General adversarial channels

When do large codes exist?

Sidharth "Sid" Jaggi

The Chinese University of Hong Kong
joint work with

Xishi Wang

Amitalok J. Budkuley

Andrej Bogdanov

A new "fact" about random variables...

- Given a joint p.m.f. $P_{X, X^{\prime}}$ over alphabet $\mathcal{X} \times \mathcal{X}$, when is it possible to create a "long" sequence $\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$ such that each (ordered) pair $\left(X_{i}, X_{j}\right)$ is (ϵ-approximately) distributed as $P_{X, X^{\prime}}$?

A new "fact" about random variables...

- Given a joint p.m.f. $P_{X, X^{\prime}}$ over alphabet $\mathcal{X} \times \mathcal{X}$, when is it possible to create a "long" sequence $\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$ such that each (ordered) pair $\left(X_{i}, X_{j}\right)$ is (ϵ-approximately) distributed as $P_{X, x^{\prime}}$?
- If $P_{X, X^{\prime}}\left(x, x^{\prime}\right)=\sum_{u} P_{U}(u) P_{X \mid u}(x) P_{X \mid u}\left(x^{\prime}\right)$, can construct arbitrarily long sequences.

A new "fact" about random variables...

- Given a joint p.m.f. $P_{X, X^{\prime}}$ over alphabet $\mathcal{X} \times \mathcal{X}$, when is it possible to create a "long" sequence $\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$ such that each (ordered) pair $\left(X_{i}, X_{j}\right)$ is (ϵ-approximately) distributed as $P_{X, X^{\prime}}$?
- If $P_{x, X^{\prime}}\left(x, x^{\prime}\right)=\sum_{u} P_{U}(u) P_{X \mid u}(x) P_{X \mid u}\left(x^{\prime}\right)$, can construct arbitrarily long sequences.
- Set of such $P_{X, X^{\prime}}$ called completely positive distributions, have been studied in convex optimization. Forms a convex set.

A new "fact" about random variables...

- Given a joint p.m.f. $P_{X, X^{\prime}}$ over alphabet $\mathcal{X} \times \mathcal{X}$, when is it possible to create a "long" sequence $\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$ such that each (ordered) pair $\left(X_{i}, X_{j}\right)$ is (ϵ-approximately) distributed as $P_{X, x^{\prime}}$?
- If $P_{X, X^{\prime}}\left(x, x^{\prime}\right)=\sum_{u} P_{U}(u) P_{X \mid u}(x) P_{X \mid u}\left(x^{\prime}\right)$, can construct arbitrarily long sequences.
- Set of such $P_{X, X^{\prime}}$ called completely positive distributions, have been studied in convex optimization. Forms a convex set.
- If $P_{X, X^{\prime}}$ is at least ϵ-far from being completely positive, then can only exist sequences of length $\mathcal{O}\left(\exp \left(\frac{1}{\epsilon}\right)\right)$.

A standard communication scenario...

A standard communication scenario...

Aim: To communicate a 'large' message 'reliably' to the receiver over the random noise channel.

An adversarial communication scenario...

An adversarial communication scenario...

Aim: To communicate a 'large' message 'reliably' to the receiver over the adversarial noise channel .

An adversarial communication scenario...

Aim: To communicate a 'large' message 'reliably' to the receiver over the adversarial noise channel.

The adversarial communication problem setup

The adversarial communication problem setup

Example: The Binary communication setup

- Channel $W_{Y \mid X, S}$ is state-deterministic with output $Y=X \oplus S$.
- Alice's input constraint $\Gamma_{X}=\left\{\mathbf{x}: w t_{H}(\mathbf{x}) \leq n w\right\}, 0 \leq w \leq 1 / 2$.
- James' state constraint $\Lambda_{S}=\left\{\mathbf{s}: w t_{H}(\mathbf{s}) \leq n p\right\}, 0 \leq p \leq 1 / 2$.
- Denoted A-BSC(p)

The Adversarial Communication problem setup

The Adversarial Communication problem setup

In this talk, only symbolwise, state-deterministic channels $W_{Y \mid X, S}$.

- Symbolwise channel: y_{i} depends only on x_{i}, s_{i}.
- Example: A-BSC(p) channel shown before, with $y_{i}=x_{i} \oplus s_{i}$.
- Non-example: Deletion channels
- State-deterministic channel: y_{i} is a deterministic function of x_{i} and s_{i}.
- Example: A-BSC(p) channel shown before, with $y_{i}=x_{i} \oplus s_{i}$.
- Non-example: $W_{Y \mid X, s}(y \mid x, s)= \begin{cases}x \oplus s & \text { with probability 1-q } \\ x \oplus s \oplus 1 & \text { with probability } q\end{cases}$

The Adversarial Communication problem setup

- Three key parameters: the channel, Alice's input constraints and James' state constraints.
- Arbitrarily Varying Channel (AVC) is specified by $\mathcal{A}=\left(W_{Y \mid X, S}, \Gamma_{X}, \Lambda_{S}\right)$.
- User/Adversary strategies:
- Alice \& Bob pick a feasible (acc. to Γ_{X}) codebook \mathcal{C}.
- James picks a feasible (acc. to Λ_{s}) jamming sequence s (as a function of \mathcal{C} and \mathbf{x}).
- Private randomization turns out not to benefit any of Alice/Bob/James.

The Adversarial Communication problem setup

- AVC \mathcal{A} reliability criterion: Zero error (requiring vanishing-error turns out not to change the problem for state-deterministic AVCs)

$$
\forall m, \forall \mathbf{s}, \hat{m}=m
$$

- Principal metric of interest: optimum throughput or capacity

$$
C:=\sup \{R: \text { 'coding rate' } R \text { is 'achievable' }\} .
$$

The Adversarial Communication problem setup

- AVC \mathcal{A} reliability criterion: Zero error (requiring vanishing-error turns out not to change the problem for state-deterministic AVCs)

$$
\forall m, \forall \mathbf{s}, \hat{m}=m
$$

- Principal metric of interest: optimum throughput or capacity

$$
C:=\sup \{R: \text { 'coding rate' } R \text { is 'achievable' }\} .
$$

- In this talk, just want to understand precisely when $R>0$ is possible.

Example: Capacity for the Binary communication setup

Example: Capacity for the Binary communication setup

Example: Capacity for the Binary communication setup

Key Fact

Capacity for $\mathrm{A}-\mathrm{BSC}(p)$ is 'strictly' smaller than for standard $\operatorname{BSC}(p)$!!

Observation: Constant Composition codes suffice

- Constant composition (CC) code: All codewords of the same type.
- Fact: Number of types polynomial in n (at most $\left.(n+1)^{|\mathcal{X}|}\right)$.
- Sub-codebook of largest size $\mathcal{C}^{\prime} \subseteq \mathcal{C}$: essentially of same rate.
- Vanishing (in n) rate loss in \mathcal{C}^{\prime} vis-à-vis \mathcal{C}.
- Codebook \mathcal{C} robust to errors \Rightarrow sub-codebook \mathcal{C}^{\prime} also robust to errors.
- So we henceforth analyze only constant composition codes.

Observation: Constant Composition codes suffice

$$
\begin{array}{cc}
\text { Codebook } \mathcal{C} \subseteq \mathcal{X}^{n} & \text { Largest sub-codebook } \\
& \mathcal{C}^{\prime} \subseteq \mathcal{C}
\end{array}
$$

- Constant composition (CC) code: All codewords of the same type.
- Fact: Number of types polynomial in n (at most $\left.(n+1)^{|\mathcal{X}|}\right)$.
- Sub-codebook of largest size $\mathcal{C}^{\prime} \subseteq \mathcal{C}$: essentially of same rate.
- Vanishing (in n) rate loss in \mathcal{C}^{\prime} vis-à-vis \mathcal{C}.
- Codebook \mathcal{C} robust to errors \Rightarrow sub-codebook \mathcal{C}^{\prime} also robust to errors.
- So we henceforth analyze only constant composition codes.

Joint types or Couplings

$$
\begin{array}{cc}
\text { Codebook } \mathcal{C} \subseteq \mathcal{X}^{n} & \text { Largest sub-codebook } \\
\mathcal{C}^{\prime} \subseteq \mathcal{C}
\end{array}
$$

- Important: Properties of joint pair types of codewords in $\mathcal{C}^{\prime} \subseteq \mathcal{C}$.

Definition (Couplings/Self-couplings)

- The joint type of a pair of vectors or a pair-type is called a coupling.
- A coupling $T_{X, X^{\prime}}$ with $T_{X}=T_{X^{\prime}}$ is called a self-coupling.

Example: Coupling

$$
\begin{gathered}
|\mathcal{X}|=3 \quad \mathbf{X} \begin{array}{|c}
0110022100201101201021102 \\
\\
T_{X}=T_{X^{\prime}}=\left(\frac{10}{25}, \frac{9}{25}, \frac{6}{25}\right), \quad T_{X, X^{\prime}}=\frac{1}{25}\left[\begin{array}{ccc}
4 & 2 & 4 \\
4 & 4 & 1 \\
2 & 3 & 1
\end{array}\right] \\
\text { - } \quad C_{\text {Hamming }} \triangleq\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \Rightarrow d_{H}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=n\left\langle C_{\text {Hamming }}, T_{X, X^{\prime}}\right\rangle \\
\text { - } \quad C_{\ell_{1}} \triangleq\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 1 \\
2 & 1 & 0
\end{array}\right] \Rightarrow d_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \triangleq \sum_{i=1}^{n}\left|x_{i}-x_{i}^{\prime}\right|=n\left\langle C_{1}, T_{X, X^{\prime}}\right\rangle
\end{array}, l
\end{gathered}
$$

Geometry of Sets

Geometry of Sets

Row constraints: $\forall i \in[|\mathcal{X}|], \sum_{j=1}^{\mid \mathcal{X |}}\left(T_{X, X^{\prime}}\right)_{i, j}=P_{X}(i)$,
Column constraints: $\forall j \in[|\mathcal{X}|], \sum_{i=1}^{|\mathcal{X}|}\left(T_{X, X^{\prime}}\right)_{i, j}=P_{X}(j)$,
$2|\mathcal{X}|-1$ linearly independent constraints.

$$
\mathcal{J}\left(P_{X}\right) \text { is a polytope. }
$$

Geometry of Sets

Geometry of Sets

Terrible idea for code design!

Geometry of Sets

Geometry of Sets

What else is possible?

Example:

$$
\mathbf{P}_{X X^{\prime}}=\left(\begin{array}{ccc}
1 / 8 & 1 / 8 & 0 \\
1 / 8 & 1 / 4 & 1 / 8 \\
0 & 1 / 8 & 1 / 8
\end{array}\right)=\frac{1}{2}\left(\begin{array}{c}
1 / 2 \\
1 / 2 \\
0
\end{array}\right)\left(\begin{array}{lll}
1 / 2 & 1 / 2 & 0
\end{array}\right)+\frac{1}{2}\left(\begin{array}{c}
0 \\
1 / 2 \\
1 / 2
\end{array}\right)\left(\begin{array}{lll}
0 & 1 / 2 & 1 / 2
\end{array}\right)
$$

Geometry of Sets

What about the adversary?

Observation 1:

- If ($\mathbf{x}, \mathbf{x}^{\prime}$) "confusable" by \mathcal{A}, for any permutation $\pi,\left(\pi(\mathbf{x}), \pi\left(\mathbf{x}^{\prime}\right)\right)$ also confusable by \mathcal{A}. Hence ($\mathbf{x}, \mathbf{x}^{\prime}$) confusable $\Leftrightarrow T\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ confusable
- Not necessarily true if channel not symbolwise, for instance for deletion channels.

What about the adversary?

Observation 2:

- If $T\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ "confusable" by $\mathcal{A}, T\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ also confusable by \mathcal{A}.

What about the adversary?

Observation 3 (Convexity):

- By time-sharing, the set (denoted $\mathcal{K}(\mathcal{A})$) of confusable self-couplings is convex

What about the adversary?

Observation 4: (Constraints from \mathcal{A})

$T_{X X^{\prime}}$ confusable $\Rightarrow \exists T_{X X^{\prime} S S^{\prime} Y}$ such that

- (Consistency with $T_{X X^{\prime}}$): $\bar{\forall}\left(x, x^{\prime}\right) \in \mathcal{X} \times \mathcal{X}, \sum_{s, s^{\prime}, y} T_{X X^{\prime} S s^{\prime} Y}\left(x, x^{\prime}, s, s^{\prime}, y\right)=T_{X X^{\prime}}\left(x, x^{\prime}\right)$.
- (Consistency with input constraints Λ_{S}):
$T_{S} \triangleq \sum_{x, x^{\prime}, s^{\prime}, y} T_{X X^{\prime} S S^{\prime} Y}\left(x, x^{\prime}, s, s^{\prime}, y\right)$ satisfies $T_{S} \in \Lambda_{S}$, $T_{S^{\prime}} \triangleq \sum_{x, x^{\prime}, s, y} T_{X X^{\prime} S S^{\prime} Y}\left(x, x^{\prime}, s, s^{\prime}, y\right)$ satisfies $T_{S^{\prime}} \in \Lambda_{S}$.
- (Consistency with channel $\left.W_{Y \mid X, S}\right)$:
$T_{X S Y} \triangleq \sum_{x^{\prime}, s^{\prime}} T_{X X^{\prime} S^{\prime} Y}\left(x, x^{\prime}, s, s^{\prime}, y\right)$ compatible with $W_{Y \mid X, S}$, $T_{X^{\prime} s^{\prime} Y} \triangleq \sum_{X, s} T_{X X^{\prime} S s^{\prime} Y}\left(x, x^{\prime}, s, s^{\prime}, y\right)$ compatible with $W_{Y \mid X, s}$.
- All constraints linear, hence checking to see if a given $T_{X X^{\prime}}$ is in the confusability set \mathcal{K} is a computationally efficient convex optimization problem (given membership oracle for Λ_{S}).
- If Λ_{S} is a polytope (common in many classical models - e.g. noise weight $\leq p n$) then \mathcal{K} also a polytope.

Achievability

Confusability set properties:

- Characterized by subset $\mathcal{K}(\mathcal{A})$ of self-couplings $\mathcal{J}\left(P_{X}\right)$.
- Convex.
- Transpositionally symmetric.
- Efficiently computable.
- $\operatorname{diag}\left(P_{X}\right)$ always in $\mathcal{K}(\mathcal{A})$
- Polytope, if Λ_{S} a polytope.

Achievability

- Can construct AVCs \mathcal{A} and $\overline{\mathcal{A}}$ that are distinct (for instance, with different output alphabets \mathcal{Y}), but with the same confusability polytope \mathcal{K}.
- Hence good codes for \mathcal{A} also good for $\overline{\mathcal{A}} \Rightarrow$ capacity regions the same.
- Confusability polytopes fundamentally characterize capacities of state-deterministic AVCs!
- Not true for non-state-deterministic AVCs. Can construct non-SD AVCs with the same confusability polytope, but provably different capacities.

Achievability

- So if the completely positive slice $\mathcal{C P}\left(P_{X}\right)$ contains self-couplings outside the confusability set $\mathcal{K}(\mathcal{A})$, a positive rate is possible.
- For instance, if $\mathbf{P}_{X} \cdot \mathbf{P}_{X}{ }^{\top} \notin \mathcal{K}(\mathcal{A})$, then a positive rate is possible.
- Indeed, in this case, a more careful analysis shows a "Gilbert-Varshamov (GV) type" (greedy packing) achievable rate (matching GV bound in known cases):

$$
\max _{P_{x} \in \Gamma_{X}} \min _{P_{X x}, \in \mathcal{K}(\mathcal{A})} I\left(X ; X^{\prime}\right)
$$

- Same rate also achievable via random coding + expurgation. Rate governed by large-deviations exponent.

Achievability

- If $\mathbf{P}_{X} \cdot \mathbf{P}_{X}{ }^{T} \in \mathcal{K}(\mathcal{A})$, GV-type rate $=0$.
- However, if \exists completely positive distribution $P_{X X^{\prime}}=\sum_{u} P_{U}(u) \mathbf{P}_{X \mid u} \cdot \mathbf{P}_{X \mid u}{ }^{T}$ s.t. $P_{X X^{\prime}} \notin \mathcal{K}(\mathcal{A})$, positive rate still possible via cloud codes.
- Can construct examples of such $\mathrm{AVCs} \Rightarrow \mathrm{GV}$ codes \subsetneq cloud codes.
- GV-type rate for cloud codes:

$$
\max _{\substack{P_{X} \in \Gamma_{X}, P_{X X^{\prime}} \in \mathcal{C P}\left(P_{X}\right)}} \min _{P_{X X}, \in \mathcal{K}_{U(\mathcal{A})}} I\left(X ; X^{\prime} \mid U\right)
$$

Achievability

- If all completely positive couplings always within the confusability polytope, i.e., for $P_{X} \in \Gamma_{X}, \mathcal{C} \mathcal{P}\left(P_{X}\right) \subseteq \mathcal{K}(\mathcal{A})$, then prior arguments do not give positive rate.

Achievability

- If all completely positive couplings always within the confusability polytope, i.e., for $P_{X} \in \Gamma_{X}, \mathcal{C P}\left(P_{X}\right) \subseteq \mathcal{K}(\mathcal{A})$, then prior arguments do not give positive rate.
- Indeed, other half of main result shows no positive rate possible in this scenario.

Converse

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}^{\prime}, T_{\mathbf{x}}=T_{X}$.
- For converse, 'good' $C^{\prime} \Rightarrow \forall x, x^{\prime} \in \mathcal{C}^{\prime}$, the self coupling $T_{x, x^{\prime}} \notin \mathcal{K}\left(T_{x}\right)$.
- Construct a δ_{g}-net $\mathcal{G} \subseteq \Delta ;|\mathcal{G}|$ depends on \mathcal{X} but independent of n
- There exists 'sufficiently large' $\mathcal{C}^{\prime \prime} \subseteq \mathcal{C}^{\prime} ; \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime \prime}, T_{\mathbf{x} \cdot \mathrm{x}^{\prime}} \approx \hat{T}_{X \cdot X^{\prime}} \in \mathcal{G}$
- Proof uses Ramsey theory \Rightarrow Given code \mathcal{C} with k "covering couplings", \exists subcode \mathcal{C}^{\prime} (monochromatic clique) of size $\Omega\left(\left(\log \left(\left|\mathcal{C}^{\prime}\right|\right)\right)^{1 /(k+1)}\right)$.
- $\hat{T}_{X, X^{\prime}}$ corresp. to \mathcal{C}^{\prime} may be symmetric or asymmetric
- Need separate analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\hat{T}_{X, X^{\prime}}$

Converse

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}^{\prime}, T_{\mathbf{x}}=T_{X}$.
- For converse, 'good' $C^{\prime} \Rightarrow \forall x, x^{\prime} \in C^{\prime}$, the self coupling $T_{x, x^{\prime}} \notin \mathbb{C}\left(T_{x}\right)$
- Construct a δ_{g}-net $\mathcal{G} \subseteq \Delta ;|\mathcal{G}|$ depends on \mathcal{X} but independent of n
- There exists 'sufficiently large' $C^{\prime \prime} \subseteq C^{\prime} ; \forall \mathbf{x}, \mathbf{x}^{\prime} \in C^{\prime \prime}, T_{x, x^{\prime}} \approx \hat{T}_{x, x} \in G$
- Proof uses Ramsey theory \Rightarrow Given code \mathcal{C} with k "covering couplings", \exists subcode \mathcal{C}^{\prime} (monochromatic clique) of size $\Omega\left(\left(\log \left(\left|\mathcal{C}^{\prime}\right|\right)\right)^{1 /(k+1)}\right)$.
- Tx x^{\prime} corresp. to C^{\prime} may be symmetric or asymmetric
- Need separate analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\widehat{T}_{X, X^{\prime}}$

Converse

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}^{\prime}, T_{\mathrm{x}}=T_{X}$.
- For converse, 'good' $\mathcal{C}^{\prime} \Rightarrow \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime}$, the self coupling $T_{\mathbf{x}, \mathbf{x}^{\prime}} \notin \mathcal{K}\left(T_{X}\right)$.
- Construct a δ_{g}-net $\mathcal{G} \subseteq \Delta_{;} \mid \mathcal{G}$ depends on \mathcal{X} but independent of n
- There exists 'sufficiently large' $\mathcal{C}^{\prime \prime} \subseteq \mathcal{C}^{\prime} ; \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime \prime}, T_{\mathrm{x}, \mathrm{x}^{\prime}} \approx \hat{T}_{X, X^{\prime}} \in \mathcal{G}$
- Proof uses Ramsey theory \Rightarrow Given code \mathcal{C} with k "covering couplings", \exists subcode C^{\prime} (monochromatic clique) of size $\Omega\left(\left(\log \left(\left|C^{\prime}\right|\right)\right)^{1 /(k+1)}\right)$.
- $\hat{T}_{X, X^{\prime}}$ corresp. to \mathcal{C}^{\prime} may be symmetric or asymmetric
- Need separate analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $T_{X, X}$

Converse

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}^{\prime}, T_{\mathrm{x}}=T_{X}$.
- For converse, 'good' $\mathcal{C}^{\prime} \Rightarrow \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime}$, the self coupling $T_{\mathbf{x}, \mathbf{x}^{\prime}} \notin \mathcal{K}\left(T_{X}\right)$.
- Construct a δ_{g}-net $\mathcal{G} \subseteq \Delta_{;} \mid \mathcal{G}$ depends on \mathcal{X} but independent of n
- There exists 'sufficiently large' $\mathcal{C}^{\prime \prime} \subseteq \mathcal{C}^{\prime} ; \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime \prime}, T_{\mathrm{x}, \mathrm{x}^{\prime}} \approx \hat{T}_{X, X^{\prime}} \in \mathcal{G}$
- Proof uses Ramsey theory \Rightarrow Given code \mathcal{C} with k "covering couplings", \exists subcode C^{\prime} (monochromatic clique) of size $\Omega\left(\left(\log \left(\left|C^{\prime}\right|\right)\right)^{1 /(k+1)}\right)$.
- $\hat{T}_{X, X^{\prime}}$ corresp. to \mathcal{C}^{\prime} may be symmetric or asymmetric
- Need separate analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $T_{X, X}$

Converse

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}^{\prime}, T_{\mathrm{x}}=T_{X}$.
- For converse, 'good' $\mathcal{C}^{\prime} \Rightarrow \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime}$, the self coupling $T_{\mathbf{x}, \mathbf{x}^{\prime}} \notin \mathcal{K}\left(T_{X}\right)$.
- Construct a δ_{g}-net $\mathcal{G} \subseteq \Delta_{;} \mid \mathcal{G}$ depends on \mathcal{X} but independent of n
- There exists 'sufficiently large' $\mathcal{C}^{\prime \prime} \subseteq \mathcal{C}^{\prime} ; \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime \prime}, T_{\mathrm{x}, \mathrm{x}^{\prime}} \approx \hat{T}_{X, X^{\prime}} \in \mathcal{G}$
- Proof uses Ramsey theory \Rightarrow Given code \mathcal{C} with k "covering couplings", \exists subcode C^{\prime} (monochromatic clique) of size $\Omega\left(\left(\log \left(\left|C^{\prime}\right|\right)\right)^{1 /(k+1)}\right)$.
- $\hat{T}_{X, X^{\prime}}$ corresp. to \mathcal{C}^{\prime} may be symmetric or asymmetric
- Need separate analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $T_{X, X}$

Converse

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}^{\prime}, T_{\mathrm{x}}=T_{X}$.
- For converse, 'good' $\mathcal{C}^{\prime} \Rightarrow \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime}$, the self coupling $T_{\mathbf{x}, \mathbf{x}^{\prime}} \notin \mathcal{K}\left(T_{X}\right)$.
- Construct a δ_{g}-net $\mathcal{G} \subseteq \Delta_{;} \mid \mathcal{G}$ depends on \mathcal{X} but independent of n
- There exists 'sufficiently large' $\mathcal{C}^{\prime \prime} \subseteq \mathcal{C}^{\prime} ; \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime \prime}, T_{\mathrm{x}, \mathrm{x}^{\prime}} \approx \hat{T}_{X, X^{\prime}} \in \mathcal{G}$
- Proof uses Ramsey theory \Rightarrow Given code \mathcal{C} with k "covering couplings", \exists subcode C^{\prime} (monochromatic clique) of size $\Omega\left(\left(\log \left(\left|C^{\prime}\right|\right)\right)^{1 /(k+1)}\right)$.
- $\hat{T}_{X, X^{\prime}}$ corresp. to \mathcal{C}^{\prime} may be symmetric or asymmetric
- Need separate analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $T_{X, X}$

Converse

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}^{\prime}, T_{\mathrm{x}}=T_{X}$.
- For converse, 'good' $\mathcal{C}^{\prime} \Rightarrow \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime}$, the self coupling $T_{\mathbf{x}, \mathbf{x}^{\prime}} \notin \mathcal{K}\left(T_{X}\right)$.
- Construct a δ_{g}-net $\mathcal{G} \subseteq \Delta_{;} \mid \mathcal{G}$ depends on \mathcal{X} but independent of n
- There exists 'sufficiently large' $\mathcal{C}^{\prime \prime} \subseteq \mathcal{C}^{\prime} ; \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime \prime}, T_{\mathrm{x}, \mathrm{x}^{\prime}} \approx \hat{T}_{X, X^{\prime}} \in \mathcal{G}$
- Proof uses Ramsey theory \Rightarrow Given code \mathcal{C} with k "covering couplings", \exists subcode C^{\prime} (monochromatic clique) of size $\Omega\left(\left(\log \left(\left|C^{\prime}\right|\right)\right)^{1 /(k+1)}\right)$.
- $\hat{T}_{X, X^{\prime}}$ corresp. to \mathcal{C}^{\prime} may be symmetric or asymmetric
- Need separate analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $T_{X, X}$

Converse

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}^{\prime}, T_{\mathrm{x}}=T_{X}$.
- For converse, 'good' $\mathcal{C}^{\prime} \Rightarrow \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime}$, the self coupling $T_{\mathbf{x}, \mathbf{x}^{\prime}} \notin \mathcal{K}\left(T_{X}\right)$.
- Construct a δ_{g}-net $\mathcal{G} \subseteq \Delta_{;} \mid \mathcal{G}$ depends on \mathcal{X} but independent of n
- There exists 'sufficiently large' $\mathcal{C}^{\prime \prime} \subseteq \mathcal{C}^{\prime} ; \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime \prime}, T_{\mathrm{x}, \mathrm{x}^{\prime}} \approx \hat{T}_{X, X^{\prime}} \in \mathcal{G}$
- Proof uses Ramsey theory \Rightarrow Given code \mathcal{C} with k "covering couplings", \exists subcode C^{\prime} (monochromatic clique) of size $\Omega\left(\left(\log \left(\left|C^{\prime}\right|\right)\right)^{1 /(k+1)}\right)$.
- $\hat{T}_{X, X^{\prime}}$ corresp. to \mathcal{C}^{\prime} may be symmetric or asymmetric
- Need separate analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $T_{X, X}$

Converse

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}^{\prime}, T_{\mathrm{x}}=T_{x}$.
- For converse, 'good' $\mathcal{C}^{\prime} \Rightarrow \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime}$, the self coupling $T_{\mathbf{x}, \mathbf{x}^{\prime}} \notin \mathcal{K}\left(T_{X}\right)$.
- \mathcal{C}^{\prime} self-couplings $\left\{T_{\mathrm{x}, \mathrm{x}^{\prime}}\right\}$ have a ' δ-gap' from $\mathcal{C P}$.
- Construct a δ_{g}-net $\mathcal{G} \subseteq \Delta ;|\mathcal{G}|$ depends on \mathcal{X} but independent of n
- Proof uses Ramsey theory \Rightarrow Given code \mathcal{C} with k "covering couplings", \exists subcode \mathcal{C}^{\prime} (monochromatic clique) of size $\Omega\left(\left(\log \left(\left|\mathcal{C}^{\prime}\right|\right)\right)^{1 /(k+1)}\right)$.
- $\hat{T}_{X,}$, corresp. to C^{\prime} may be symmetric or asymmetric
- Need separate analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\hat{T}_{X, X^{\prime}}$

Converse

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}^{\prime}, T_{\mathrm{x}}=T_{x}$.
- For converse, 'good' $\mathcal{C}^{\prime} \Rightarrow \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime}$, the self coupling $T_{\mathbf{x}, \mathbf{x}^{\prime}} \notin \mathcal{K}\left(T_{X}\right)$.
- \mathcal{C}^{\prime} self-couplings $\left\{T_{\mathrm{x}, \mathrm{x}^{\prime}}\right\}$ have a ' δ-gap' from $\mathcal{C P}$.
- Construct a δ_{g}-net $\mathcal{G} \subseteq \Delta ;|\mathcal{G}|$ depends on \mathcal{X} but independent of n
- Proof uses Ramsey theory \Rightarrow Given code \mathcal{C} with k "covering couplings", \exists subcode \mathcal{C}^{\prime} (monochromatic clique) of size $\Omega\left(\left(\log \left(\left|\mathcal{C}^{\prime}\right|\right)\right)^{1 /(k+1)}\right)$.
- $\hat{T}_{X,}$, corresp. to C^{\prime} may be symmetric or asymmetric
- Need separate analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\hat{T}_{X, X^{\prime}}$

Converse

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}^{\prime}, T_{\mathbf{x}}=T_{X}$.
- For converse, 'good' $\mathcal{C}^{\prime} \Rightarrow \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime}$, the self coupling $T_{\mathbf{x}, \mathbf{x}^{\prime}} \notin \mathcal{K}\left(T_{X}\right)$.
- \mathcal{C}^{\prime} self-couplings $\left\{T_{\mathrm{x}, \mathrm{x}^{\prime}}\right\}$ have a ' δ-gap' from $\mathcal{C P}$.
- Construct a δ_{g}-net $\mathcal{G} \subseteq \Delta$; $|\mathcal{G}|$ depends on \mathcal{X} but independent of n
- There exists 'sufficiently large' $\mathcal{C}^{\prime \prime} \subseteq \mathcal{C}^{\prime} ; \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime \prime}, T_{\mathbf{x}, \mathbf{x}^{\prime}} \approx \hat{T}_{X, x^{\prime}} \in \mathcal{G}$.
- Proof uses Ramsey theory \Rightarrow Given code \mathcal{C} with k "covering couplings", \exists subcode \mathcal{C}^{\prime} (monochromatic clique) of size $\Omega\left(\left(\log \left(\left|\mathcal{C}^{\prime}\right|\right)\right)^{1 /(k+1)}\right)$.
- Need separate analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\widehat{T}_{X, X^{\prime}}$

Converse

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}^{\prime}, T_{\mathbf{x}}=T_{X}$.
- For converse, 'good' $\mathcal{C}^{\prime} \Rightarrow \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime}$, the self coupling $T_{\mathbf{x}, \mathbf{x}^{\prime}} \notin \mathcal{K}\left(T_{X}\right)$.
- \mathcal{C}^{\prime} self-couplings $\left\{T_{\mathrm{x}, \mathrm{x}^{\prime}}\right\}$ have a ' δ-gap' from $\mathcal{C P}$.
- Construct a δ_{g}-net $\mathcal{G} \subseteq \Delta$; $|\mathcal{G}|$ depends on \mathcal{X} but independent of n
- There exists 'sufficiently large' $\mathcal{C}^{\prime \prime} \subseteq \mathcal{C}^{\prime} ; \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime \prime}, T_{\mathbf{x}, \mathbf{x}^{\prime}} \approx \hat{T}_{X, x^{\prime}} \in \mathcal{G}$.
- Proof uses Ramsey theory \Rightarrow Given code \mathcal{C} with k "covering couplings", \exists subcode \mathcal{C}^{\prime} (monochromatic clique) of size $\Omega\left(\left(\log \left(\left|\mathcal{C}^{\prime}\right|\right)\right)^{1 /(k+1)}\right)$.
- Need separate analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\widehat{T}_{X, X^{\prime}}$

Converse

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}^{\prime}, T_{\mathbf{x}}=T_{X}$.
- For converse, 'good' $\mathcal{C}^{\prime} \Rightarrow \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime}$, the self coupling $T_{\mathbf{x}, \mathbf{x}^{\prime}} \notin \mathcal{K}\left(T_{X}\right)$.
- \mathcal{C}^{\prime} self-couplings $\left\{T_{\mathrm{x}, \mathrm{x}^{\prime}}\right\}$ have a ' δ-gap' from $\mathcal{C P}$.
- Construct a δ_{g}-net $\mathcal{G} \subseteq \Delta$; $|\mathcal{G}|$ depends on \mathcal{X} but independent of n
- There exists 'sufficiently large' $\mathcal{C}^{\prime \prime} \subseteq \mathcal{C}^{\prime} ; \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime \prime}, T_{\mathbf{x}, \mathbf{x}^{\prime}} \approx \hat{T}_{X, x^{\prime}} \in \mathcal{G}$.
- Proof uses Ramsey theory \Rightarrow Given code \mathcal{C} with k "covering couplings", \exists subcode \mathcal{C}^{\prime} (monochromatic clique) of size $\Omega\left(\left(\log \left(\left|\mathcal{C}^{\prime}\right|\right)\right)^{1 /(k+1)}\right)$.

Converse

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}^{\prime}, T_{\mathrm{x}}=T_{X}$.
- For converse, 'good' $\mathcal{C}^{\prime} \Rightarrow \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime}$, the self coupling $T_{\mathbf{x}, \mathbf{x}^{\prime}} \notin \mathcal{K}\left(T_{X}\right)$.
- \mathcal{C}^{\prime} self-couplings $\left\{T_{\mathrm{x}, \mathrm{x}^{\prime}}\right\}$ have a ' δ-gap' from $\mathcal{C P}$.
- Construct a δ_{g}-net $\mathcal{G} \subseteq \Delta$; $|\mathcal{G}|$ depends on \mathcal{X} but independent of n
- There exists 'sufficiently large' $\mathcal{C}^{\prime \prime} \subseteq \mathcal{C}^{\prime} ; \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime \prime}, T_{\mathbf{x}, \mathbf{x}^{\prime}} \approx \hat{T}_{X, x^{\prime}} \in \mathcal{G}$.
- Proof uses Ramsey theory \Rightarrow Given code \mathcal{C} with k "covering couplings", \exists subcode \mathcal{C}^{\prime} (monochromatic clique) of size $\Omega\left(\left(\log \left(\left|\mathcal{C}^{\prime}\right|\right)\right)^{1 /(k+1)}\right)$.
- Need separate analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\widehat{T}_{X, X^{\prime}}$

Converse

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}^{\prime}, T_{\mathbf{x}}=T_{X}$.
- For converse, 'good' $\mathcal{C}^{\prime} \Rightarrow \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime}$, the self coupling $T_{\mathbf{x}, \mathbf{x}^{\prime}} \notin \mathcal{K}\left(T_{X}\right)$.
- \mathcal{C}^{\prime} self-couplings $\left\{T_{\mathrm{x}, \mathrm{x}^{\prime}}\right\}$ have a ' δ-gap' from $\mathcal{C P}$.
- Construct a δ_{g}-net $\mathcal{G} \subseteq \Delta$; $|\mathcal{G}|$ depends on \mathcal{X} but independent of n
- There exists 'sufficiently large' $\mathcal{C}^{\prime \prime} \subseteq \mathcal{C}^{\prime} ; \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime \prime}, T_{\mathbf{x}, \mathbf{x}^{\prime}} \approx \hat{T}_{X, x^{\prime}} \in \mathcal{G}$.
- Proof uses Ramsey theory \Rightarrow Given code \mathcal{C} with k "covering couplings", \exists subcode \mathcal{C}^{\prime} (monochromatic clique) of size $\Omega\left(\left(\log \left(\left|\mathcal{C}^{\prime}\right|\right)\right)^{1 /(k+1)}\right)$.
- Need separate analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\widehat{T}_{X, X^{\prime}}$

Constant composition
Codebook $\mathcal{C} \subseteq \mathcal{X}^{n}$

Symmetric self-coupling
code
$\mathcal{C}^{\prime \prime} \subseteq \mathcal{C}^{\prime}$

Converse

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}^{\prime}, T_{\mathbf{x}}=T_{X}$.
- For converse, 'good' $\mathcal{C}^{\prime} \Rightarrow \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime}$, the self coupling $T_{\mathbf{x}, \mathbf{x}^{\prime}} \notin \mathcal{K}\left(T_{X}\right)$.
- \mathcal{C}^{\prime} self-couplings $\left\{T_{\mathrm{x}, \mathrm{x}^{\prime}}\right\}$ have a ' δ-gap' from $\mathcal{C P}$.
- Construct a δ_{g}-net $\mathcal{G} \subseteq \Delta$; $|\mathcal{G}|$ depends on \mathcal{X} but independent of n
- There exists 'sufficiently large' $\mathcal{C}^{\prime \prime} \subseteq \mathcal{C}^{\prime} ; \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime \prime}, T_{\mathbf{x}, \mathbf{x}^{\prime}} \approx \hat{T}_{X, x^{\prime}} \in \mathcal{G}$.
- Proof uses Ramsey theory \Rightarrow Given code \mathcal{C} with k "covering couplings", \exists subcode \mathcal{C}^{\prime} (monochromatic clique) of size $\Omega\left(\left(\log \left(\left|\mathcal{C}^{\prime}\right|\right)\right)^{1 /(k+1)}\right)$.
- Need separate analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\widehat{T}_{X, X^{\prime}}$

Converse

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}^{\prime}, T_{\mathbf{x}}=T_{X}$.
- For converse, 'good' $\mathcal{C}^{\prime} \Rightarrow \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime}$, the self coupling $T_{\mathbf{x}, \mathbf{x}^{\prime}} \notin \mathcal{K}\left(T_{X}\right)$.
- \mathcal{C}^{\prime} self-couplings $\left\{T_{\mathrm{x}, \mathrm{x}^{\prime}}\right\}$ have a ' δ-gap' from $\mathcal{C P}$.
- Construct a δ_{g}-net $\mathcal{G} \subseteq \Delta ;|\mathcal{G}|$ depends on \mathcal{X} but independent of n
- There exists 'sufficiently large' $\mathcal{C}^{\prime \prime} \subseteq \mathcal{C}^{\prime} ; \forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{C}^{\prime \prime}, T_{\mathbf{x}, \mathbf{x}^{\prime}} \approx \hat{T}_{X, X^{\prime}} \in \mathcal{G}$.
- Proof uses Ramsey theory \Rightarrow Given code \mathcal{C} with k "covering couplings", \exists subcode \mathcal{C}^{\prime} (monochromatic clique) of size $\Omega\left(\left(\log \left(\left|\mathcal{C}^{\prime}\right|\right)\right)^{1 /(k+1)}\right)$.
- $\hat{T}_{X, X^{\prime}}$ corresp. to \mathcal{C}^{\prime} may be symmetric or asymmetric
- Need separate analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\hat{T}_{X, X^{\prime}}$

Symmetric Self-Couplings

Classical Plotkin bound for binary codes/Hamming distance

- Code $\mathcal{C} \subseteq\{0,1\}^{n}, d_{\text {min }}(\mathcal{C}) \geq \frac{n(1+\epsilon)}{2}, \epsilon>0, \quad \Rightarrow \quad|\mathcal{C}| \in \mathcal{O}\left(\frac{1}{\epsilon}\right)$.
"Geometric" proof:
- Map $\mathcal{C} \in\{0,1\}^{n}$ to $\overline{\mathcal{C}} \in\{-1,1\}^{n}$.
- $d_{\text {min }}(\mathcal{C}) \geq \frac{n(1+\epsilon)}{2} \Rightarrow\left\langle\overline{\mathbf{x}}, \overline{\mathbf{x}}^{\prime}\right\rangle \leq-\epsilon n$.
- Codewords $\overline{\mathrm{x}} \neq \overline{\mathrm{x}}^{\prime}$ make obtuse angles w.r.t. each other over \mathbb{R}^{n}.

Symmetric Self-Couplings

Generalized Plotkin bound

Useful "facts" [Hall '62]:

- Let CoP denote the set of co-positive matrices, i.e. symmetric matrices Q such that for any non-negative vector $\mathbf{x}, \mathbf{x}^{T} Q \mathbf{x} \geq 0$.
- The cone CoP of copositive matrices is dual to the cone $C P$ of completely positive matrices.
- Ignoring the (controllable) δ_{g} quantization deviation due to the grid, suppose $\mathcal{C}^{\prime \prime}$ s.t. all self-couplings exactly $\hat{T} \notin C P \Rightarrow$
$\exists Q \in C o P$ s.t. $\|Q\|_{F}=1,\langle Q, \hat{T}\rangle \leq-\epsilon$.

Asymmetric Self-Couplings

$\forall i<j, T\left(\underline{x_{i}}, \underline{x_{j}}\right)=T_{X X^{\prime}}$

- Constant composition codes with asymmetric joint types:
- Constant composition codes $\mathcal{C}: T\left(\underline{x}_{i}\right)=T\left(\underline{x}_{j}\right), \forall i, j$
- Asymmetric joint type: $\forall i<j, T\left(\underline{x}_{i}, \underline{x}_{j}\right)=T_{X Y} . T_{X Y}$ is asymmetric.

Asymmetric Self-Couplings

Example

Let $\Sigma=\mathbb{Z}_{3}=\{0,1,2\}, N=3$, and $\left(X_{1}, X_{2}, X_{3}\right)=(U, U+A, U+B)$, where U is uniform and (A, B) are independent of U, jointly distributed as:

a	b	$\operatorname{Pr}[A=a, B=b]$
0	1	$2 / 7$
1	1	$2 / 7$
1	0	$1 / 7$
1	2	$1 / 7$
2	0	$1 / 7$

- The pairs $\left(X_{1}, X_{2}\right),\left(X_{1}, X_{3}\right)$ and $\left(X_{2}, X_{3}\right)$ are identically distributed as T

$$
T=\frac{1}{21}\left[\begin{array}{lll}
2 & 4 & 1 \\
1 & 2 & 4 \\
4 & 1 & 2
\end{array}\right]
$$

- Asymmetry:

$$
\operatorname{asymm}(X, Y) \triangleq \max _{x, y \in \Sigma} \operatorname{Pr}[X=x, Y=y]-\operatorname{Pr}[X=y, Y=x]=3 / 21
$$

Asymmetric Self-Couplings

Can find code with asymmetric couplings via LP

- Suppose we want to find the largest $\operatorname{asymm}(X, Y)$ for $N \geq 3$ random variables X_{1}, \cdots, X_{N} with each taking value from a size 3 alphabet \mathcal{X}.
- We can formulate the problem as a linear program.

$$
\begin{array}{lr}
\operatorname{maximize} & P_{X_{1} X_{2}}(1,2)-P_{X_{1} X_{2}}(2,1) \\
\text { subject to } & P_{X_{1}}=P_{X_{i}}, \forall i \in[N] \\
& P_{X_{1} X_{2}}=P_{X_{j} X_{k}}, \forall j<k \\
\text { variables } & P_{X_{1} X_{2} \cdots X_{N}} \in \Delta\left(|\mathcal{X}|^{N}\right)
\end{array}
$$

- The number of variables is exponential in N.

Asymmetric Self-Couplings

$$
|\Sigma|=3 \text { w.l.o.g. }
$$

$\exists i \neq j$ such that $T_{i j} \neq T_{j i}$

- Given any asymmetric joint type over finite alphabet \mathcal{X}
- Find $i \neq j$ such that $T_{i j} \neq T_{j i}$.
- Combine all other symbols in $\mathcal{X} \backslash\{i, j\}$ into a single symbol
- W.l.o.g. for tradeoff between code-size and asymmetry, assume $|\Sigma|=3$.

Asymmetric Self-Couplings

When N is large, the asymmetry must go to zero. More precisely,

Theorem

Assume asymm $(X, Y)>\epsilon$. Let X_{1}, \ldots, X_{N} is a sequence of random variables such that for every $1 \leq i<j \leq N$, the joint type of $\left(X_{i}, X_{j}\right)$ is statistically $\epsilon / 2$-close to (X, Y). Then $N \leq \exp K /(\operatorname{asymm}(X, Y)-\epsilon)$ for some universal constant K.

Asymmetric Self-Couplings

Lemma

There is an embedding $\rho: \Sigma \rightarrow \mathbb{C}_{3}^{\times}$such that

$$
\operatorname{Im} \mathbb{E}[\rho(X) \overline{\rho(Y)}] \geq \frac{\sqrt{3}}{2} \cdot \operatorname{asymm}(X, Y)
$$

Asymmetric Self-Couplings

Proof:

ρ_{1}

ρ_{2}

	x	\star	y
x	0	0	$\frac{\sqrt{3}}{2}$
\star	0	0	$\frac{\sqrt{3}}{2}$
y	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{2}$	0

ρ_{3}

	x	\star	y
x	0	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$
\star	$\frac{\sqrt{3}}{2}$	0	$-\frac{\sqrt{3}}{2}$
y	$-\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	0

- We show that at least one of the following embeddings $\rho_{1}, \rho_{2}, \rho_{3}:\{x, y, \star\} \rightarrow \mathbb{C}_{3}^{\times}$satisfies the claim:

	x	\star	y
ρ_{1}	$\bar{\zeta}$	ζ	ζ
ρ_{2}	$\bar{\zeta}$	$\bar{\zeta}$	ζ
ρ_{3}	$\bar{\zeta}$	1	ζ

Asymmetric Self-Couplings

Proof:

- Observe that

$$
\mathbb{E}_{X, Y} \mathbb{E}_{i \sim\{1,2,3\}}\left[\operatorname{Im} \rho_{i}(X) \overline{\rho_{i}(Y)}\right]=\frac{\sqrt{3}}{2} \cdot(\operatorname{Pr}[X=x, Y=y]-\operatorname{Pr}[X=y, Y=x])
$$

- By linearity of the \mathbb{E} and Im operators the desired inequality must hold for at least one of $\rho_{1}, \rho_{2}, \rho_{3}$.

Asymmetric Self-Couplings
 A Game

Definition (Zero-sum game G_{N})

- Alice chooses a function $f:\{1, \ldots, N\} \rightarrow \mathbb{C}_{3}^{\times}=\{1, \zeta, \bar{\zeta}\}$, where \mathbb{C}_{3}^{\times}consists of cube roots of unity.
- Bob chooses a pair of indices $1 \leq I<J \leq N$.
- Bob pays Alice $\operatorname{im} f(I) \overline{f(J)}$ dollars.

Asymmetric Self-Couplings A Game

Observations about the game:

- This game has a unique value (by von Neumann's min-max theorem).
- For every N the value G_{N} can be shown to be strictly positive.
- Alice can ensure an expected payout of $\Omega(1 /(N-1))$ by playing the following mixed strategy:

$$
f(x)= \begin{cases}\zeta, & \text { if } x \leq K \\ 1, & \text { otherwise }\end{cases}
$$

where the cutoff K is chosen uniformly at random from $\{1, \ldots, N-1\}$.

Asymmetric Self-Couplings A Game

Lemma

The value of G_{N} is at most $O(1 / \log N)$.
Proof via:

- Fourier analysis over the Boolean hypercube
- Gibbs phenomenon

In Conclusion

Rate and Review!

When are large codes

 possible for AVCs?Location: Bièvre, Level 5

Session: Codes and Information Theoretic
Cryptography

$17: 40$ Monday $18: 00$ $8 / 7 / 2019$	M Add to My Agenda
Author	
Xishi (Nicholas) Wang	
Amitalok J. Budkuley	$>$
Andrej Bogdanov	\gg
Sidharth Jaggi	

We study a general \{zit Omniscient Arbitrarily Varying Channel\} (AVC) problem where Alice wishes to communicate a message to receiver Bob by inputting a length- $\$ \mathrm{n} \$$ vector $\$ \mathrm{zvec}\{\mathrm{x}\}$ \$ to a channel. Jammer James observes $\$ \mathrm{zvec}\{x\} \$$, and as a function of \$zvec\{x\}\$ chooses a state sequence \$zvec\{s\}\$. Bob observes \$zvec\{y\}\$ (such that channel inputs and outputs are related component-wise as \$y_i = $\mathrm{w}\left(\mathrm{x}_{\mathrm{L}} \mathrm{i}, \mathrm{s}\right.$ _i $)$ \$ for some deterministic function \$w(.,.)\$) from which he must estimate $\$ \mathrm{~m} \$$ with no error. Input

