$. However, no quadratic function can have more than two zeros.

Case 1:

$$f(x) = 0,$$

$$\Rightarrow (u_0, u_1, u_2) = (0, 0, 0).$$

Case 2:

 $f(x) \neq 0$ with at least three zeros.

The fundamental theorem of algebra implies that $deg(f(x)) \ge 3$. However, no quadratic function can have more than two zeros.

Encoding map (evaluation map):

$$(u_0, u_1, u_2) \mapsto (f(\beta_0), f(\beta_1), f(\beta_2), f(\beta_3), f(\beta_4), f(\beta_5), f(\beta_6), f(\beta_7), f(\beta_8)),$$

Encoding map (evaluation map):

$$(u_0, u_1, u_2) \mapsto (f(\beta_0), f(\beta_1), f(\beta_2), f(\beta_3), f(\beta_4), f(\beta_5), f(\beta_6), f(\beta_7), f(\beta_8)),$$

where $f(x) = u_0 x^0 + u_1 x^1 + u_2 x^2$.

Note: the codes that result from this evaluation map are the well-known Reed-Solomon codes.

Encoding map (evaluation map):

$$(u_0, u_1, u_2) \mapsto (f(\beta_0), f(\beta_1), f(\beta_2), f(\beta_3), f(\beta_4), f(\beta_5), f(\beta_6), f(\beta_7), f(\beta_8)),$$

Encoding map (evaluation map):

$$(u_0, u_1, u_2) \mapsto (f(\beta_0), f(\beta_1), f(\beta_2), f(\beta_3), f(\beta_4), f(\beta_5), f(\beta_6), f(\beta_7), f(\beta_8)),$$

where $f(x) = u_0 x^0 + u_1 x^1 + u_2 x^2$.

A way to find (u_0, u_1, u_2) is to specify at least three function values.

Coding via Evaluation (Second Setup)

However, there are also other quantities that we can specify so that we can find out (u_0, u_1, u_2) .

Coding via Evaluation (Second Setup)

However, there are also other quantities that we can specify so that we can find out (u_0, u_1, u_2) .

However, there are also other quantities that we can specify so that we can find out (u_0, u_1, u_2) .

For example, knowing

- the function value plus the value of the function derivative for one place and
- the function value at another place,

is sufficient to find (u_0, u_1, u_2) .

However, there are also other quantities that we can specify so that we can find out (u_0, u_1, u_2) .

Consider the following new evaluation map:

$$\begin{pmatrix} u_0 & u_1 & u_2 \end{pmatrix} \mapsto \begin{pmatrix} f(\beta_0) & f'(\beta_0) \\ \vdots & \vdots \\ f(\beta_8) & f'(\beta_8) \end{pmatrix}$$

where $f(x) = u_0 x^0 + u_1 x^1 + u_2 x^2$ and $f'(x) = u_1 x^0 + 2u_2 x^1$.

However, there are also other quantities that we can specify so that we can find out (u_0, u_1, u_2) .

General formula for the evaluation map:

$$\begin{pmatrix} u_0 & \cdots & u_{n-1} \end{pmatrix} \mapsto \begin{pmatrix} f^{(0)}(\beta_0) & f^{(1)}(\beta_0) & \cdots & f^{(n-1)}(\beta_0) \\ \vdots & \vdots & \vdots & \vdots \\ f^{(0)}(\beta_{L-1}) & f^{(1)}(\beta_{L-1}) & \cdots & f^{(n-1)}(\beta_{L-1}) \end{pmatrix}$$

where $f^{(i)}(x) = \sum_{t=0}^{n-1} \frac{t!}{(t-i)!} u_t x^t$ for $0 \le i \le n-1$.

General formula for the evaluation map:

where we used the formal derivatives

$$f^{(i)}(x) = \sum_{t=0}^{n-1} \frac{t!}{(t-i)!} \mathbf{u_t} x^t \quad \text{for } 0 \le i \le n-1.$$

General formula for the evaluation map:

where we used the formal derivatives

$$f^{(i)}(x) = \sum_{t=0}^{n-1} \frac{t!}{(t-i)!} \mathbf{u_t} x^t \quad \text{for } 0 \le i \le n-1.$$

There is a problem if we want to use this approach when we work over finite fields: if p is the characteristic of \mathbb{F}_q then the i-th formal derivative is zero for $i \geq p$ and the corresponding channel symbols do not carry any information.

General formula for the evaluation map:

where we used the formal derivatives

$$f^{(i)}(x) = \sum_{t=0}^{n-1} \frac{t!}{(t-i)!} \mathbf{u_t} x^t \quad \text{for } 0 \le i \le n-1.$$

There is a problem if we want to use this approach when we work over finite fields: if p is the characteristic of \mathbb{F}_q then the i-th formal derivative is zero for $i \geq p$ and the corresponding channel symbols do not carry any information.

However, replacing the formal derivative by the Hasse derivative, this approach works!

General formula for the evaluation map:

$$\begin{pmatrix} u_0 & u_1 & u_2 \end{pmatrix} \mapsto \begin{pmatrix} \tilde{f}^{(0)}(\beta_0) & \tilde{f}^{(1)}(\beta_0) & \cdots & \tilde{f}^{(n-1)}(\beta_0) \\ \vdots & \vdots & \vdots & \vdots \\ \tilde{f}^{(0)}(\beta_{L-1}) & \tilde{f}^{(1)}(\beta_{L-1}) & \cdots & \tilde{f}^{(n-1)}(\beta_{L-1}) \end{pmatrix}$$

where we used the Hasse derivatives

$$\tilde{f}^{(i)}(x) = \sum_{t=0}^{n-1} {t \choose i} \mathbf{u_t} x^t = \sum_{t=0}^{n-1} \frac{t!}{i!(t-i)!} \mathbf{u_t} x^t \quad \text{for } 0 \le i \le n-1.$$

Assume that we only receive

- the function value and the derivative for $x = \beta_2$ and
- the function value for $x = \beta_7$.

Assume that we only receive

- the function value and the derivative for $x = \beta_2$ and
- the function value for $x = \beta_7$.

We have to show that the mapping

$$(u_0, u_1, u_2) \mapsto (\tilde{f}^{(0)}(\beta_2), \tilde{f}^{(1)}(\beta_2), \tilde{f}^{(0)}(\beta_7))$$
 is injective.

Assume that we only receive

- the function value and the derivative for $x = \beta_2$ and
- the function value for $x = \beta_7$.

- We have to show that the mapping $(u_0, u_1, u_2) \mapsto (\tilde{f}^{(0)}(\beta_2), \tilde{f}^{(1)}(\beta_2), \tilde{f}^{(0)}(\beta_7))$ is injective.
- Because the above mapping is linear it is sufficient to show that the kernel is trivial.

Case 2:

 $f(x) \neq 0$ with at least three zeros (counting with multiplicities).

Case 2:

 $f(x) \neq 0$ with at least three zeros (counting with multiplicities).

The fundamental theorem of algebra implies that $deg(f(x)) \ge 3$.

 $f(x) \neq 0$ with at least three zeros (counting with multiplicities).

The fundamental theorem of algebra implies that $deg(f(x)) \ge 3$. However, no quadratic function can have more than two zeros.

Case 1:

$$f(x) = 0,$$

 $\Rightarrow (u_0, u_1, u_2) = (0, 0, 0).$

Case 2:

 $f(x) \neq 0$ with at least three zeros (counting with multiplicities).

The fundamental theorem of algebra implies that $deg(f(x)) \ge 3$. However, no quadratic function can have more than two zeros.

Note that this second interpolation setup is not simply a special case of the first interpolation setup:

Knowing three points where a parabola goes through is sufficient to find out the parameters of the parabola.

Knowing e.g. the derivatives at three points of a parabola is not sufficient to find out the parameters of the parabola.

Proposition

• Let n be some positive integer, let q be some prime power.

Proposition

- Let n be some positive integer, let q be some prime power.
- Let α be a primitive element in \mathbb{F}_q . (I.e. α is an (q-1)-th primitive root of unity.)

Proposition

- Let n be some positive integer, let q be some prime power.
- Let α be a primitive element in \mathbb{F}_q . (I.e. α is an (q-1)-th primitive root of unity.)
- If $L \le q+1$ then the following L matrices over \mathbb{F}_q of size $n \times n$ are (L,n,q)-UDMs:

$$\mathbf{G}_0 \triangleq \mathbf{I}_n$$
, $\mathbf{G}_1 \triangleq \mathbf{J}_n$, \mathbf{G}_2 , ..., \mathbf{G}_{L-1} ,

where

- J_n is an $n \times n$ matrix with ones in the anti-diagonal and zeros otherwise;
- $[\mathbf{G}_{\ell+2}]_{t,i} \triangleq {t \choose i} \alpha^{\ell(t-i)}, \ (\ell,t,i) \in [L-2] \times [n] \times [n].$

E.g. L = 4, n = 3, q = 3.

$$\mathbf{G}_0 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \mathbf{G}_1 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$

$$\mathbf{G_2} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 1 \end{pmatrix}, \quad \mathbf{G_3} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$

E.g. L = 4, n = 3, q = 3.

$$\mathbf{G_0} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \mathbf{G_1} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$

$$\mathbf{G_2} = \begin{pmatrix} \mathbf{1} & 0 & 0 \\ \mathbf{1} & \mathbf{1} & 0 \\ \mathbf{1} & \mathbf{2} & \mathbf{1} \end{pmatrix}, \quad \mathbf{G_3} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$

Note that $[G_2]_{t,i} \triangleq {t \choose i}$, therefore Pascal's triangle plays an important role when constructing these matrices.

• An explicit construction of UDMs was given in [Vontobel and Ganesan, 2006], [Ganesan and Vontobel, 2007].

- An explicit construction of UDMs was given in [Vontobel and Ganesan, 2006],
 [Ganesan and Vontobel, 2007].
- Earlier on, and in a different context, the resulting codes have also been defined by Rosenbloom and Tsfasman (PPI, 1997).

- An explicit construction of UDMs was given in [Vontobel and Ganesan, 2006], [Ganesan and Vontobel, 2007].
- Earlier on, and in a different context, the resulting codes have also been defined by Rosenbloom and Tsfasman (PPI, 1997).
- In the last ten years, the resulting codes have also appeared under the name "multiplicity codes" in the theoretical computer science literature.

- An explicit construction of UDMs was given in [Vontobel and Ganesan, 2006], [Ganesan and Vontobel, 2007].
- Earlier on, and in a different context, the resulting codes have also been defined by Rosenbloom and Tsfasman (PPI, 1997).
- In the last ten years, the resulting codes have also appeared under the name "multiplicity codes" in the theoretical computer science literature.
- The mathematics that is needed is very similar to the mathematics that is needed when studying so-called repeated-root cyclic codes [Castagnoli et al., 1991].

- An explicit construction of UDMs was given in [Vontobel and Ganesan, 2006], [Ganesan and Vontobel, 2007].
- Earlier on, and in a different context, the resulting codes have also been defined by Rosenbloom and Tsfasman (PPI, 1997).
- In the last ten years, the resulting codes have also appeared under the name "multiplicity codes" in the theoretical computer science literature.
- The mathematics that is needed is very similar to the mathematics that is needed when studying so-called repeated-root cyclic codes [Castagnoli et al., 1991].
- Are there other constructions of UDMs that are not simply reformulations of the above UDMs? Note that one can show that the given construction is in a certain sense a unique extension of Reed-Solomon codes [Vontobel and Ganesan, 2006].

Decoding means that we have to solve the system of linear equations

$$y = \mathbf{u} \cdot \mathbf{G}$$
.

Decoding means that we have to solve the system of linear equations

$$y = u \cdot G$$
.

Using Gaussian elimination, the decoding complexity is $O(n^3)$.

Decoding means that we have to solve the system of linear equations

$$y = u \cdot G$$
.

Using Gaussian elimination, the decoding complexity is $O(n^3)$.

 However, decoding is obviously related to finding an interpolation polynomial: the problem at hand can be solved with a variant of Newton's interpolation algorithm.

Decoding means that we have to solve the system of linear equations

$$y = u \cdot G$$
.

Using Gaussian elimination, the decoding complexity is $O(n^3)$.

• However, decoding is obviously related to finding an interpolation polynomial: the problem at hand can be solved with a variant of Newton's interpolation algorithm. This results in a decoding complexity of $O(n^2)$.

Generalizations (Part 1/2)

Remember the encoding that we are using

$$\mathbf{u} \in \mathbb{F}_q^n \quad \mapsto \quad \mathbf{x}_\ell \in \mathbb{F}_q^n, \ \ell \in [L].$$

Generalizations (Part 1/2)

Remember the encoding that we are using

$$\mathbf{u} \in \mathbb{F}_q^n \quad \mapsto \quad \mathbf{x}_\ell \in \mathbb{F}_q^n, \ \ell \in [L].$$

• Generalization: for any $1 \le n' \le n$ we can also send vectors of length n':

$$\mathbf{u} \in \mathbb{F}_q^n \quad \mapsto \quad \mathbf{x}_\ell \in \mathbb{F}_q^{n'}, \ \ell \in [L].$$

Generalizations (Part 1/2)

Remember the encoding that we are using

$$\mathbf{u} \in \mathbb{F}_q^n \quad \mapsto \quad \mathbf{x}_\ell \in \mathbb{F}_q^n, \ \ell \in [L].$$

• Generalization: for any $1 \le n' \le n$ we can also send vectors of length n':

$$\mathbf{u} \in \mathbb{F}_q^n \quad \mapsto \quad \mathbf{x}_\ell \in \mathbb{F}_q^{n'}, \ \ell \in [L].$$

→ The above construction of UDMs can be extended straightforwardly to this new setup.

Generalizations (Part 2/2)

• Remember that for any k_0, \ldots, k_{L-1} with $\sum_{k \in [L]} k_\ell \ge n$ we required that we can decode uniquely.

Generalizations (Part 2/2)

- Remember that for any k_0, \ldots, k_{L-1} with $\sum_{k \in [L]} k_\ell \ge n$ we required that we can decode uniquely.
- Generalization: for any k_0, \ldots, k_{L-1} with $\sum_{k \in [L]} k_\ell \ge n + g$ we require that we can decode uniquely for some $g \ge 0$.

Generalizations (Part 2/2)

- Remember that for any k_0, \ldots, k_{L-1} with $\sum_{k \in [L]} k_\ell \ge n$ we required that we can decode uniquely.
- Generalization: for any k_0, \ldots, k_{L-1} with $\sum_{k \in [L]} k_\ell \ge n + g$ we require that we can decode uniquely for some $g \ge 0$.

⇒ In the same way as Goppa codes / algebraic-geometry codes are generalizations of Reed-Solomon codes, one can construct UDMs that are generalizations of the above UDMs.

Generalizations (Part 2/2)

- Remember that for any k_0, \ldots, k_{L-1} with $\sum_{k \in [L]} k_\ell \ge n$ we required that we can decode uniquely.
- Generalization: for any k_0, \ldots, k_{L-1} with $\sum_{k \in [L]} k_\ell \ge n + g$ we require that we can decode uniquely for some $g \ge 0$.
- ⇒ In the same way as Goppa codes / algebraic-geometry codes are generalizations of Reed-Solomon codes, one can construct UDMs that are generalizations of the above UDMs.
 - Riemann-Roch theorem gives new proof.

Generalizations (Part 2/2)

- Remember that for any k_0, \ldots, k_{L-1} with $\sum_{k \in [L]} k_\ell \ge n$ we required that we can decode uniquely.
- Generalization: for any k_0, \ldots, k_{L-1} with $\sum_{k \in [L]} k_\ell \ge n + g$ we require that we can decode uniquely for some $g \ge 0$.
- ⇒ In the same way as Goppa codes / algebraic-geometry codes are generalizations of Reed-Solomon codes, one can construct UDMs that are generalizations of the above UDMs.
 - Riemann-Roch theorem gives new proof.
 - Hasse-Weil-Serre bound can be used to give new necessary conditions for L.

Back to the setup of interest

We can split up the task into several submatrix-vector-multiplication tasks:

We can split up the task into several submatrix-vector-multiplication tasks:

We can split up the task into several submatrix-vector-multiplication tasks:

Idea:

Coding scheme should take advantage of the fact that erasures are correlated.

Erasures are correlated because

if a partial result by one of the workers is not available, then **all subsequent results by the same worker** are not available either.

We can split up the task into several submatrix-vector-multiplication tasks:

Idea:

Base coding scheme on so-called universally decodable matrices (UDMs).

We can split up the task into several submatrix-vector-multiplication tasks:

Idea:

- Base coding scheme on so-called universally decodable matrices (UDMs).
- Use companion matrices in order to reduce issues with condition numbers when adapting a coding scheme over some finite field to a coding scheme over the reals.

Embedding into the reals: companion matrices

Companion Matrices

Assume that the field $\langle \mathbb{F}_{p^s}, +, \cdot \rangle$ is constructed based on the primitive polynomial

$$\pi(X) = X^s + \pi_{s-1}X^{s-1} + \dots + \pi_1X + \pi_0 \in \mathbb{F}_p[X].$$

The companion matrix associated with $\pi(X)$ is defined to be the following matrix of size $s \times s$ over \mathbb{F}_p :

$$\mathbf{C} \triangleq \begin{pmatrix}
0 & 0 & \cdots & 0 & -\pi_0 \\
1 & 0 & \cdots & 0 & -\pi_1 \\
0 & 1 & \cdots & 0 & -\pi_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -\pi_{s-1}
\end{pmatrix}.$$

This matrix yields the following field isomorphism:

$$\langle \mathbb{F}_{p^s}, +, \cdot \rangle \cong \langle \{\mathbf{0}, \mathbf{C}, \mathbf{C}^2, \mathbf{C}^3, \dots, \mathbf{C}^{p^s-1}\}, +, \cdot \rangle.$$

Companion Matrices

Lemma: let M be a square matrix with entries in \mathbb{Z} .

If M satisfies

$$\det(\mathbf{M}) \neq 0 \pmod{p}$$
,

then also

$$\det(\mathbf{M}) \neq 0 \quad (\operatorname{in} \mathbb{Z}),$$

and with that

$$\det(\mathbf{M}) \neq 0 \quad (in \mathbb{R}).$$

Companion Matrices

Lemma: let M be a square matrix with entries in \mathbb{Z} .

If M satisfies

$$\det(\mathbf{M}) \neq 0 \pmod{p}$$
,

then also

$$\det(\mathbf{M}) \neq 0 \quad \text{(in } \mathbb{Z}),$$

and with that

$$\det(\mathbf{M}) \neq 0 \quad (in \mathbb{R}).$$

The above observations can be used to embed matrices over \mathbb{F}_{p^s} into \mathbb{R} , and then give guarantees on them.

Performance comparison

Performance Comparison (Part 1/2)

Setup: N = 6, γ = 3/4, and $Q_{\rm b}$ = 4.

Performance Comparison (Part 2/2)

Setup: N = 15, γ = 1/2, and $Q_{\rm b}$ = 4.

References

References

A. Ramamoorthy, L. Tang, and P. O. Vontobel, "Universally decodable matrices for distributed matrix-vector multiplication," Proc. IEEE Int. Symp. Inf. Theory, Paris, France, pp. 1777-1781, July 2019. arXiv:1901.10674.

- M. Y. Rosenbloom and M. A. Tsfasman, "Codes for the m-metric," Probl. Inf.
 Transm., vol. 33, no. 1, pp. 45–52, 1997.
- Tavildar and Viswanath, "Approximately universal codes over slow fading channels," IEEE Trans. Inf. Theory, IT—52, no. 7, pp. 3233—3258, July 2006.
- P. O. Vontobel and A. Ganesan, "On universally decodable matrices for space-time coding", Designs, Codes, and Cryptography, Nov. 2006.
- A. Ganesan and P. O. Vontobel, "On the existence of universally decodable matrices," IEEE Trans. on Inf. Theory, vol. 53, no. 7, pp. 2572–2575, 2007.

