Moments of scores

Sergey Bobkov
University of Minnesota

Workshop on Probability and Information Theory The University of Hong Kong, 19-22 August 2019

Definitions

X random variable with a (locally) abs. continuous density f. Definition. The score of X is the random variable

$$
\rho(X)=\frac{f^{\prime}(X)}{f(X)}
$$

Well defined: $\mathbb{P}\{f(X)>0\}=1$.
Examples:
$X \sim \operatorname{Exp}(1), \quad f(x)=\frac{1}{2} e^{-|x|}, \quad \rho(X)=\operatorname{sign}(X) \sim \operatorname{Bern}(1 / 2)$,
$X \sim N(0,1), \quad f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad \rho(X)=-X \sim N(0,1)$.
Absolute moments:

$$
I_{k}(X)=\mathbb{E}|\rho(X)|^{k}, \quad k=1,2, \ldots
$$

First absolute moment $=$ total variation norm

$$
I_{1}(X)=\|f\|_{\mathrm{TV}}=\int_{-\infty}^{\infty}\left|f^{\prime}(x)\right| \mathrm{d} x
$$

Note: $I_{1}(X)<\infty \Rightarrow \mathbb{E} \rho(X)=0$.
The case $I_{1}(X)=\|f\|_{\mathrm{TV}}$ involves more distributions (including uniform on intervals).

Second moment

Second moment $=$ Fisher information contained in the distribution of X

$$
I(X)=I_{2}(X)=\int_{-\infty}^{\infty} \frac{f^{\prime}(x)^{2}}{f(x)} \mathrm{d} x
$$

Cramér-Rao inequality:

$$
I(X) \operatorname{Var}(X) \geq 1
$$

with equality iff X is normal.

De Bruijn's identity: If $\mathbb{E} X^{2}<\infty$, then for all $t>0$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} h(X+\sqrt{t} Z)=\frac{1}{2} I(X+\sqrt{t} Z)
$$

where

$$
h(X)=-\int_{-\infty}^{\infty} f(x) \log f(x) \mathrm{d} x
$$

Shannon's entropy, and $Z \sim N(0,1)$ independent of X.

Shifts (translates) of product measures

$\left(X_{n}\right)_{n \geq 1}$ iid copies of X with distribution μ on \mathbb{R}.
Product measures:

$$
\mu^{\infty}=\mu \otimes \mu \otimes \ldots, \quad \mu_{h}^{\infty}=\mu_{h_{1}} \otimes \mu_{h_{2}} \otimes \ldots
$$

for $h=\left(h_{n}\right)_{n \geq 1}, \quad \mu_{h_{n}}=$ distribution of $X_{n}+h_{n}$.
Question: When are the sample paths of $\left(X_{n}\right)$ and $\left(X_{n}+h_{n}\right)$ distinguishable with errors $h=\left(h_{n}\right)$ of centering X_{n} from ℓ^{2} ?

Kakutani's dichotomy: Any two product measures are either equivalent or singular (orthogonal).
Feldman-Shepp's theorem: $\mu^{\infty} \sim \mu_{h}^{\infty}$ on \mathbb{R}^{∞} for any h with

$$
\|h\|_{2}^{2}=\sum_{n} h_{n}^{2}<\infty
$$

if and only if X has an a.e. positive absolutely continuous density with $I(X)<\infty$.

Quantification (B'99): Put $\sigma^{2}=I(X)$. If $\sigma\|h\|_{2}<\pi$, then

$$
\left\|\mu_{h}^{\infty}-\mu^{\infty}\right\|_{\mathrm{TV}} \leq 2 \sin \left(\frac{\sigma\|h\|_{2}}{2}\right)
$$

Logarithmic Sobolev inequality

If $\mathbb{E} X^{2}=1, Z \sim N(0,1)$, then

$$
h(X) \leq h(Z), \quad I(X) \geq I(Z)
$$

Informational divergence (Kullback-Leibler distance):

$$
D(X \| Z)=h(Z)-h(X)=\int f(x) \log \frac{f(x)}{\varphi(x)} \mathrm{d} x .
$$

Fisher information distance:

$$
I(X \| Z)=I(X)-I(Z)=\int \frac{(f(x)-\varphi(x))^{2}}{\varphi(x)} \mathrm{d} x .
$$

Log-Sobolev inequality (Stam '59, Gross '75):

$$
D(X \| Z) \leq \frac{1}{2} I(X \| Z)
$$

Equivalently in terms of $u=f / \varphi$,

$$
\int u \log u \mathrm{~d} \gamma \leq \frac{1}{2} \int \frac{u^{\prime 2}}{u} \mathrm{~d} \gamma
$$

with respect to the standard Gaussian measure γ.

Higher order moments of scores

Higher order moments:

$$
I_{k}(f)=I_{k}(X)=\mathbb{E}|\rho(X)|^{k}=\int_{-\infty}^{\infty} \frac{\left|f^{\prime}(x)\right|^{k}}{f(x)^{k-1}} \mathrm{~d} x .
$$

- General case $k>1$ (Lions and Toscani '95): Convergence of densities and their powers in CLT in Sobolev spaces.
- Case $k=4$ (Gabetta '93): Convergence to equilibrium in Kac's model (in the context of the kinetic theory of gases).
- Exponential and Gaussian moments of $\rho(X)$ (B '99): To control translates of product probability measures.

Problems

- How to determine that $I_{k}(X)<\infty$?
- Behaviour of moments along convolutions, i.e. for

$$
X=S_{n}=X_{1}+\cdots+X_{n}
$$

with independent summands.

General properties

- Translation invariance and homogeneity:

$$
I_{k}(a+b X)=\frac{1}{|b|^{k}} I_{k}(X), \quad a \in \mathbb{R}, b \neq 0
$$

- Monotonicity with respect to order:

$$
k \leq l \Rightarrow\left(I_{k}(X)\right)^{1 / k} \leq\left(I_{l}(X)\right)^{1 / l}
$$

- Convexity: If $f=\int f_{t} \mathrm{~d} \pi(t)$, then

$$
I_{k}(f) \leq \int I\left(f_{t}\right) \mathrm{d} \pi(t)
$$

- Monotonicity with respect to convolutions:

$$
I_{k}(X+Y) \leq \min \left\{I_{k}(X), I_{k}(Y)\right\}
$$

- Therefore, for $S_{n}=X_{1}+\cdots+X_{n}$ with independent X_{i}, the sequence

$$
n \rightarrow I_{k}\left(S_{n}\right)
$$

is decreasing.

Moments of weighted sums

Lions and Toscani '95: If $S_{n}=X_{1}+\cdots+X_{n}$ with iid X_{i}, then

$$
I_{2 m}\left(S_{n} / \sqrt{n}\right) \leq c_{m} I_{2 m}\left(X_{1}\right), \quad m=1,2, \ldots
$$

Generalization: weighted sums

$$
Z_{n}=\alpha_{1} X_{1}+\cdots+\alpha_{n} X_{n} \quad\left(\alpha_{1}^{2}+\cdots+\alpha_{n}^{2}=1\right) .
$$

Theorem 1. If $I_{2 m}\left(X_{i}\right) \leq I$ for all $i \leq n$, then

$$
I_{2 m}\left(Z_{n}\right) \leq c_{m} I, \quad c_{m}=(2 m)!(e / m)^{m} .
$$

Example: $X_{i} \sim f(x)=\frac{1}{2} e^{-|x|}$, then

$$
\left|\rho\left(X_{i}\right)\right|=1 \quad \text { and } \quad I_{2 m}\left(X_{i}\right)=1 .
$$

For $\alpha_{i}=\frac{1}{\sqrt{n}}$, we have $Z_{n} \Rightarrow Z \sim N(0,1)$ as $n \rightarrow \infty$ and

$$
I_{2 m}\left(Z_{n}\right) \rightarrow I_{2 m}(Z)=\mathbb{E}|Z|^{2 m}=\frac{(2 m)!}{2^{m} m!} .
$$

Hence, $c_{m} \geq(2 m)!/\left(2^{m} m!\right)$

Gaussian moments

Theorem 2. If for some $\sigma>0$

$$
\mathbb{E} \exp \left\{\rho\left(X_{i}\right)^{2} / \sigma^{2}\right\} \leq 2
$$

then

$$
\mathbb{E} \exp \left\{\rho\left(Z_{n}\right)^{2} / K \sigma^{2}\right\} \leq 2
$$

with $K=6$.

Note (well known): If $\mathbb{E} X_{i}=0$ and

$$
\mathbb{E} \exp \left\{X_{i}^{2} / \sigma^{2}\right\} \leq 2
$$

then similarly

$$
\mathbb{E} \exp \left\{Z_{n}^{2} / K \sigma^{2}\right\} \leq 2
$$

Finiteness of moments of scores

Let

$$
S_{n}=X_{1}+\cdots+X_{n}
$$

with independent X_{i}.
Question: Is it true that $I_{k}\left(S_{n}\right)<\infty$ for some $n=n_{0}$ assuming only that $I_{1}\left(X_{i}\right)<\infty$?

Case $k=2$ (B-Chistyakov-Götze '14): $n_{0}=3$.
Application: CLT in Fisher information distance.
Open: Higher dimensions.

Theorem 3. For $k \geq 2$, it is enough to take $n_{0}=k+1$. Moreover, putting $b_{i}=I_{1}\left(X_{i}\right)$, we have

$$
I_{k}\left(S_{k+1}\right) \leq c_{k} b_{1} \ldots b_{k+1}\left(\frac{1}{b_{1}}+\cdots+\frac{1}{b_{k+1}}\right)
$$

with $c_{k}=k^{k} /\left(2^{k} k!\right)$

Characterization in the iid case

Let $\left(X_{n}\right)_{n \geq 1}$ be i.i.d. random variables with $\mathbb{E}\left|X_{1}\right|<\infty$ and characteristic function

$$
v(t)=\mathbb{E} e^{i t X_{1}}, \quad t \in \mathbb{R} .
$$

Fix $k \geq 1$.
Theorem 4. The following properties are equivalent:
a) There exists n such that $I_{k}\left(S_{n}\right)<\infty$;
b) There exists n such that S_{n} has a density with bounded total variation;
c) For some $\varepsilon>0$, we have $v(t)=o\left(t^{-\varepsilon}\right)$ as $t \rightarrow \infty$.

If X_{1} has density with bounded total variation, then

$$
\sup _{n \geq k+1} I_{k}\left(S_{n} / \sqrt{n}\right) \leq A_{k}\left(I_{1}\left(X_{1}\right)\right)^{k}
$$

Reduction to uniform distributions

For $X \sim f$, write $I_{k}(f)=I_{k}(X)$.
Triangle inequality: If $f=\int q \mathrm{~d} \pi(q)$, then

$$
I_{1}(f) \leq \int I_{1}(q) \mathrm{d} \pi(q)
$$

Let U be the collection of uniform densities $q(x)=\frac{1}{b-a} 1_{a<x<b}$.

Lemma 1 (B-C-G). Any probability density f of bounded total variation can be represented as a convex mixture $f=\int_{U} q \mathrm{~d} \pi(q)$ with a mixing probability measure π on U such that

$$
I_{1}(f)=\int_{U} I_{1}(q) \mathrm{d} \pi(q) .
$$

Example: If f is supported and non-increasing on $(0, \infty)$, there is a canonical representation

$$
f(x)=\int_{0}^{\infty} \frac{1}{x_{1}} 1_{\left\{0<x<x_{1}\right\}} \mathrm{d} \pi\left(x_{1}\right) \quad \text { a.e. }
$$

with a unique mixing measure π. In this case, $I_{1}(f)=2 f(0+)$.

The case of uniform distributions

Lemma 2. For the sum $X=X_{1}+\cdots+X_{k+1}$ with $X_{i} \sim U\left(0, l_{i}\right)$,

$$
I_{k}(X) \leq \frac{k^{k}}{k!} \frac{l_{1}+\cdots+l_{k+1}}{l_{1} \ldots l_{k+1}} .
$$

Put

$$
l=l_{1}+\cdots+l_{k+1}, \quad v=l_{1} \ldots l_{k+1}=|Q|
$$

where Q is the box in \mathbb{R}^{k+1} with sides $\left[0, l_{i}\right]$. Distribution of X is supported on $(0, l)$ and is symmetric about $l / 2$, with density

$$
f(x)=\frac{1}{v}\left|\left\{\left(x_{1}, \ldots,, x_{k+1}\right) \in Q: x_{1}+\cdots+x_{k+1}=x\right\}\right|
$$

For small $x>0$,

$$
f(x)=\frac{1}{v k!} x^{k}
$$

Brunn-Minkowski inequality: For all Borel measurable sets A, B lying in parallel hyperplanes of \mathbb{R}^{k+1} and any $0<t<1$,

$$
|t A+(1-t) B|^{1 / k} \geq t|A|^{1 / k}+(1-t)|B|^{1 / k}
$$

Hence, the function $f(x)^{1 / k}$ is concave on $(0, l)$.

Proof of Lemma 2

$\left(f^{1 / k}\right)^{\prime}$ is decreasing, and by the symmetry of f around $l / 2$,

$$
\begin{aligned}
\left|\frac{d}{d x} f(x)^{1 / k}\right| & \leq \lim _{x \rightarrow 0}\left|\frac{d}{d x} f(x)^{1 / k}\right| \\
& =\frac{d}{d x}\left(\frac{1}{v k!} x^{k}\right)^{1 / k}=\left(\frac{1}{v k!}\right)^{1 / k} .
\end{aligned}
$$

This gives

$$
\begin{aligned}
I_{k}(X) & =\int_{0}^{l}\left|\frac{f^{\prime}(x)}{f(x)}\right|^{k} f(x) \mathrm{d} x \\
& =k^{k} \int_{0}^{l}\left|\frac{d}{d x} f(x)^{1 / k}\right|^{k} \mathrm{~d} x \leq \frac{k^{k}}{k!} \frac{l}{v} .
\end{aligned}
$$

Proof of Theorem 3

X_{i} independent and have densities f_{i} with finite total variation norms $b_{i}=I_{1}\left(X_{i}\right), 1 \leq i \leq k+1$. By Lemma 1 ,

$$
f_{i}(x)=\int_{U} q(x) \mathrm{d} \pi_{i}(q)
$$

with some mixing probability measures π_{i} on the set U of densities for uniform distributions (on all intervals) and satisfying

$$
b_{i}=\int_{U} I_{1}\left(q_{i}\right) \mathrm{d} \pi_{i}\left(q_{i}\right) .
$$

Hence $S_{k+1}=X_{1}+\cdots+X_{k+1}$ has density

$$
\begin{aligned}
f & =f_{1} * \cdots * f_{k+1} \\
& =\int_{U} \cdots \int_{U} q_{1} * \cdots * q_{k+1} \mathrm{~d} \pi_{1}\left(q_{1}\right) \ldots \mathrm{d} \pi_{k+1}\left(q_{k+1}\right) .
\end{aligned}
$$

By Jensen's inequality,

$$
I_{k}(f) \leq \int_{U} \ldots \int_{U} I_{k}\left(q_{1} * \cdots * q_{k+1}\right) \mathrm{d} \pi_{1}\left(q_{1}\right) \ldots \mathrm{d} \pi_{k+1}\left(q_{k+1}\right) .
$$

For the uniform distribution with density $q=\frac{1}{b-a} 1_{(a, b)}$, we have

$$
I_{1}(q)=\frac{2}{b-a}
$$

Equivalently, every q in U is supported on an interval of length $l=2 / I_{1}(q)$. Hence, by Lemma 2, putting $l_{i}=2 / I_{1}\left(q_{i}\right)$,

$$
\begin{aligned}
& I_{k}\left(q_{1} * \cdots * q_{k+1}\right) \leq \frac{k^{k}}{k!} \frac{l_{1}+\cdots+l_{k+1}}{l_{1} \ldots l_{k+1}} \\
& \quad=c_{k} \sum_{i=1}^{k+1} I_{1}\left(q_{1}\right) \ldots I_{1}\left(q_{i-1}\right) I_{1}\left(q_{i+1}\right) \ldots I_{1}\left(q_{k+1}\right)
\end{aligned}
$$

where

$$
c_{k}=k^{k} /\left(2^{k} k!\right)
$$

It remains to integrate this inequality over $\pi_{1} \otimes \cdots \otimes \pi_{k+1}$ and use $b_{i}=\int I_{1}\left(q_{i}\right) \mathrm{d} \pi_{i}\left(q_{i}\right)$ to get

$$
I_{k}(f) \leq c_{k} \sum_{i=1}^{k+1} b_{1} \ldots b_{i-1} b_{i+1} \ldots b_{k+1}
$$

Stam's inequality

Theorem (Stam '59). If X_{1} and X_{2} are independent, then

$$
\frac{1}{I\left(X_{1}+X_{2}\right)} \geq \frac{1}{I\left(X_{1}\right)}+\frac{1}{I\left(X_{2}\right)}
$$

Linearized form: For all $a_{1}, a_{2}>0, a_{1}+a_{2}=1$,

$$
I\left(X_{1}+X_{2}\right) \leq a_{1}^{2} I\left(X_{1}\right)+a_{2}^{2} I\left(X_{2}\right)
$$

Weighted sums: For all $\alpha_{1}, \alpha_{2}>0$ such that $\alpha_{1}^{2}+\alpha_{2}^{2}=1$,

$$
I\left(\alpha_{1} X_{1}+\alpha_{2} X_{2}\right) \leq \alpha_{1}^{2} I\left(X_{1}\right)+\alpha_{2}^{2} I\left(X_{2}\right)
$$

Theorem (Lions-Toscani '95). Given $m \geq 1$,

$$
\begin{aligned}
I_{2 m}\left(\alpha_{1} X_{1}+\alpha_{2} X_{2}\right) \leq \sum\binom{2 m}{k} & \alpha_{1}^{k} \alpha_{2}^{2 m-k} \\
& \times I_{k}\left(X_{1}\right) I_{2 m-k}\left(X_{2}\right)
\end{aligned}
$$

with summation over all $k \neq 1,0 \leq k \leq 2 m$.

Multinomial extension for weighted sums

For independent X_{i} with finite $I_{2 m}\left(X_{i}\right)=\mathbb{E} \rho\left(X_{i}\right)^{2 m}$, consider the weighted sums

$$
Z_{n}=\alpha_{1} X_{1}+\cdots+\alpha_{n} X_{n} \quad\left(\alpha_{1}^{2}+\cdots+\alpha_{n}^{2}=1\right)
$$

with $\alpha_{i}>0$. Put $I_{0}\left(X_{i}\right)=1$.
Lemma 3. For any integer $m \geq 1$,

$$
\begin{aligned}
I_{2 m}\left(Z_{n}\right) \leq \sum\binom{2 m}{k_{1} \ldots k_{n}} & \alpha_{1}^{k_{1}} \ldots \alpha_{n}^{k_{n}} \\
& \times I_{k_{1}}\left(X_{1}\right) \ldots I_{k_{n}}\left(X_{n}\right) .
\end{aligned}
$$

The summation is performed over all non-negative $k_{i} \neq 1$ such that $k_{1}+\cdots+k_{n}=2 m$.

Proof of Lemma 3

Let $n=2$. If X_{i} has densities f_{i}, the density f of $X_{1}+X_{2}$ is given by

$$
f(x)=\int_{-\infty}^{\infty} f_{1}(x-y) f_{2}(y) \mathrm{d} y=\int_{-\infty}^{\infty} f_{2}(x-y) f_{1}(y) \mathrm{d} y
$$

It has derivative

$$
f^{\prime}(x)=\int_{-\infty}^{\infty} f_{1}^{\prime}(x-y) f_{2}(y) \mathrm{d} y=\int_{-\infty}^{\infty} f_{2}^{\prime}(x-y) f_{1}(y) \mathrm{d} y
$$

That is, for any $a_{1}, a_{2}>0, a_{1}+a_{2}=1$,

$$
f^{\prime}(x)=\int_{-\infty}^{\infty}\left(a_{1} f_{1}^{\prime}(x-y) f_{2}(y) \mathrm{d} y+a_{2} f_{1}(x-y) f_{2}^{\prime}(y)\right) \mathrm{d} y
$$

Hence

$$
\frac{f^{\prime}(x)}{f(x)}=\int_{-\infty}^{\infty}\left(a_{1} \frac{f_{1}^{\prime}(x-y)}{f_{1}(x-y)}+a_{2} \frac{f_{2}^{\prime}(y)}{f_{2}(y)}\right) \mathrm{d} \mu_{x}(y)
$$

with

$$
\mathrm{d} \mu_{x}(y) / \mathrm{d} y=f_{1}(x-y) f_{2}(y) / f(x)
$$

By Jensen's inequality,

$$
\left(\frac{f^{\prime}(x)}{f(x)}\right)^{2 m} \leq \int_{-\infty}^{\infty}\left(a_{1} \frac{f_{1}^{\prime}(x-y)}{f_{1}(x-y)}+a_{2} \frac{f_{2}^{\prime}(y)}{f_{2}(y)}\right)^{2 m} \mathrm{~d} \mu_{x}(y)
$$

One may now expand the integrand according to the binomial formula, multiply both sides by $f(x)$ and integrate over the variable x. We then arrive at

$$
I_{2 m}\left(X_{1}+X_{2}\right) \leq \sum\binom{2 m}{k_{1} k_{2}} a_{1}^{k_{1}} a_{2}^{k_{2}} I_{k_{1}}\left(X_{1}\right) I_{k_{2}}\left(X_{n}\right)
$$

without terms corresponding to $k_{1}=1$ and $k_{2}=1$. Next, write down this bound for $\alpha_{i} X_{i}$ with $a_{i}=\alpha_{i}^{2}$.

Proof of Theorem 2

Theorem 2. Let $\rho_{i}=\left|\rho\left(X_{i}\right)\right|$. If $\left\|\rho_{i}\right\|_{\psi_{2}} \leq 1$, that is, $\mathbb{E} e^{\rho_{i}^{2}} \leq 2$, then the weighted sums

$$
Z_{n}=\alpha_{1} X_{1}+\cdots+\alpha_{n} X_{n}, \quad \alpha_{1}^{2}+\cdots+\alpha_{n}^{2}=1
$$

satisfy

$$
\left\|\rho\left(Z_{n}\right)\right\|_{\psi_{2}} \leq K
$$

Proof. Assume that $\alpha_{i} \geq 0$. By Lemma 3,

$$
\frac{\mathbb{E} \rho\left(Z_{n}\right)^{2 m}}{(2 m)!} \leq \sum \frac{1}{k_{1}!\ldots k_{n}!} \alpha_{1}^{k_{1}} \ldots \alpha_{n}^{k_{n}} \mathbb{E}\left|\rho_{1}\right|^{k_{1}} \ldots \mathbb{E}\left|\rho_{n}\right|^{k_{n}}
$$

where the summation is performed over all non-negative $k_{i} \neq 1$ such that $k_{1}+\cdots+k_{n}=2 m$. Expanding the cosh-function in a power series, for any $t \geq 0$,

$$
\mathbb{E} \cosh \left(t \rho\left(Z_{n}\right)\right) \leq \prod_{i=1}^{n} \mathbb{E}\left(e^{t \alpha_{i} \rho_{i}}-t \alpha_{i} \rho_{i}\right)
$$

The non-negative convex function

$$
\psi_{i}(t)=\mathbb{E}\left(e^{t \rho_{i}}-t \rho_{i}\right)
$$

satisfies $\psi_{i}(0)=1, \psi_{i}^{\prime}(0)=0$. Using

$$
x^{2} e^{x^{2} / 2} \leq e^{x^{2}}-1
$$

we get

$$
\begin{aligned}
\psi_{i}^{\prime \prime}(t) & =\mathbb{E} \rho_{i}^{2} e^{t \rho_{i}} \\
& \leq \mathbb{E} \rho_{i}^{2} e^{\left(t^{2}+\rho_{i}^{2}\right) / 2} \\
& \leq e^{t^{2} / 2}\left(\mathbb{E} e^{\rho_{i}^{2}}-1\right) \leq e^{t^{2} / 2}
\end{aligned}
$$

SO

$$
\psi_{i}(t) \leq 1+t^{2} e^{t^{2} / 2} \leq e^{t^{2}}
$$

This gives

$$
\mathbb{E} \cosh \left(t \rho\left(Z_{n}\right)\right) \leq \prod_{i=1}^{n} \psi_{i}\left(\alpha_{i} t\right) \leq \prod_{i=1}^{n} e^{\alpha_{i}^{2} t^{2}}=e^{t^{2}}
$$

for any $t \in \mathbb{R}$. If $\eta \sim N(0,1)$,

$$
\begin{aligned}
\mathbb{E} \exp \left\{t^{2} \rho\left(Z_{n}\right)^{2} / 2\right\} & =\mathbb{E} \cosh \left(t \rho\left(Z_{n}\right) \eta\right) \\
& \leq \mathbb{E} \exp \left\{t^{2} \eta^{2}\right\}=\frac{1}{\sqrt{1-2 t^{2}}}
\end{aligned}
$$

The choice $t^{2}=3 / 8$ yields the result with $K=16 / 3$.

Proof of Theorem 1

Theorem 1. If $I_{2 m}\left(X_{i}\right) \leq I$ for all $i \leq n$, then

$$
I_{2 m}\left(Z_{n}\right) \leq c_{m} I, \quad c_{m}=(2 m)!(e / m)^{m} .
$$

Proof. Again, according to Lemma 3,

$$
\mathbb{E} \rho\left(Z_{n}\right)^{2 m} \leq \sum \frac{(2 m)!}{k_{1}!\ldots k_{n}!} \alpha_{1}^{k_{1}} \ldots \alpha_{n}^{k_{n}} I_{k_{1}}\left(X_{1}\right) \ldots I_{k_{n}}\left(X_{n}\right)
$$

Since

$$
\left(I_{k_{i}}\left(X_{i}\right)\right)^{1 / k_{i}} \leq\left(I_{2 m}\left(X_{i}\right)\right)^{1 /(2 m)} \leq I^{1 /(2 m)},
$$

we get

$$
I_{2 m}\left(Z_{n}\right) \leq K_{m} I
$$

with

$$
K_{m}=\sum \frac{(2 m)!}{k_{1}!\ldots k_{n}!} \alpha_{1}^{k_{1}} \ldots \alpha_{n}^{k_{n}}
$$

where summation is as before. Put $K_{0}=1$ and introduce the generating function associated to the sequence $\left(K_{m}\right)_{m \geq 0}$,

$$
\psi(z)=\sum_{m=0}^{\infty} \frac{K_{m}}{(2 m)!} z^{2 m}, \quad z \in \mathbb{C}
$$

so that $K_{m}=\psi^{(2 m)}(0)$. It follows that

$$
\psi(z)=\prod_{i=1}^{n} \sum_{k_{j} \geq 0, k_{j} \neq 1} \frac{1}{k_{i}!}\left(\alpha_{i} z\right)^{k_{i}}=\prod_{i=1}^{n}\left(e^{\alpha_{i} z}-\alpha_{i} z\right)
$$

Since $\left|e^{w}-w\right| \leq e^{|w|}-|w| \leq e^{|w|^{2}}$ for any complex w, we get

$$
|\psi(z)| \leq \prod_{i=1}^{n} e^{\alpha_{i}^{2}|z|^{2}}=e^{|z|^{2}}
$$

We now use contour integration and Cauchy's formula

$$
K_{m}=\frac{(2 m)!}{2 \pi i} \int_{|z|=R} \frac{\psi(z)}{z^{2 m+1}} d z \quad(R>0)
$$

which together with the above upper bound yields

$$
K_{m} \leq \frac{(2 m)!}{R^{2 m}} e^{R^{2}}
$$

It remains to choose an optimal value $R=\sqrt{m}$, which leads to

$$
I_{2 m}\left(Z_{n}\right) \leq \frac{(2 m)!e^{m}}{m^{m}} I
$$

