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What is Random Number Generation (RNG)

-X2X1 > ¢ >...Y2Y1

X ={X"=(Xq,....,Xn)}>>_, coin process

Y ={Y"=(Y1,...,Y,)}>, target process

We shall simulate the target process using the output from the coin process exactly.



von Neumann’s Algorithm

1
X isiid.Bernoulli: Pr(X; =0)=p, Pr(X;=1)=1—p, p#0, 5 1

Y isi.i.d. unbiased Bernoulli



von Neumann’s Algorithm

1
X isi.i.d. Bernoulli: Pr(X; =0)=p, Pr(X;=1)=1—-—p, p#D0, 5 1

Y isi.i.d. unbiased Bernoulli

1: Set i=1.

2: If
X9;—1 =0, X9; =1 = outputs 0

Xo;1 = 1, Xo; =0 —= outputs 1

Else, set i=i+1 and repeat Step 2.
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von Neumann’s Algorithm (cont’d)

I : stopping time (#of coin tosses until the algorithm terminates)



von Neumann’s Algorithm (cont’d)

I : stopping time (#of coin tosses until the algorithm terminates)

T /2 follows geometric distribution with parameter 2p(1 — p)...
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von Neuman’s algorithm was extended in various direction.
(eg. Samuelson ’68, Hoeffding-Simons ‘70, Elias '72, Peres '92)
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Generalization by Elias

von Neuman’s algorithm was extended in various direction.
(eg. Samuelson ’68, Hoeffding-Simons ‘70, Elias '72, Peres '92)

Let’s simulate unbiased n bits Y™ simultaneously.

1 m
Set m = [n(H(X) +5)—‘ and let {0,1}™ = kL:JOE T = {z™ rwy (™) =k}

Foreachk € G := {k' : |Tw| > 2™}, take the largest subset C;,, C T with |Cr| = 2"
Let wr : Cr — {0,1}" be “balanced” assignment

Upon observing X™ = (Xq,...,X,,) € C, forsome k € G, outputs o5 (X™)

Otherwise, go to the next block

T'/m follows geometric distribution with parameter Pr (X e U Ck>

keg
1 m/n 1
E]E[T]: >H(X) (n — 00,6 — 0)
o <Xm < Uke Ck) optimal



Knuth-Yao's Algorithm

X isi.i.d. unbiased Bernoulli



Knuth-Yao's Algorithm

X isi.i.d. unbiased Bernoulli

The case with didactic target distribution.
eg) Py =(1/2,1/4,1/8,1/8)

Use the Huffman code tree...




Knuth-Yao’s Algorithm (cont’d)

General case:
€9) Py = (2/3,1/3)

Consider the binary expansion

2_1|1|1| 1_1.1.1.
3 2 923 925 92 94 1 96
Then, use the Huffman code tree...
0 1
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Knuth-Yao’s Algorithm (cont’d)

General case:
€9) Py = (2/3,1/3)

Consider the binary expansion
2 1 1 1

B - o5

3 2 23

Then, use the Huffman code tree...

-

Theorem (Knuth-Yao)

The Knuth-Yao’s algorithm satisfies
ET| <H(Y)+2

Any RNG algorithm must satisfy
E[T] > H(Y)

11 1 1
3 92 "94 " 96
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RNG from Biased coin to Biased Target

Roche ‘91 an algorithm based on arithmetic coding
Abrahams '96 an extension of Knuth-Yao algorithm

Han-Hoshi ’97  “interval algorithm”

etc.



A Converse Bound

4 N
Proposition (Han-Hoshi)

When the coin process is i.i.d., any RNG algorithm simulating Y™ exactly must satisfy

H(Y™)
S




A Converse Bound

4 N
Proposition (Han-Hoshi)

When the coin process is i.i.d., any RNG algorithm simulating Y™ exactly must satisfy

H(Y™
BI71 > vy
x y
Proof sketch)
Z : RV describing the leaves induced by X 0 /) 1
For an i.i.d. coin process, 1
H(Z) =E[T]- H(X) y

2
Since Y is a function of Z, 0 CD\
H(Y") < H(Z) = E[T] - H(X) / /OE




Interval Algorithm

Basic Idea

For a sequence ™ € X", assign Z,m = |q,m,0ym) C [0,1) with |Zym| = Pxm (™)

For a sequence y" € V" | assign J,» = B s Byn) € [0, D) With | Fyn| = Py (y")

Upon observing =™, if Z,~» C J,~ for some y", outputs y".



Interval Algorithm

Basic Idea

For a sequence ™ € X", assign Z,m = |q,m,0ym) C [0,1) with |Zym| = Pxm (™)

For a sequence y" € V" | assign J,» = B s Byn) € [0, D) With | Fyn| = Py (y")

Upon observing =™, if Z,~» C J,~ for some y", outputs y".

More precisely,...

Qs
a; =B =0 and a,=3,=1for s=t=_1

gsx = Qs —I_ (as T Qs)P(ZIZ—].MS

for se X', z e X
Ogy 1= Qg T+ (as _QS)P:ULS

Ps|a€ = ZPX2+1|X7’(]€|S)
k=1

B, and 3, are defined similarly by Pyn. Qo




Interval Algorithm (cont’d)

ﬁ(lnitialization) Sets=t=1,i=0andj=1 \
2: If [a,,ay) C [@ty,ﬁty) for some y € )V, then output ¥; = ¥ and go to Step 3;

Otherwise, set 1 = 1+ 1, s = sx;, and repeat Step 2 again.

glfj = n, terminates; otherwise, set ¢ = ty;, j = j + 1, and go to Step 2. j




Interval Algorithm (cont’d)

Example) The coin {X""},._1 is Markov chain.

The target {Y"}/2; isi.i.d with Py = (1/3,2/3). 2/3 CC@@:) 2/3
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Interval Algorithm (cont’d)

The algorithm itself is quite simple, but performance analysis is not straightforward...

g )
Theorem (Han-Hoshi '97)

When the coin process is i.i.d., the stopping time of the interval algorithm satisfies

log(2 Yl -1) H(X)
- H(X) (1 = Pmax) H(X)

HY™)
A 159

where Pmax = max Py (z) .
reX y
§




Interval Algorithm (cont’d)

The algorithm itself is quite simple, but performance analysis is not straightforward...

-~
Theorem (Han-Hoshi '97)

When the coin process is i.i.d., the stopping time of the interval algorithm satisfies

H(Y" log(2|Y]| — 1 H(X
E[T] < (Y*) | log@VI-1) | (X)
H(X) H(X) (1 — prmax)H(X)
where Pimax = max Px (z) .
q
Asymptotically,
, 1 H(Y
llvzn_)SOlip ﬁE[T] < HEXi optimal
where
1
H(Y) =limsup —H((Y") sup entropy rate

n—oo N



Work on Interval Algorithm

Oohama ’11: refined analysis for i.i.d. coin process

Uyematsu-Kayana ’00: analysis for ergodic coin/target processes
Uyematsu-Kayana '99: large deviation analysis for i.i.d. coin/target processes
W.-Han '19: analysis via information spectrum approach

¢ analysis for general coin/target processes

¢ optimality of the interval algorithm among any RNG algorithms for wide

class of general coin/target processes



Information Spectrum Approach: Brief Review

When {Z" },2; is ergodic, the AEP states

o

1 1
— 1 — H(Z)| <§ 1
718 Bz )‘ )%




Information Spectrum Approach: Brief Review

When {Z" },2; is ergodic, the AEP states

1 1
Pr( ﬁlogPZn(Z”) —H(Z)‘ §5) — 1
A
> l10 !
H(Z) n° Pgu(Z7)

In general, spectrum is spreading (eg. reducible Markov chain)

—1




Information Spectrum Approach (cont’d)

To handle spreading spectrum, it is more convenient to define “typical sets” by

S, (A) = {z" Jog Pznl(zn) > )\}

T = o oy s <]




Information Spectrum Approach (cont’d)

To handle spreading spectrum, it is more convenient to define “typical sets” by

S, (A) = {z” Jog Pznl(zn) > )\}

{ Pyzn(2™)
If we define
H(Z) lim Pr{tlog—— <a) =0 tral inf-ent
= . 11 I — 10 a — -
H sup § @ : lim. ~log P27 = spectral inf-entropy
T(Z) = infla: lim Pr(—log——— >a) =0 tral sup-ent
= 111 . 111 Ir — 10 a — -
a: lim ~log P (Z7) = spectral sup-entropy
then
H(Z (Z
\=n(H(Z) - §) = Pyu(Sy(N)) = 1 (K ) (\)
A = n(F(Z) +6) — Py (Ta(N) — 1 SN




Information Spectral Analysis of Interval Algorithm

-
Theorem (W.-Han '19)

For the interval algorithm, the overflow probability of the stopping time satisfies

Pr(T > m) < Pxm (S5, (A)) + Pyn(T5(7)) + 9—A+T+1

where
1
Sp(A) =<2 e X lo > )\
Y {"” 2 P (27 }
Tn(T) { "eY":lo ! < }
n(T) = ; <T
Y gPYn(y”)
\_

_ H(Y)
fweset A\~mH(X), T~¥nH(Y),and man(X)

, then

Pr(T >m) — 0 (n — o0)



Proof Sketch

Pr(T > m) < Pxm(SS, (M) + Pyn(TE(T)) + 272711

’ 1
SN =2 e X™: o > )\
=1 8 P (@) }

( 1
To(T) =< y™ € Y™ : log P (5 < 7'}

When ™" is observed, the interval algorithm stops iff.

Pxm (z™) <I > Py (y") for some y™ € V"
L.m

:7-yn

small Pxm (z"") and large Py (yy")are favorable; Sy, (\) and 7,7(7) are handled as exceptions.



Proof Sketch

Pr(T > m) < Pxm(SS, (M) + Pyn(TE(T)) + 272711

’ 1
SN =2 e X™: o > )\
=1 8 P (@) }

/\\

( 1
To(7) :=3y" € Y™ : log P (5 < 7'}

When ™" is observed, the interval algorithm stops iff.

Pxm (z™) <I > Py (y") for some y™ € V"
L.m

Tyr
small Pxm (z"") and large Py (yy")are favorable; Sy, (\) and 7,7(7) are handled as exceptions.
™ € Sp(A) = Pxm(z™) <277 T I T T
y" € Tn(T) = Pyn(y") 2277 I I




A Converse Bound

s R
Theorem (W.-Han '19)
For any RNG algorithm, the overflow probability of the stopping time satisfies
= Pxn (S5, (N) = Pyn(To(7)) =277+
_ Y

Set \mH(X), T~nH(Y ), and m = nR. Then, Pr(T > m) — 0 only if

=
=

R > =

Similarly,




Optimality of Interval Algorithm

If either the coin or the target process has one point spectrum, i.e.,

H(X)=H(X)=H(X) oo HY)=HY)=H®Y)

then Pr(T > nR) — 0 iff.

F(Y) or R >

"X H(X)

T

Furthermore, it is attained by the interval algorithm.



Average Stopping Time

By using -
E[T] :/ Pr(T > z)dz
0

S 1 1 >
~ Pr lo > 2 |dz
/0 <H<X> > Py (Y7)

_HE™)
- H(X)
-
Corollary (W.-Han ’19)
Under some regularity condition, the interval algorithm satisfies
, 1 H(Y)
] —E|T]| <
imsup - T < H(X)
Any RNG algorithm satisfies
1 H(Y
limsup —E[T] > —( )

_
If the coin process has one point spectrum, the interval algorithm is optimal.



Let X = {X™}>*_, be a Markov chain induced by irreducible W (x|z")

For the stationary distribution 7T, let

1
Zﬂ' W (x|x") log W (2

Then, H(X)=H(X)=H(X)=H"(X)
Let Y = {Y"}>°, be a Markov chain induced by reducible V' (y|y’),

but assume that there is no transient class; then
V=V Ve isirreducible
For the weight w(&) induced by an initial distribution,

HY)=max{H"(Y):1<&<rw&) >0}

=) w(@H"(Y
¢=1



Example (cont’d)

The interval algorithm satisfies

1 1

lifrrlnﬁsot(l)p EE[T] < HW (X) ;HV& (Y)
and Pr(T > nR) — 0 if
R > Wl(X) max {H"¢(Y): 1< ¢ <rw(é) >0}

These performances are optimal among any RNG algorithms.



Isomorphism Problem

In the ergodic theory, a basic problem is to show if a (two-sided) random process
X = ( .. ,X_l, XQ, Xl, .. ) IS iIsomorphic to

another random process Y = (..., Y 1,Yy, Y7, ...).

S X% — X% shift operator

For x = ( oy d—1,20,L1, - ) ; (Sw)z — Li+1

6efinition N
A measurable map @ from X% to JZ is termed homomorphism from (X% By, 11, 9)

to (V% By, 1, 8) it v(A) = pu(¢ 1 (A)) for A € By and ¢(Sx) = S¢(x) for p-a.e. x.
Furthermore, if @ is invertible for (t-a.e. a, then it is termed isomorphism. ,

\_




lsomorphism Problem (cont’d)

Consider i.i.d. processes X and Y, which are termed Bernoulli shifts in ergodic theory.

(Theorem (Ornstein '70) A
For Bernoulli shifts, isomorphism exists iff. H(X) = H(Y).
\_ )

In 1970s, the isomorphism problem was actively studied in IT community

from the viewpoint of source coding (eg. Gray, Neuhoff).

The connection between the isomorphism problem and the RNG problem seems to be

not well understood; but there are some work (eg. Harvey-Holroyd-Peres-Romik ’07).



Thank you very much.



