Moments of scores

Sergey Bobkov

University of Minnesota

Workshop on Probability and Information Theory
The University of Hong Kong, 19-22 August 2019




Definitions

X random variable with a (locally) abs. continuous density f.
Definition. The score of X is the random variable

)
7X)

Well defined: P{f(X) > 0} =

Examples:

X ~Exp(l), f(x)=2e " p(X)=sign(X) ~ Bern(1/2),
X ~ N(0,1), f(z)=—-=e"7 pX)=-X~ N(0,1).

Absolute moments:

LX) =Elpx)f,  k=12...

First absolute moment = total variation norm

LX) = | fllry = / ) da

Note: [1(X) < oo = Ep(X)=0.

The case I1(X) = || f||7v involves more distributions (including
uniform on intervals).



Second moment

Second moment = Fisher information contained in the distribu-
tion of X

f]:@?)2 s

100 - x) = [ 28

Cramér-Rao inequality:
I(X)Var(X) > 1

with equality iff X is normal.

De Bruijn’s identity: If EX? < 0o, then for all t > 0

d 1
- (X + VtZ) = S I(X + Vt2Z),
where

hex) = - [ " f()log £(a) da

Shannon's entropy, and Z ~ N(0, 1) independent of X.



Shifts (translates) of product measures

(X, )n>1 iid copies of X with distribution 1 on R.
Product measures:

P =R QU@ .yl = iy @ iy @

for h = (hy)n>1, pn, = distribution of X, + h,,.

Question: When are the sample paths of (X,,) and (X, + h,)
distinguishable with errors i = (h,,) of centering X, from ¢* ?

Kakutani's dichotomy: Any two product measures are either
equivalent or singular (orthogonal).

Feldman-Shepp’s theorem: ;1> ~ 17° on R* for any h with
|hll3 =) ki < oo

if and only if X has an a.e. positive absolutely continuous density
with 7(X) < oo.

Quantification (B'99): Put o* = I(X). If o||h||2 < 7, then

h
1 — i ®|lry < 2 sin (@)



Logarithmic Sobolev inequality

If EX? =1, Z ~ N(0,1), then
h(X) < h(Z), I(X)>1(2).

Informational divergence (Kullback-Leibler distance):

D(X||Z) = h(Z) — h(X) = / F(x) log
Fisher information distance:

I(X]|2) = I(X) — [(Z) = /

flz)
() o

(f(z) —p(x))?
() !

X.

Log-Sobolev inequality (Stam '59, Gross '75):

D(X||2) < 3 1(X]2).

Equivalently in terms of u = f /¢,

1 12
/ulogudfy < = / u—dfy
2 U

with respect to the standard Gaussian measure 7.



Higher order moments of scores

Higher order moments:

L = 0X) =Elp0)f = [0k 4

e General case k > 1 (Lions and Toscani '95):
Convergence of densities and their powers in CLT in Sobolev
spaces.

o Case k = 4 (Gabetta '93): Convergence to equilibrium in
Kac's model (in the context of the kinetic theory of gases).

e Exponential and Gaussian moments of p(X) (B'99):
To control translates of product probability measures.

Problems
e How to determine that [;,(X) < 0o ?
e Behaviour of moments along convolutions, i.e. for

X=8,=X++X,

with independent summands.



General properties

e Translation invariance and homogeneity:

1
]k<a—|—bX>:W]k<X>, acR, b+#0.

e Monotonicity with respect to order:

E<l = (L(X)YF < (nx)H

e Convexity: If f = [ fidm(¢), then

I(f) < / I(f) dn(t).

e Monotonicity with respect to convolutions:

e Therefore, for S,, = X; + - - -+ X,, with independent X, the
sequence

n — Ik(Sn>

is decreasing.



Moments of weighted sums

Lions and Toscani '95: If S,, = X;+---+ X, with iid X, then
]2m<Sn/\/ﬁ> S Cm]2m<X1), m = 1,2,...

Generalization: weighted sums
Ly =0a1X1+ -+ a,X, (oz%+---+ozi:1).
Theorem 1. If Iy, (X;) < I forall i <mn, then

Ln(Z,) < cpl, cm = (2m)! (e/m)™.

Example: X; ~ f(x) =1e 7l then

p(X)| =1 and Ip,(X;) = 1.
For o; :%, we have Z,, = Z ~ N(0,1) as n — oo and

(2m)!
2mm!

Ln(Z,) = Ln(Z) = E|Z]"" =

Hence, ¢, > (2m)!/(2"m!)



Gaussian moments

Theorem 2. If for some o > 0

E exp{p(X;)*/0°} < 2,
then

E oxp {p(Z,)°/Ko?} <2

with K = 0.

Note (well known): If EX; = 0 and

E exp{X}/o’} <2,

then similarly

E exp {Z;/Ko*} < 2.



Finiteness of moments of scores

Let

with independent X;.

Question: Is it true that I;(.S,,) < oo for some n = ngy assuming
only that I1(X;) < 0o ?

Case k = 2 (B-Chistyakov-Gotze '14): ny = 3.

Application: CLT in Fisher information distance.
Open: Higher dimensions.

Theorem 3. For k > 2, it is enough to take ng = k + 1.
Moreover, putting b; = I;(X;), we have

1 1
I(Sk1) < exbioo by (5o )
by bk+1

with ¢;, = kF /(2Fk!)
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Characterization in the iid case

Let (X,,),>1 be i.i.d. random variables with E | X;| < oo and
characteristic function

v(t) = E e, t e R.
Fix £k > 1.

Theorem 4. The following properties are equivalent:

a) There exists n such that I;.(S,) < oo;

b) There exists n such that S, has a density with bounded
total variation;

c¢) For some € > 0, we have v(t) = o(t™°) as t — o0.

If X7 has density with bounded total variation, then

sup Li(Sn/v/n) < Ap (L(X1))".

n>k+1
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Reduction to uniform distributions

For X ~ f, write I}.(f) = I(X).

Triangle inequality: If f = [ ¢dn(q), then
h(H) < [ hia)in(o).

Let U be the collection of uniform densities q(x) = ﬁ Lycreb

Lemma 1 (B-C-G). Any probability density f of bounded total
variation can be represented as a convex mixture f = fU qdm(q)
with a mixing probability measure m on U such that

I(f) = /UMQ) dr(q).

Example: If f is supported and non-increasing on (0, c0), there
is a canonical representation

1
f(x) :/ — Lf0<qezy dm(z1) a.c.
0

X1

with a unique mixing measure 7. In this case, I1(f) = 2f(0+).
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The case of uniform distributions

Lemma 2. Forthe sum X = X +---+X} 1 with X; ~ U(0, [;),

Y I+ + D
I(X) < .
HX) < 3 T

Put
=101+ -+ g1, ’Uzll---llﬁ—l:‘Q‘a

where () is the box in R**! with sides [0, [;]. Distribution of X
is supported on (0,1) and is symmetric about [/2, with density

1
f(@:;‘{(%,---nxkﬂ) EQZSU1+'“+$I~@+1:$H-
For small x > 0,
L

Brunn-Minkowski inequality: For all Borel measurable sets A, B
lying in parallel hyperplanes of R**! and any 0 < ¢ < 1,

tA+ (1 —t)B|V* > ¢ |AY* + (1 —t) | B|V*.

Hence, the function f(z)"/* is concave on (0,1).
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Proof of Lemma 2

(fY/*)is decreasing, and by the symmetry of f around /2,

1/k < | 1/k|
|dx ‘ - ilg(l) dx
d 1\ Vk 1\ 1/k
G - )"
dx \vk! vk!
This gives
[ /
f(:v)’k
LX) = ) dx

[ k
d k KRl
— kF ‘— 1/‘“‘ dr < — 2,
/O dwf(ﬂf) T < o
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Proof of Theorem 3

X, independent and have densities f; with finite total variation
norms b; = [1(X;), 1 <i < k-+1. By Lemma 1,

fi(z) = /U a(z) dri(q)

with some mixing probability measures ; on the set U of den-
sities for uniform distributions (on all intervals) and satisfying

bz’:/U]1<Qi)d7Tz’<Qi)-

Hence Sii1 = X1+ -+ 4+ X1 has density

= Ji*x o x [
/ /Ch* SO () | dWl(Q1>.--d7Tk+1(C]k+1>°

By Jensen’s inequality,

/ / Tu(qu s - % qest) dm(qy) .. dmpss(gees).
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For the uniform distribution with density ¢ = ﬁ L(4p), we have

2
[1(q) — b . a'

Equivalently, every ¢ in U is supported on an interval of length
| =2/I1(q). Hence, by Lemma 2, putting [; = 2/11(¢;),

L P
Telqu s * qr1) < — = =
k' ll...lk_|_1

k+1
= Cp Z [1((]1) ce [1(q2-_1)f1(qz-+1) R II(Qk+1)7
1=1

where

cr = k¥ /(2%k))

It remains to integrate this inequality over m; ® - - - ® ;41 and
use b; = [ I1(g;) dm;(g:) to get

L(f) < e ) bio.bisibipr. b
1=1

16



Stam'’s inequality

Theorem (Stam '59). If X and X, are independent, then

1 1 1

I(X1 + X5) - 1(X) i 1(Xs)

Linearized form: For all aj, a9 > 0, a; + a2 = 1,

[(X,+Xo) < afI(X)) +a5I(Xy).

Weighted sums: For all aq, as > 0 such that oz% + oz% = 1,

](Oéle + OéQXQ) S OJ% ]<X1> + Oé% [(XQ)

Theorem (Lions-Toscani '95). Given m > 1,

2m —
Iom(a1 Xy + anXs) < Z( o )o/foa% '
X Ii(X1) Lom—i(X2).

with summation over all £ £ 1, 0 < k < 2m.
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Multinomial extension for weighted sums

For independent X; with finite I5,,(X;) = E p(X;)*", consider
the weighted sums

Zn:ale—i_"'—'_Oéan <@1+"'+a721:1>

with «; > 0. Put [()(Xz) = 1.

Lemma 3. For any integer m > 1,

2
L (Z,) < g (klmkn) a]fl...osz”

The summation is performed over all non-negative k; # 1 such
that k1 +--- + k, = 2m.
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Proof of Lemma 3

Let n = 2. If X, has densities f;, the density f of X; + X5 is
given by

fa = [ " file - y)foly) dy = / " hle - ) Ay dy.

It has derivative

Fa) = [ " Pl — ) faly) dy = / " e — Ay dy.

That is, for any ay,as > 0, a; + as =1,

fl(z) = /: (alfl’(:lf —y) foly) dy + azfr(z — y)fé(w) dy.

filx) [~ . filr —y) . fo(y)
flx) /—oo( iz —y) i 2f2(y)> At (0]

with

dpe(y)/dy = filx —y) foly)/ f(2).
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By Jensen's inequality,

flanz _ (2 fila—y) . A"
(f<a:>) S/ ( i ?§>+“2f2<3>) A=),

One may now expand the integrand according to the binomial
formula, multiply both sides by f(z) and integrate over the
variable . We then arrive at

IZm(Xl + X2 < Z (kl kz) CL116L22 [/ﬂ(Xl)[kz(X )

without terms corresponding to k; = 1 and ky = 1.

Next, write down this bound for a; .X; with a; = 0412.
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Proof of Theorem 2

Theorem 2. Let p; = |p(X;)|. If |pilly, < 1, that s, Eeli <2,
then the weighted sums

Zn:CYle—i—"'—l—Oéan, Oé%—l—’”—l—Of :1,

satisfy
1o(Zn)lg, < K.

Proof. Assume that a; > 0. By Lemma 3,

2m
. < g kll...kn!%”'a" E|p1]" ... E|py]

where the summation is performed over all non-negative k; # 1
such that k1 + - - - + £, = 2m. Expanding the cosh-function in
a power series, for any t > 0,

E cosh(tp(Z,)) < HE (e"P — tayp;).
i=1
The non-negative convex function

i(t) = E (e —tp;)
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satisfies 1;(0) = 1, ¢/(0) = 0. Using

2 2
22t 2 < e

we get
Yi(t) = Epj e
< B e+
< (E efi — 1) < el'/2
) 2
it) < 1+t%e? <o
This gives
E cosh(tp(Z,)) < H%‘(Oéit) < it = el
i=1 i=1

forany t € R. If n ~ N(0, 1),

E exp{t°p(Z,)?/2} = E cosh(tp(Z,)n)

1
< E exp{t*n’} =

V1-22
The choice t* = 3/8 yields the result with K = 16/3.

22



Proof of Theorem 1

Theorem 1. If I5,(X;) < I forall i <mn, then

Ln(Z,) < epld, cm = (2m)! (e/m)™.

Proof. Again, according to Lemma 3,

2m)!
Ep(Z,)" < Y kl(' )k ot Iy (X)L T, (X))
Since
(T (X)) M < (L (X)) P < ),
we get
with

Km_zkll...kn!al O

where summation is as before. Put Ky = 1 and introduce the
generating function associated to the sequence (K, ).>0,

Plz) =)

m=0

K,
Z2m. z € C,
(2m)!

23



so that K, = ¥™(0). It follows that
= H Z k—i!(oziz)k@ = H(e - 2).
i=1 k>0, kj#1 i=1

olwl?

Since e — w| < el — |Jw| < for any complex w, we get

| < H 2| ‘2 Z|2
We now use contour integration and Cauchy's formula

om)l [ ()
K, = : dz R >0),
/M (R > 0)

271 z2m+l1

which together with the above upper bound yields

(2m)! RQ.

K e

m — R2m

It remains to choose an optimal value R = 1/m, which leads to

2m)! e™
m)e[.

mm
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