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What is the problem?

The random variable X is binomial if

Pr (X = j) =
(

n
j

)
pj (1− p)n−j .

Often n or p are not known.
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The binomial distribution and its cousins

Hypergeometric distribution.
Bernoulli sum.
Poisson distribution.
Negative binomial distribtuion.
Gaussian distribution.
Multinomial distribution.
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Maximum entropy

Let Bn (λ) denote the set of distributions of sums
Sn = X1 + X2 + · · ·+ Xn with mean λ where Xi is a Bernoulli
random variable with Pr (Xi = 1) = pi .

Lemma (Shepp and Olkin 1978, E. Hillion and O. Johnson 2015)
The map (p1, p2, . . . , pn)→ H (Sn) is concave.

Theorem (PH 2001)
The H (P) entropy restricted to P ∈ Bn (λ) has maximum when
pi = λ/n, i.e. when P is bin (n, λ/n) .
Let B∞ (λ) = cl (

⋃
Bn (λ)) .

Corollary (PH 2001)
The entropy restricted to B∞ (λ) has maximum at Po (λ) . Further
H (bin (n, λ/n))→ H (Po (λ)) for n→∞.
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Universal coding interpretation

Assume that we are going to code a data point in N that are
generated by some P ∈ Bn (λ), but the exact distribution P is
unknown. The code κ : N→ A∗ is characterized by a the code
length function j → |κ (j)| satisfying Kraft’s inequality∑

j a|κ(j)| ≤ 1 where a = |A| . The goal is to minimize the
maximum mean code length.

min
κ

max
P

EP (|κ (j)|) .

The solution is |κ (n)| = − log (bin (n, p, j)) , i.e. use the code that
is optimal if we knew P = bin (n, λ/n) .
Similarly, assume that we are going to code a data point in N that
are generated by some P ∈ Bn (λ), but both P and n are unknown.
The it is optimal to code as if P = Po (λ).
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Relation to the Poisson channel

The goal for Alice is to maximize I (X ,Z ) over X ∈ B∞ (λ) .
The goal for the devil is to minimize I (X ,Z ) over
Y ∈ B∞ (µ) .

I (X ,Z ) = H (X + Y )− H (X + Y | X )
= H (X + Y )− H (Y | X )
= H (X + Y )− H (Y ) .

For any Y it is optimal for Alice to choose X ∼ Po (λ) . If
X ∼ Po (λ) then it is optimal for the devil to choose Z ∼ Po (µ)
[PH and C. Vignat, 2003].
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Entropy power inequality

Theorem ([PH and C. Vignat 2004])
Assume that X ∼ bin (m, 1/2) and Y ∼ bin (n, 1/2). Then

e2H(X) + e2H(Y ) ≤ e2H(X+Y ).

For X ∼ bin (m, p) and Y ∼ bin (n, q) the inequality does not hold
for small values of m, n /
but it holds for sufficiently large values of m, n [N. Sharma, S. Das,
S. Muthukrishnan, 2010].
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From entropy to divergence

Bernoulli sum and hypergeometric distributions
For P ∈ Bn (λ) we have

H (P) + D (P‖bin (n, λ/n)) ≤ H (bin (n, λ/n))

so if H (Pk)→ Hmax (Bn (λ)) for k →∞ then
D (Pn‖bin (n, λ/n))→ 0 for k →∞.
Law of small numbers
Since bin (n, λ/n) ∈ B∞ (λ) we have

H (bin (n, λ/n)) + D (bin (n, λ/n) ‖Po (λ)) ≤ H (Po (λ))

so
H (bin (n, λ/n)) = Hmax (Bn (λ))→ Hmax (B∞ (λ))

for k →∞ then D (bin (n, λ/n) ‖Po (λ))→ 0 for k →∞.
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Upper bounds on total variation

[Babour and Hall, 1984] has

1
16 min

{
p, np2

}
≤ V (bin (n, p) ,Po (λ))

≤ 2min
{

p, np2
}

A factor of 32 in difference between upper and lower bound /
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Bounds on divergence

We have D (P‖Q) =
∑

f
(

pi
qi

)
· qi where f (x) = x ln (x) . For

x − 1 ≤ f (x) ≤ x − 1 + (x − 1)2 .

Some better bound

x − 1 + 1
2 (x − 1)2 − 1

6 (x − 1)3 ≤ f (x)

≤ x − 1 + 1
2 (x − 1)2 − 1

6 (x − 1)3 + 1
3 (x − 1)4 .

D (P‖Q) ≤ χ2 (P,Q) ,

D (P‖Q) ≈ 1
2χ

2 (P,Q) .
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Orthogonal polynomials

Assume that f0, f1, f2, . . . are orthogonal normalized polynomials
with respect to Q. Then

dP
dQ (x) =

∞∑
i=0

fi (x) ·
〈

fi |
dP
dQ

〉
,〈

fi |
dP
dQ

〉
=
∫

fi (x) dP
dQ (x) dQx

= EP [fi (X )] .

Therefore
χ2 (P,Q) =

∞∑
i=1

(EP [fi (X )])2 .
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Upper bounds on divergence

We have

D (bin (n, p) ‖Po (λ)) =
n∑

j=0
ln
(bin (n, p, j)

Po (λ, j)

)
· bin (n, p, j)

=
n∑

j=0
ln

(nj )pj (1− p)n−j

λj
j! e−λ

 · bin (n, p, j)

=
n∑

j=0

(
λ+ (n − j) ln (1− p) + ln

(
nj

nj

))
· bin (n, p, j)

= λ+(n − λ) ln (1− p)+
n∑

j=0

ln

j−1∏
i=0

(
1− i

n

)·bin (n, p, j) .
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Stirling numbers

Expand

ln

j−1∏
i=0

(
1− i

n

) =
j∑

i=0
ln
(
1− i

n

)

= −
j∑

i=0

∞∑
k=1

1
k ·
( j

n

)k
.

Introduce Stirling numbers

j` =
∑̀
m=1

j`
{

`
m

}
,

j[m] =
∑̀
m=0

j`
[
`
m

]
.

Truncations of these identities leads to inequalities.
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Upper bounds

Theorem (PH and P. Ruzankin 2005)
For all

D (bin (n, p) ‖Po (λ)) ≤ − ln (1− p) + p
2

+ p2

12n (1− p) + p2 (2 + 11p + 11p2)
12n2 (1− p)5 .

Observe that lim sup n2 · D (bin (n, p) ‖Po (λ)) ≤ λ2/4.
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Lower bound

Theorem
If λ = np then

D (bin (n, p) ‖Po (λ)) ≥ p2

4 .

Key observation: Assume that Sn ∼ bin (n, p) and Y ∼ Po (λ)
where λ = np. Then

E [Sn] = E [Y ]

and

Var (Sn) = np (1− p)
< np
= Var (Y ) .
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Improved rate of convergence

Theorem
Let Poβ (λ) denote the information projection of Po (λ) on the set
of distributions with the same 1st and 2nd moment as bin (n, λ/n) .
Then

n2 · D (bin (n, λ/n) ‖Poβ (λ))→ 0

for n→∞.

Proof.
We have

D (bin (n, p) ‖Po (λ)) = D (bin (n, p) ‖Poβ (λ)) + D (Poβ (λ) ‖Po (λ))

≥ D (bin (n, p) ‖Poβ (λ)) + p2

4

Multiply both sides by n2.
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Poisson Charlier polynomials

The orthogonal polynomials with respect to Po (λ) are

Cλ
k (x) = (λk!)−1/2

k∑
`=0

(
k
`

)
(−λ)k−` x `

If E [X ] = λ then

E
[
Cλ

2 (X )
]

= Var (X )− λ
21/2λ

Conjecture For any random variable with E
[
Cλ

k (X )
]
≤ 0 we have

D (X‖Po (λ)) ≥ 1
2
(
E
[
Cλ

k (X )
])2

The conjecture has been proved for k = 1, 2 and for any value of k
when E

[
Cλ

k (X )
]
is small [PH, Johnson and Kontoyiannis 2015].
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Hypergeometric distributions and Bernoulli sums
A hypergeometric distribution is given by

Pr (X = j) =
(K

j
)(N−K

n−j
)(N

n
)

Then there exist p1, p2, . . . , pn such that

Pr (X = j) = Pr (Sn = j)

where Sn =
∑n

i=1 Xi is a Bernoulli sum and Pr (Xi = 1) = pi . The
mean is E [Sn] =

∑
pi . Then bin (n, p̄) has the same means as Sn

if p̄ =
∑

pi
n . The variance is

Var (Sn) =
∑

pi (1− pi )
≤ np̄ (1− p̄)
= Var (bin (n, p̄))
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Kravchuk polynomials
The Kravchuk polynomials K̃ (n, x) are orthogonal with respect to
bin (n, p) . are

Cλ
k (x) = (λk!)−1/2

k∑
`=0

(
k
`

)
(−λ)k−` x `

If E [X ] = λ then

E
[
Cλ

2 (X )
]

= Var (X )− λ
21/2λ

Conjecture For any random variable with E
[
K̃k (X )

]
≤ 0 we have

D (X‖bin (n, p)) ≥ 1
2
(
E
[
K̃k (X )

])2

The conjecture has been proved for k = 1, 2 and for any value of k
when E

[
Cλ

k (X )
]
is small [PH and F. Matúš, 2019].
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Lower bound for hypergeometric distributions

The hypergeometric
distribution satisfies

D
(

hyp (N,K , n) ‖bin
(

n, K
N

))
≥ n (n − 1)

4 (N − 1)2 .

This result confirms the
rule of thump:
Assume independence
when sample size is less
than 5 % of population
size.
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Upper bound for hypergeometric distributions

Stam 1978 proved

D
(

hyp (N,K , n) ‖bin
(

n, K
N

))
≤ n (n − 1)

2 (N − 1) (N − n + 1) .

By taking higher order terms into account we get

D
(

hyp (N,K , n) ‖bin
(

n, K
N

))
≤

N ln N−1/2
N−n−3/2 − n + N

N−n−1
N − 1 .
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Weak approximations

Let N
(
µ, σ2) denote a Gaussian with mean µ and standard

deviation σ. Then

D
(
N
(
λ, σ2

)
‖N

(
µ, σ2

))
= (λ− µ)2

2σ2 .

For the binomial distributions we have

D (bin (n, p) ‖bin (n, q)) = n
(

p ln p
q + (1− p) ln 1− p

1− q

)
.
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Signed log-likelihood

Let
(
Pλ
)
denote elements of an exponential family in its mean

value parametrization. Define

G (x) =
{

+ (2D (Px‖Pµ))1/2 , for λ ≥ µ ;
− (2D (Px‖Pµ))1/2 , for λ < µ .

If Pλ = N
(
λ, σ2) then G (x) = x−µ

σ .
For any exponential family G (x) = x−µ

σ is the first part of the
Taylor expansion of G around x = µ.
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QQ-plot for binomial
Assume that X ∼ bin (n, p) . For each q ∈ (0, 1) plot the
q-quantile of a standard Gaussian against the q-quantile of G (X ) .

Pr (X < j) ≤ Pr (Z ≤ G (j)) ≤ Pr (X ≤ j) .

[Serov and Zubkov, 2013]
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Where do they intersect?

The intersection point is approximately given by the following
result. If X ∼ bin (n, p) then if nq is an integer we have

Pr (X ≤ nq) = Φ (G (j + cq)) ·
(
1 + O

(1
n

))
where

cq = 1
2 +

ln
(

2D(q‖p)
(q−p)2 p (1− p)

)
2 ln

(
q(1−p)
p(1−q)

) .

[PH, L. Györfi and G. Tusnády, 2012]
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QQ-plot for Poisson

Assume that X ∼ Po (λ) . For each q ∈ (0, 1) plot the q-quantile
of a standard Gaussian against the q-quantile of G (X ) .

[PH and Tusnády, 2011]
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QQ-plot for negative binomial

Assume that X ∼ negbin (k, p) . For each q ∈ (0, 1) plot the
q-quantile of a standard Gaussian against the q-quantile of G (X ) .
[PH 2016]
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Proof structure

1 Prove majorization for Gamma distributions.
2 Prove intersection for negative binomial and Gamma

distributions.
3 Combine to get upper bound for binomial.
4 Use upper bound on the binomial variable n − X to get a

lower bound for X .
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Application

Information divergence is more χ2-distributed than the χ2-statistic.
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Conclusion

If you expand too little you will get punished by a factor of 2.
Lower bounds can be found using othogonal polynomials.
Saddlepolint approximations can often be replaced by
powerful inequalities.
Use information divergence rather than total variation or
χ2-divergence.

Work in progress:
Simplify upper bounds.
Bounds on moment generating functions.
Generalizations to multivariate disributions.
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