
Moments of scores

Sergey Bobkov

University of Minnesota

Workshop on Probability and Information Theory

The University of Hong Kong, 19-22 August 2019



Definitions

X random variable with a (locally) abs. continuous density f .
Definition. The score of X is the random variable

ρ(X) =
f ′(X)

f (X)
.

Well defined: P{f (X) > 0} = 1.

Examples:

X ∼ Exp(1), f (x) = 1
2 e
−|x|, ρ(X) = sign(X) ∼ Bern(1/2),

X ∼ N(0, 1), f (x) = 1√
2π
e−x

2/2, ρ(X) = −X ∼ N(0, 1).

Absolute moments:

Ik(X) = E |ρ(X)|k, k = 1, 2, . . .

First absolute moment = total variation norm

I1(X) = ‖f‖TV =

∫ ∞
−∞
|f ′(x)| dx.

Note: I1(X) <∞ ⇒ Eρ(X) = 0.

The case I1(X) = ‖f‖TV involves more distributions (including
uniform on intervals).
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Second moment

Second moment = Fisher information contained in the distribu-
tion of X

I(X) = I2(X) =

∫ ∞
−∞

f ′(x)2

f (x)
dx.

Cramér-Rao inequality:

I(X) Var(X) ≥ 1

with equality iff X is normal.

De Bruijn’s identity: If EX2 <∞, then for all t > 0

d

dt
h(X +

√
t Z) =

1

2
I(X +

√
t Z),

where

h(X) = −
∫ ∞
−∞

f (x) log f (x) dx

Shannon’s entropy, and Z ∼ N(0, 1) independent of X .
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Shifts (translates) of product measures

(Xn)n≥1 iid copies of X with distribution µ on R.
Product measures:

µ∞ = µ⊗ µ⊗ . . . , µ∞h = µh1 ⊗ µh2 ⊗ . . .

for h = (hn)n≥1, µhn = distribution of Xn + hn.

Question: When are the sample paths of (Xn) and (Xn + hn)
distinguishable with errors h = (hn) of centering Xn from `2 ?

Kakutani’s dichotomy: Any two product measures are either
equivalent or singular (orthogonal).

Feldman-Shepp’s theorem: µ∞ ∼ µ∞h on R∞ for any h with

‖h‖22 =
∑
n

h2n <∞

if and only if X has an a.e. positive absolutely continuous density
with I(X) <∞.

Quantification (B ’99): Put σ2 = I(X). If σ‖h‖2 < π, then

‖µ∞h − µ∞‖TV ≤ 2 sin
(σ‖h‖2

2

)
.
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Logarithmic Sobolev inequality

If EX2 = 1, Z ∼ N(0, 1), then

h(X) ≤ h(Z), I(X) ≥ I(Z).

Informational divergence (Kullback-Leibler distance):

D(X||Z) = h(Z)− h(X) =

∫
f (x) log

f (x)

ϕ(x)
dx.

Fisher information distance:

I(X||Z) = I(X)− I(Z) =
∫

(f (x)− ϕ(x))2

ϕ(x)
dx.

Log-Sobolev inequality (Stam ’59, Gross ’75):

D(X||Z) ≤ 1

2
I(X||Z).

Equivalently in terms of u = f/ϕ,∫
u log u dγ ≤ 1

2

∫
u′2

u
dγ

with respect to the standard Gaussian measure γ.
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Higher order moments of scores

Higher order moments:

Ik(f ) = Ik(X) = E |ρ(X)|k =
∫ ∞
−∞

|f ′(x)|k

f (x)k−1
dx.

• General case k > 1 (Lions and Toscani ’95):
Convergence of densities and their powers in CLT in Sobolev
spaces.

• Case k = 4 (Gabetta ’93): Convergence to equilibrium in
Kac’s model (in the context of the kinetic theory of gases).

• Exponential and Gaussian moments of ρ(X) (B ’99):
To control translates of product probability measures.

Problems
• How to determine that Ik(X) <∞ ?
• Behaviour of moments along convolutions, i.e. for

X = Sn = X1 + · · · +Xn

with independent summands.
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General properties

• Translation invariance and homogeneity:

Ik(a + bX) =
1

|b|k
Ik(X), a ∈ R, b 6= 0.

• Monotonicity with respect to order:

k ≤ l ⇒ (Ik(X))1/k ≤ (Il(X))1/l.

• Convexity: If f =
∫
ft dπ(t), then

Ik(f ) ≤
∫
I(ft) dπ(t).

• Monotonicity with respect to convolutions:

Ik(X + Y ) ≤ min{Ik(X), Ik(Y )}.

• Therefore, for Sn = X1+ · · ·+Xn with independent Xi, the
sequence

n→ Ik(Sn)

is decreasing.
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Moments of weighted sums

Lions and Toscani ’95: If Sn = X1+ · · ·+Xn with iid Xi, then

I2m(Sn/
√
n) ≤ cm I2m(X1), m = 1, 2, . . .

Generalization: weighted sums

Zn = α1X1 + · · · + αnXn (α2
1 + · · · + α2

n = 1).

Theorem 1. If I2m(Xi) ≤ I for all i ≤ n, then

I2m(Zn) ≤ cmI, cm = (2m)! (e/m)m.

Example: Xi ∼ f (x) = 1
2 e
−|x|, then

|ρ(Xi)| = 1 and I2m(Xi) = 1.

For αi =
1√
n

, we have Zn ⇒ Z ∼ N(0, 1) as n→∞ and

I2m(Zn) → I2m(Z) = E |Z|2m =
(2m)!

2mm!
.

Hence, cm ≥ (2m)!/(2mm!)
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Gaussian moments

Theorem 2. If for some σ > 0

E exp{ρ(Xi)
2/σ2} ≤ 2,

then

E exp
{
ρ(Zn)

2/Kσ2
}
≤ 2

with K = 6.

Note (well known): If EXi = 0 and

E exp{X2
i /σ

2} ≤ 2,

then similarly

E exp
{
Z2
n/Kσ

2
}
≤ 2.
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Finiteness of moments of scores

Let
Sn = X1 + · · · +Xn

with independent Xi.

Question: Is it true that Ik(Sn) <∞ for some n = n0 assuming
only that I1(Xi) <∞ ?

Case k = 2 (B-Chistyakov-Götze ’14): n0 = 3.

Application: CLT in Fisher information distance.
Open: Higher dimensions.

Theorem 3. For k ≥ 2, it is enough to take n0 = k + 1.
Moreover, putting bi = I1(Xi), we have

Ik(Sk+1) ≤ ck b1 . . . bk+1

( 1
b1

+ · · · + 1

bk+1

)
with ck = kk/(2kk!)

10



Characterization in the iid case

Let (Xn)n≥1 be i.i.d. random variables with E |X1| < ∞ and
characteristic function

v(t) = E eitX1, t ∈ R.

Fix k ≥ 1.

Theorem 4. The following properties are equivalent:

a) There exists n such that Ik(Sn) <∞;
b) There exists n such that Sn has a density with bounded

total variation;
c) For some ε > 0, we have v(t) = o(t−ε) as t→∞.

If X1 has density with bounded total variation, then

sup
n≥k+1

Ik(Sn/
√
n) ≤ Ak (I1(X1))

k.
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Reduction to uniform distributions

For X ∼ f , write Ik(f ) = Ik(X).

Triangle inequality: If f =
∫
q dπ(q), then

I1(f ) ≤
∫
I1(q) dπ(q).

Let U be the collection of uniform densities q(x) = 1
b−a 1a<x<b.

Lemma 1 (B-C-G). Any probability density f of bounded total
variation can be represented as a convex mixture f =

∫
U q dπ(q)

with a mixing probability measure π on U such that

I1(f ) =

∫
U

I1(q) dπ(q).

Example: If f is supported and non-increasing on (0,∞), there
is a canonical representation

f (x) =

∫ ∞
0

1

x1
1{0<x<x1} dπ(x1) a.e.

with a unique mixing measure π. In this case, I1(f ) = 2f (0+).
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The case of uniform distributions

Lemma 2. For the sumX = X1+· · ·+Xk+1 withXi ∼ U(0, li),

Ik(X) ≤ kk

k!

l1 + · · · + lk+1

l1 . . . lk+1
.

Put
l = l1 + · · · + lk+1, v = l1 . . . lk+1 = |Q|,

where Q is the box in Rk+1 with sides [0, li]. Distribution of X
is supported on (0, l) and is symmetric about l/2, with density

f (x) =
1

v

∣∣{(x1, . . . , , xk+1) ∈ Q : x1 + · · · + xk+1 = x}
∣∣.

For small x > 0,

f (x) =
1

vk!
xk.

Brunn-Minkowski inequality: For all Borel measurable sets A,B
lying in parallel hyperplanes of Rk+1 and any 0 < t < 1,

|tA + (1− t)B|1/k ≥ t |A|1/k + (1− t) |B|1/k.

Hence, the function f (x)1/k is concave on (0, l).
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Proof of Lemma 2

(f 1/k)′ is decreasing, and by the symmetry of f around l/2,

∣∣∣ d
dx

f (x)1/k
∣∣∣ ≤ lim

x→0

∣∣∣ d
dx

f (x)1/k
∣∣∣

=
d

dx

( 1

vk!
xk
)1/k

=
( 1

vk!

)1/k
.

This gives

Ik(X) =

∫ l

0

∣∣∣f ′(x)
f (x)

∣∣∣k f (x) dx
= kk

∫ l

0

∣∣∣ d
dx

f (x)1/k
∣∣∣k dx ≤ kk

k!

l

v
.
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Proof of Theorem 3

Xi independent and have densities fi with finite total variation
norms bi = I1(Xi), 1 ≤ i ≤ k + 1. By Lemma 1,

fi(x) =

∫
U

q(x) dπi(q)

with some mixing probability measures πi on the set U of den-
sities for uniform distributions (on all intervals) and satisfying

bi =

∫
U

I1(qi) dπi(qi).

Hence Sk+1 = X1 + · · · +Xk+1 has density

f = f1 ∗ · · · ∗ fk+1

=

∫
U

. . .

∫
U

q1 ∗ · · · ∗ qk+1 dπ1(q1) . . . dπk+1(qk+1).

By Jensen’s inequality,

Ik(f ) ≤
∫
U

. . .

∫
U

Ik(q1 ∗ · · · ∗ qk+1) dπ1(q1) . . . dπk+1(qk+1).
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For the uniform distribution with density q = 1
b−a 1(a,b), we have

I1(q) =
2

b− a
.

Equivalently, every q in U is supported on an interval of length
l = 2/I1(q). Hence, by Lemma 2, putting li = 2/I1(qi),

Ik(q1 ∗ · · · ∗ qk+1) ≤
kk

k!

l1 + · · · + lk+1

l1 . . . lk+1

= ck

k+1∑
i=1

I1(q1) . . . I1(qi−1)I1(qi+1) . . . I1(qk+1),

where
ck = kk/(2kk!)

It remains to integrate this inequality over π1⊗ · · · ⊗ πk+1 and
use bi =

∫
I1(qi) dπi(qi) to get

Ik(f ) ≤ ck

k+1∑
i=1

b1 . . . bi−1 bi+1 . . . bk+1.
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Stam’s inequality

Theorem (Stam ’59). If X1 and X2 are independent, then

1

I(X1 +X2)
≥ 1

I(X1)
+

1

I(X2)
.

Linearized form: For all a1, a2 > 0, a1 + a2 = 1,

I(X1 +X2) ≤ a21 I(X1) + a22 I(X2).

Weighted sums: For all α1, α2 > 0 such that α2
1 + α2

2 = 1,

I(α1X1 + α2X2) ≤ α2
1 I(X1) + α2

2 I(X2).

Theorem (Lions-Toscani ’95). Given m ≥ 1,

I2m(α1X1 + α2X2) ≤
∑(2m

k

)
αk1α

2m−k
2

× Ik(X1)I2m−k(X2).

with summation over all k 6= 1, 0 ≤ k ≤ 2m.
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Multinomial extension for weighted sums

For independent Xi with finite I2m(Xi) = E ρ(Xi)
2m, consider

the weighted sums

Zn = α1X1 + · · · + αnXn (α2
1 + · · · + α2

n = 1)

with αi > 0. Put I0(Xi) = 1.

Lemma 3. For any integer m ≥ 1,

I2m(Zn) ≤
∑( 2m

k1 . . . kn

)
αk11 . . . α

kn
n

× Ik1(X1) . . . Ikn(Xn).

The summation is performed over all non-negative ki 6= 1 such
that k1 + · · · + kn = 2m.
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Proof of Lemma 3

Let n = 2. If Xi has densities fi, the density f of X1 +X2 is
given by

f (x) =

∫ ∞
−∞

f1(x− y)f2(y) dy =

∫ ∞
−∞

f2(x− y)f1(y) dy.

It has derivative

f ′(x) =

∫ ∞
−∞

f ′1(x− y)f2(y) dy =

∫ ∞
−∞

f ′2(x− y)f1(y) dy.

That is, for any a1, a2 > 0, a1 + a2 = 1,

f ′(x) =

∫ ∞
−∞

(
a1f

′
1(x− y)f2(y) dy + a2f1(x− y)f ′2(y)

)
dy.

Hence

f ′(x)

f (x)
=

∫ ∞
−∞

(
a1
f ′1(x− y)
f1(x− y)

+ a2
f ′2(y)

f2(y)

)
dµx(y)

with
dµx(y)/dy = f1(x− y)f2(y)/f (x).
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By Jensen’s inequality,

(f ′(x)
f (x)

)2m
≤
∫ ∞
−∞

(
a1
f ′1(x− y)
f1(x− y)

+ a2
f ′2(y)

f2(y)

)2m

dµx(y).

One may now expand the integrand according to the binomial
formula, multiply both sides by f (x) and integrate over the
variable x. We then arrive at

I2m(X1 +X2) ≤
∑( 2m

k1 k2

)
ak11 a

k2
2 Ik1(X1)Ik2(Xn)

without terms corresponding to k1 = 1 and k2 = 1.
Next, write down this bound for αiXi with ai = α2

i .
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Proof of Theorem 2

Theorem 2. Let ρi = |ρ(Xi)|. If ‖ρi‖ψ2 ≤ 1, that is, E eρ2i ≤ 2,
then the weighted sums

Zn = α1X1 + · · · + αnXn, α2
1 + · · · + α2

n = 1,

satisfy
‖ρ(Zn)‖ψ2 ≤ K.

Proof. Assume that αi ≥ 0. By Lemma 3,

E ρ(Zn)2m

(2m)!
≤
∑ 1

k1! . . . kn!
αk11 . . . α

kn
n E |ρ1|k1 . . .E |ρn|kn

where the summation is performed over all non-negative ki 6= 1
such that k1 + · · ·+ kn = 2m. Expanding the cosh-function in
a power series, for any t ≥ 0,

E cosh(tρ(Zn)) ≤
n∏
i=1

E
(
etαiρi − tαiρi

)
.

The non-negative convex function

ψi(t) = E (etρi − tρi)
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satisfies ψi(0) = 1, ψ′i(0) = 0. Using

x2ex
2/2 ≤ ex

2 − 1,

we get

ψ′′i (t) = E ρ2i etρi

≤ E ρ2i e(t
2+ρ2i )/2

≤ et
2/2 (E eρ2i − 1) ≤ et

2/2

so
ψi(t) ≤ 1 + t2et

2/2 ≤ et
2
.

This gives

E cosh(tρ(Zn)) ≤
n∏
i=1

ψi(αit) ≤
n∏
i=1

eα
2
i t
2
= et

2

for any t ∈ R. If η ∼ N(0, 1),

E exp{ t2ρ(Zn)2/2} = E cosh(tρ(Zn) η)

≤ E exp{ t2η2} =
1√

1− 2t2
.

The choice t2 = 3/8 yields the result with K = 16/3.
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Proof of Theorem 1

Theorem 1. If I2m(Xi) ≤ I for all i ≤ n, then

I2m(Zn) ≤ cmI, cm = (2m)! (e/m)m.

Proof. Again, according to Lemma 3,

E ρ(Zn)2m ≤
∑ (2m)!

k1! . . . kn!
αk11 . . . α

kn
n Ik1(X1) . . . Ikn(Xn)

Since
(Iki(Xi))

1/ki ≤ (I2m(Xi))
1/(2m) ≤ I1/(2m),

we get
I2m(Zn) ≤ KmI

with

Km =
∑ (2m)!

k1! . . . kn!
αk11 . . . α

kn
n

where summation is as before. Put K0 = 1 and introduce the
generating function associated to the sequence (Km)m≥0,

ψ(z) =

∞∑
m=0

Km

(2m)!
z2m, z ∈ C,
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so that Km = ψ(2m)(0). It follows that

ψ(z) =

n∏
i=1

∑
kj≥0, kj 6=1

1

ki!
(αiz)

ki =

n∏
i=1

(eαiz − αiz).

Since |ew −w| ≤ e|w|− |w| ≤ e|w|
2

for any complex w, we get

|ψ(z)| ≤
n∏
i=1

eα
2
i |z|

2
= e|z|

2
.

We now use contour integration and Cauchy’s formula

Km =
(2m)!

2πi

∫
|z|=R

ψ(z)

z2m+1
dz (R > 0),

which together with the above upper bound yields

Km ≤
(2m)!

R2m
eR

2
.

It remains to choose an optimal value R =
√
m, which leads to

I2m(Zn) ≤
(2m)! em

mm
I.
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