General adversarial channels When do large codes exist?

Sidharth "Sid" Jaggi

The Chinese University of Hong Kong

joint work with

Xishi Wang

Amitalok J. Budkuley

Andrej Bogdanov

• Given a joint p.m.f. $P_{X,X'}$ over alphabet $\mathcal{X} \times \mathcal{X}$, when is it possible to create a "long" sequence $\{X_1, X_2, \ldots, X_m\}$ such that each (ordered) pair (X_i, X_j) is $(\epsilon$ -approximately) distributed as $P_{X,X'}$?

イロト 不同下 イヨト イヨト

- Given a joint p.m.f. $P_{X,X'}$ over alphabet $\mathcal{X} \times \mathcal{X}$, when is it possible to create a "long" sequence $\{X_1, X_2, \ldots, X_m\}$ such that each (ordered) pair (X_i, X_j) is $(\epsilon$ -approximately) distributed as $P_{X,X'}$?
- If $P_{X,X'}(x,x') = \sum_{u} P_U(u) P_{X|u}(x) P_{X|u}(x')$, can construct arbitrarily long sequences.

イロト 不得 とくき とくきとう き

- Given a joint p.m.f. $P_{X,X'}$ over alphabet $\mathcal{X} \times \mathcal{X}$, when is it possible to create a "long" sequence $\{X_1, X_2, \ldots, X_m\}$ such that each (ordered) pair (X_i, X_j) is $(\epsilon$ -approximately) distributed as $P_{X,X'}$?
- If $P_{X,X'}(x,x') = \sum_{u} P_U(u) P_{X|u}(x) P_{X|u}(x')$, can construct arbitrarily long sequences.
- Set of such $P_{X,X'}$ called *completely positive distributions*, have been studied in convex optimization. Forms a convex set.

イロン イロン イヨン イヨン 二年

- Given a joint p.m.f. $P_{X,X'}$ over alphabet $\mathcal{X} \times \mathcal{X}$, when is it possible to create a "long" sequence $\{X_1, X_2, \ldots, X_m\}$ such that each (ordered) pair (X_i, X_j) is $(\epsilon$ -approximately) distributed as $P_{X,X'}$?
- If $P_{X,X'}(x,x') = \sum_{u} P_U(u) P_{X|u}(x) P_{X|u}(x')$, can construct arbitrarily long sequences.
- Set of such $P_{X,X'}$ called *completely positive distributions*, have been studied in convex optimization. Forms a convex set.
- If P_{X,X'} is at least ε-far from being completely positive, then can only exist sequences of length O (exp (¹/_ε)).

・ロト ・四ト ・ヨト ・ヨト 三連

A standard communication scenario...

-2

A standard communication scenario...

Aim: To communicate a 'large' message 'reliably' to the receiver over the *random* noise channel.

3

・ロン ・回 と ・ヨン ・ヨン

An adversarial communication scenario...

-큰

An adversarial communication scenario...

Aim: To communicate a 'large' message 'reliably' to the receiver over the $\underline{adversarial}$ noise channel .

-

イロン イ団と イヨン イヨン

An adversarial communication scenario...

Aim: To communicate a 'large' message 'reliably' to the receiver over the <u>adversarial</u> noise channel .

-

イロト イヨト イヨト イヨト

・ロン ・回 と ・ヨン ・ヨン

イロト イヨト イヨト イヨト

Example: The Binary communication setup

- Channel $W_{Y|X,S}$ is *state-deterministic* with output $Y = X \oplus S$.
- Alice's input constraint $\Gamma_X = \{\mathbf{x} : wt_H(\mathbf{x}) \le nw\}, \ 0 \le w \le 1/2.$
- James' state constraint $\Lambda_S = \{\mathbf{s} : wt_H(\mathbf{s}) \le np\}, \ 0 \le p \le 1/2.$
- Denoted A-BSC(p)

-

イロト 不同下 イヨト イヨト

イロト イヨト イヨト イヨト

In this talk, only symbolwise, state-deterministic channels $W_{Y|X,S}$.

- **Symbolwise** channel: *y_i* depends only on *x_i*, *s_i*.
 - Example: A-BSC(p) channel shown before, with $y_i = x_i \oplus s_i$.
 - Non-example: Deletion channels
- State-deterministic channel: y_i is a deterministic function of x_i and s_i.
 - Example: A-BSC(p) channel shown before, with $y_i = x_i \oplus s_i$.
 - Non-example: $W_{Y|X,S}(y|x,s) = \begin{cases} x \oplus s & \text{with probability 1-q} \\ x \oplus s \oplus 1 & \text{with probability q} \end{cases}$

(_) (]) (]) (])

- Three key parameters: the *channel*, Alice's *input constraints* and James' *state constraints*.
 - Arbitrarily Varying Channel (AVC) is specified by $\mathcal{A} = (W_{Y|X,S}, \Gamma_X, \Lambda_S)$.
- User/Adversary strategies:
 - Alice & Bob pick a feasible (acc. to Γ_X) codebook C.
 - James picks a feasible (acc. to Λ_S) jamming sequence s (as a function of C and x).
 - Private randomization turns out not to benefit any of Alice/Bob/James.

イロト 不得下 イヨト イヨト 二日

• AVC *A reliability* criterion: Zero error (requiring vanishing-error turns out not to change the problem for state-deterministic AVCs)

$$\forall m, \forall s, \hat{m} = m$$

• Principal metric of interest: optimum throughput or capacity

$$C := \sup\{R : \text{`coding rate'} R \text{ is `achievable'}\}.$$

イロト イポト イヨト イヨト

• AVC *A reliability* criterion: Zero error (requiring vanishing-error turns out not to change the problem for state-deterministic AVCs)

$$\forall m, \forall \mathbf{s}, \hat{m} = m$$

• Principal metric of interest: optimum throughput or capacity

 $C := \sup\{R : \text{`coding rate'} R \text{ is `achievable'}\}.$

• In this talk, just want to understand precisely when R > 0 is possible.

Example: Capacity for the Binary communication setup

Sidharth Jaggi (CUHK)

<ロ> (日) (日) (日) (日) (日)

Example: Capacity for the Binary communication setup

Sidharth Jaggi (CUHK)

3

イロン イヨン イヨン イヨン

Example: Capacity for the Binary communication setup

Key Fact

Capacity for A-BSC(p) is 'strictly' smaller than for standard BSC(p)!!

イロト イ団ト イヨト イヨト

Observation: Constant Composition codes suffice

- Constant composition (CC) code: All codewords of the same type.
- Fact: Number of types polynomial in n (at most $(n+1)^{|\mathcal{X}|}$).
- Sub-codebook of largest size $\mathcal{C}' \subseteq \mathcal{C}$: essentially of same rate.
 - Vanishing (in n) rate loss in C' vis-à-vis C.
 - ▶ Codebook C robust to errors \Rightarrow sub-codebook C' also robust to errors.
- So we henceforth analyze only constant composition codes.

イロト 不同下 イヨト イヨト

Observation: Constant Composition codes suffice

- Constant composition (CC) code: All codewords of the same type.
- Fact: Number of types polynomial in n (at most $(n+1)^{|\mathcal{X}|}$).
- Sub-codebook of largest size $\mathcal{C}' \subseteq \mathcal{C}$: essentially of same rate.
 - Vanishing (in n) rate loss in C' vis-à-vis C.
 - ▶ Codebook C robust to errors \Rightarrow sub-codebook C' also robust to errors.
- So we henceforth analyze only constant composition codes.

イロト 不同下 イヨト イヨト

Joint types or Couplings

• Important: Properties of joint pair types of codewords in $\mathcal{C}' \subseteq \mathcal{C}$.

Definition (Couplings/Self-couplings)

- The joint type of a pair of vectors or a pair-type is called a coupling.
- A coupling $T_{X,X'}$ with $T_X = T_{X'}$ is called a self-coupling.

・ロン ・回 と ・ヨン ・ヨン

Example: Coupling

$$\begin{aligned} \mathbf{X} \quad & \mathbf{X} \quad \boxed{0 \, 1 \, 1 \, 0 \, 0 \, 2 \, 2 \, 1 \, 0 \, 2 \, 0 \, 1 \, 1 \, 0 \, 1 \, 2 \, 0 \, 1 \, 0 \, 2 \, 1 \, 1 \, 0 \, 1 \, 0 \, 2 \, 1 \, 0 \, 2 \, 0 \, 1 \, 0 \, 1 \, 0 \, 1 \, 0 \, 1 \, 0 \, 1 \\ \mathbf{X}' \quad & \mathbf{X}' \quad \boxed{0 \, 1 \, 0 \, 0 \, 2 \, 2 \, 0 \, 1 \, 2 \, 2 \, 1 \, 0 \, 0 \, 1 \, 0 \, 2 \, 0 \, 1 \, 0 \, 2 \, 1 \, 0 \, 1 \, 0 \, 1 \\ T_X = T_{X'} = \begin{pmatrix} 10 & 0 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \quad & \mathbf{T}_{X,X'} = \frac{1}{25} \begin{bmatrix} 4 & 2 & 4 \\ 4 & 4 & 1 \\ 2 & 3 & 1 \end{bmatrix} \\ \bullet \quad C_{Hamming} \triangleq \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \Rightarrow d_H(\mathbf{x}, \mathbf{x}') = n \, \langle C_{Hamming}, T_{X,X'} \rangle \\ \bullet \quad C_{\ell_1} \triangleq \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix} \Rightarrow d_1(\mathbf{x}, \mathbf{x}') \triangleq \sum_{i=1}^n |x_i - x_i'| = n \, \langle C_1, T_{X,X'} \rangle \end{aligned}$$

-2

イロン イヨン イヨン イヨン

Adversarial channels: When do large codes exist?

イロン イロン イヨン イヨン 三油

What else is possible?

-2

・ロン ・四 と ・ ヨ と ・ ヨ と

Observation 1:

- If $(\mathbf{x}, \mathbf{x}')$ "confusable" by \mathcal{A} , for any permutation π , $(\pi(\mathbf{x}), \pi(\mathbf{x}'))$ also confusable by \mathcal{A} . Hence $(\mathbf{x}, \mathbf{x}')$ confusable $\Leftrightarrow T(\mathbf{x}, \mathbf{x}')$ confusable
 - Not necessarily true if channel not symbolwise, for instance for deletion channels.

Observation 2:

• If $T(\mathbf{x}, \mathbf{x}')$ "confusable" by $\mathcal{A}, T(\mathbf{x}, \mathbf{x}')$ also confusable by \mathcal{A} .

Observation 3 (Convexity):

• By time-sharing, the set (denoted $\mathcal{K}(\mathcal{A})$) of confusable self-couplings is *convex*

<u>Observation 4:</u> (Constraints from A)

 $T_{XX'}$ confusable $\Rightarrow \exists T_{XX'SS'Y}$ such that

- $\frac{(Consistency with T_{XX'})}{\forall (x,x') \in \mathcal{X} \times \mathcal{X}, \sum_{s,s',y} T_{XX'SS'Y}(x,x',s,s',y) = T_{XX'}(x,x').}$
- $\frac{(Consistency with input constraints \Lambda_{S}):}{T_{S} \triangleq \sum_{x,x',s',y} T_{XX'SS'Y}(x,x',s,s',y) \text{ satisfies } T_{S} \in \Lambda_{S}, T_{S'} \triangleq \sum_{x,x',s,y} T_{XX'SS'Y}(x,x',s,s',y) \text{ satisfies } T_{S'} \in \Lambda_{S}.$ • $\frac{(Consistency with channel W_{Y|X,S}):}{T_{XSY} \triangleq \sum_{x',s'} T_{XX'SS'Y}(x,x',s,s',y) \text{ compatible with } W_{Y|X,S},$
 - $T_{X'S'Y} \triangleq \sum_{x,s} T_{XX'SS'Y}(x, x', s, s', y)$ compatible with $W_{Y|X,S}$.
- All constraints linear, hence checking to see if a given $T_{XX'}$ is in the confusability set \mathcal{K} is a computationally efficient convex optimization problem (given membership oracle for Λ_S).
- If Λ_S is a polytope (common in many classical models e.g. noise weight $\leq pn$) then \mathcal{K} also a polytope.

イロン 不良と 不良と 不良と

Confusability set properties:

- Characterized by subset $\mathcal{K}(\mathcal{A})$ of self-couplings $\mathcal{J}(P_X)$.
- Convex.
- Transpositionally symmetric.
- Efficiently computable.
- $diag(P_X)$ always in $\mathcal{K}(\mathcal{A})$
- Polytope, if Λ_S a polytope.

・ロト ・回ト ・ヨト ・ヨト

- Can construct AVCs \mathcal{A} and $\overline{\mathcal{A}}$ that are distinct (for instance, with different output alphabets \mathcal{Y}), but with the same confusability polytope \mathcal{K} .
- Hence good codes for \mathcal{A} also good for $\bar{\mathcal{A}}$ \Rightarrow capacity regions the same.
- Confusability polytopes fundamentally characterize capacities of state-deterministic AVCs!
- Not true for non-state-deterministic AVCs. Can construct non-SD AVCs with the same confusability polytope, but provably different capacities.

- So if the completely positive slice CP(P_X) contains self-couplings outside the confusability set K(A), a positive rate is possible.
- For instance, if $\mathbf{P}_X \cdot \mathbf{P}_X^{T} \notin \mathcal{K}(\mathcal{A})$, then a positive rate is possible.
 - Indeed, in this case, a more careful analysis shows a "Gilbert-Varshamov (GV) type" (greedy packing) achievable rate (matching GV bound in known cases):

$$\max_{P_X \in \Gamma_X} \min_{P_{XX'} \in \mathcal{K}(\mathcal{A})} I(X; X')$$

Same rate also achievable via random coding + expurgation. Rate governed by large-deviations exponent.

- If $\mathbf{P}_X \cdot \mathbf{P}_X^T \in \mathcal{K}(\mathcal{A})$, GV-type rate = 0.
- However, if \exists completely positive distribution $P_{XX'} = \sum_{u} P_U(u) \mathbf{P}_{X|u} \cdot \mathbf{P}_{X|u}^T$ s.t. $P_{XX'} \notin \mathcal{K}(\mathcal{A})$, positive rate still possible via cloud codes.
- Can construct examples of such AVCs \Rightarrow GV codes \subsetneq cloud codes.
 - GV-type rate for cloud codes:

$$\begin{array}{l} \max \\ P_X \in \Gamma_X, \\ P_{XX'} \in \mathcal{CP}(P_X) \end{array} \xrightarrow{P_{XX'} \in \mathcal{K}_U(\mathcal{A})} I(X; X' | U) \\ \end{array}$$

• If all completely positive couplings always within the confusability polytope, i.e., for $P_X \in \Gamma_X$, $CP(P_X) \subseteq \mathcal{K}(\mathcal{A})$, then prior arguments do not give positive rate.

- If all completely positive couplings always within the confusability polytope, i.e., for $P_X \in \Gamma_X$, $CP(P_X) \subseteq \mathcal{K}(\mathcal{A})$, then prior arguments do not give positive rate.
- Indeed, other half of main result shows no positive rate possible in this scenario.

• Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in C'$, $T_{\mathbf{x}} = T_X$.

- For converse, 'good' $\mathcal{C}' \Rightarrow \forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}'$, the self coupling $\mathcal{T}_{\mathbf{x},\mathbf{x}'} \notin \mathcal{K}(\mathcal{T}_X)$.
- Construct a δ_g -net $\mathcal{G} \subseteq \Delta$; $|\mathcal{G}|$ depends on \mathcal{X} but *independent of n*
- There exists 'sufficiently large' $\mathcal{C}'' \subseteq \mathcal{C}'$; $\forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}''$, $T_{\mathbf{x}, \mathbf{x}'} \approx \hat{T}_{X, X'} \in \mathcal{G}$.
 - ► Proof uses Ramsey theory \Rightarrow Given code C with k "covering couplings", \exists subcode C' (monochromatic clique) of size $\Omega((\log(|C'|))^{1/(k+1)})$.
- $\hat{\mathcal{T}}_{X,X'}$ corresp. to \mathcal{C}' may be symmetric or asymmetric
 - ▶ Need *separate* analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\hat{T}_{X,X'}$

• Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in C'$, $T_{\mathbf{x}} = T_X$.

- For converse, 'good' $\mathcal{C}' \Rightarrow \forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}'$, the self coupling $T_{\mathbf{x},\mathbf{x}'} \notin \mathcal{K}(T_X)$.
- Construct a δ_g -net $\mathcal{G} \subseteq \Delta$; $|\mathcal{G}|$ depends on \mathcal{X} but *independent of n*
- There exists 'sufficiently large' $\mathcal{C}'' \subseteq \mathcal{C}'$; $\forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}''$, $\mathcal{T}_{\mathbf{x},\mathbf{x}'} \approx \hat{\mathcal{T}}_{X,X'} \in \mathcal{G}$.
 - ▶ Proof uses Ramsey theory \Rightarrow Given code C with k "covering couplings", \exists subcode C' (monochromatic clique) of size $\Omega((\log(|C'|))^{1/(k+1)})$.
- $\hat{T}_{X,X'}$ corresp. to \mathcal{C}' may be symmetric or asymmetric
 - ▶ Need *separate* analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\hat{T}_{X,X'}$

(물) (물)

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in C'$, $T_{\mathbf{x}} = T_X$.
- For converse, 'good' $\mathcal{C}' \Rightarrow \forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}'$, the self coupling $T_{\mathbf{x},\mathbf{x}'} \notin \mathcal{K}(T_X)$.
- Construct a δ_g -net $\mathcal{G} \subseteq \Delta$; $|\mathcal{G}|$ depends on \mathcal{X} but *independent of n*
- There exists 'sufficiently large' $\mathcal{C}'' \subseteq \mathcal{C}'$; $\forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}''$, $T_{\mathbf{x}, \mathbf{x}'} \approx \hat{T}_{X, X'} \in \mathcal{G}$.
 - ► Proof uses Ramsey theory \Rightarrow Given code C with k "covering couplings", \exists subcode C' (monochromatic clique) of size $\Omega((\log(|C'|))^{1/(k+1)})$.
- $\hat{T}_{X,X'}$ corresp. to \mathcal{C}' may be symmetric or asymmetric
 - ▶ Need *separate* analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\hat{T}_{X,X'}$

(물) (물)

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in C'$, $T_{\mathbf{x}} = T_X$.
- For converse, 'good' $\mathcal{C}' \Rightarrow \forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}'$, the self coupling $T_{\mathbf{x},\mathbf{x}'} \notin \mathcal{K}(T_X)$.
- Construct a δ_g -net $\mathcal{G} \subseteq \Delta$; $|\mathcal{G}|$ depends on \mathcal{X} but *independent of n*
- There exists 'sufficiently large' $\mathcal{C}'' \subseteq \mathcal{C}'$; $\forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}''$, $T_{\mathbf{x}, \mathbf{x}'} \approx \hat{T}_{X, X'} \in \mathcal{G}$.
 - ► Proof uses Ramsey theory \Rightarrow Given code C with k "covering couplings", \exists subcode C' (monochromatic clique) of size $\Omega((\log(|C'|))^{1/(k+1)})$.
- $\hat{T}_{X,X'}$ corresp. to \mathcal{C}' may be symmetric or asymmetric
 - ▶ Need *separate* analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\hat{T}_{X,X'}$

(注) < 注) < 注) < 1

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in C'$, $T_{\mathbf{x}} = T_X$.
- For converse, 'good' $\mathcal{C}' \Rightarrow \forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}'$, the self coupling $T_{\mathbf{x},\mathbf{x}'} \notin \mathcal{K}(T_X)$.
- Construct a δ_g -net $\mathcal{G} \subseteq \Delta$; $|\mathcal{G}|$ depends on \mathcal{X} but *independent of n*
- There exists 'sufficiently large' $\mathcal{C}'' \subseteq \mathcal{C}'$; $\forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}''$, $T_{\mathbf{x}, \mathbf{x}'} \approx \hat{T}_{X, X'} \in \mathcal{G}$.
 - ► Proof uses Ramsey theory \Rightarrow Given code C with k "covering couplings", \exists subcode C' (monochromatic clique) of size $\Omega((\log(|C'|))^{1/(k+1)})$.
- $\hat{T}_{X,X'}$ corresp. to \mathcal{C}' may be symmetric or asymmetric
 - ▶ Need *separate* analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\hat{T}_{X,X'}$

(注) < 注) < 注) < 1

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in C'$, $T_{\mathbf{x}} = T_X$.
- For converse, 'good' $\mathcal{C}' \Rightarrow \forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}'$, the self coupling $T_{\mathbf{x},\mathbf{x}'} \notin \mathcal{K}(T_X)$.
- Construct a δ_g -net $\mathcal{G} \subseteq \Delta$; $|\mathcal{G}|$ depends on \mathcal{X} but *independent of n*
- There exists 'sufficiently large' $\mathcal{C}'' \subseteq \mathcal{C}'$; $\forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}''$, $T_{\mathbf{x}, \mathbf{x}'} \approx \hat{T}_{X, X'} \in \mathcal{G}$.
 - ► Proof uses Ramsey theory \Rightarrow Given code C with k "covering couplings", \exists subcode C' (monochromatic clique) of size $\Omega((\log(|C'|))^{1/(k+1)})$.
- $\hat{T}_{X,X'}$ corresp. to \mathcal{C}' may be symmetric or asymmetric
 - ▶ Need *separate* analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\hat{T}_{X,X'}$

(注) ▲ 注 ▶

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in C'$, $T_{\mathbf{x}} = T_X$.
- For converse, 'good' $\mathcal{C}' \Rightarrow \forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}'$, the self coupling $T_{\mathbf{x},\mathbf{x}'} \notin \mathcal{K}(T_X)$.
- Construct a δ_g -net $\mathcal{G} \subseteq \Delta$; $|\mathcal{G}|$ depends on \mathcal{X} but *independent of n*
- There exists 'sufficiently large' $\mathcal{C}'' \subseteq \mathcal{C}'$; $\forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}''$, $T_{\mathbf{x}, \mathbf{x}'} \approx \hat{T}_{X, X'} \in \mathcal{G}$.
 - ▶ Proof uses Ramsey theory \Rightarrow Given code C with k "covering couplings", \exists subcode C' (monochromatic clique) of size $\Omega((\log(|C'|))^{1/(k+1)})$.
- $\hat{T}_{X,X'}$ corresp. to \mathcal{C}' may be symmetric or asymmetric
 - ▶ Need *separate* analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\hat{T}_{X,X'}$

(注) ▲ 注 ▶

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in C'$, $T_{\mathbf{x}} = T_X$.
- For converse, 'good' $\mathcal{C}' \Rightarrow \forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}'$, the self coupling $T_{\mathbf{x},\mathbf{x}'} \notin \mathcal{K}(T_X)$.
- Construct a δ_g -net $\mathcal{G} \subseteq \Delta$; $|\mathcal{G}|$ depends on \mathcal{X} but *independent of n*
- There exists 'sufficiently large' $\mathcal{C}'' \subseteq \mathcal{C}'$; $\forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}''$, $T_{\mathbf{x}, \mathbf{x}'} \approx \hat{T}_{X, X'} \in \mathcal{G}$.
 - ► Proof uses Ramsey theory \Rightarrow Given code C with k "covering couplings", \exists subcode C' (monochromatic clique) of size $\Omega((\log(|C'|))^{1/(k+1)})$.
- $\hat{T}_{X,X'}$ corresp. to \mathcal{C}' may be symmetric or asymmetric
 - ▶ Need *separate* analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\hat{T}_{X,X'}$

(물) (물)

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}'$, $T_{\mathbf{x}} = T_X$.
- For converse, 'good' $\mathcal{C}' \Rightarrow \forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}'$, the self coupling $T_{\mathbf{x}, \mathbf{x}'} \notin \mathcal{K}(T_X)$.
 - C' self-couplings $\{T_{\mathbf{x},\mathbf{x}'}\}$ have a ' δ -gap' from $C\mathcal{P}$.
- Construct a δ_g -net $\mathcal{G} \subseteq \Delta$; $|\mathcal{G}|$ depends on \mathcal{X} but *independent of n*
- There exists 'sufficiently large' $\mathcal{C}'' \subseteq \mathcal{C}'$; $\forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}''$, $T_{\mathbf{x},\mathbf{x}'} \approx \hat{T}_{X,X'} \in \mathcal{G}$.
 - ▶ Proof uses Ramsey theory \Rightarrow Given code C with k "covering couplings", \exists subcode C' (monochromatic clique) of size $\Omega((\log(|C'|))^{1/(k+1)})$.
- $\hat{T}_{X,X'}$ corresp. to \mathcal{C}' may be symmetric or asymmetric
 - ▶ Need *separate* analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\hat{T}_{X,X'}$

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}'$, $T_{\mathbf{x}} = T_X$.
- For converse, 'good' $\mathcal{C}' \Rightarrow \forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}'$, the self coupling $T_{\mathbf{x}, \mathbf{x}'} \notin \mathcal{K}(T_X)$.
 - C' self-couplings $\{T_{\mathbf{x},\mathbf{x}'}\}$ have a ' δ -gap' from $C\mathcal{P}$.
- Construct a δ_g -net $\mathcal{G} \subseteq \Delta$; $|\mathcal{G}|$ depends on \mathcal{X} but *independent of n*
- There exists 'sufficiently large' $\mathcal{C}'' \subseteq \mathcal{C}'$; $\forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}''$, $T_{\mathbf{x},\mathbf{x}'} \approx \hat{T}_{X,X'} \in \mathcal{G}$.
 - ▶ Proof uses Ramsey theory \Rightarrow Given code C with k "covering couplings", \exists subcode C' (monochromatic clique) of size $\Omega((\log(|C'|))^{1/(k+1)})$.
- $\hat{T}_{X,X'}$ corresp. to \mathcal{C}' may be symmetric or asymmetric
 - ▶ Need *separate* analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\hat{T}_{X,X'}$

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}'$, $T_{\mathbf{x}} = T_X$.
- For converse, 'good' $\mathcal{C}' \Rightarrow \forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}'$, the self coupling $T_{\mathbf{x},\mathbf{x}'} \notin \mathcal{K}(T_X)$.
 - C' self-couplings $\{T_{\mathbf{x},\mathbf{x}'}\}$ have a ' δ -gap' from $C\mathcal{P}$.
- Construct a δ_g -net $\mathcal{G} \subseteq \Delta$; $|\mathcal{G}|$ depends on \mathcal{X} but *independent of n*
- There exists 'sufficiently large' $\mathcal{C}'' \subseteq \mathcal{C}'$; $\forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}''$, $T_{\mathbf{x}, \mathbf{x}'} \approx \hat{T}_{X, X'} \in \mathcal{G}$.
 - ▶ Proof uses Ramsey theory \Rightarrow Given code C with k "covering couplings", \exists subcode C' (monochromatic clique) of size $\Omega((\log(|C'|))^{1/(k+1)})$.
- $\hat{T}_{X,X'}$ corresp. to \mathcal{C}' may be symmetric or asymmetric
 - ▶ Need *separate* analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\hat{T}_{X,X'}$

(글) ★ 글 ▶ ... 글

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}'$, $T_{\mathbf{x}} = T_X$.
- For converse, 'good' $\mathcal{C}' \Rightarrow \forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}'$, the self coupling $T_{\mathbf{x},\mathbf{x}'} \notin \mathcal{K}(T_X)$.
 - C' self-couplings $\{T_{\mathbf{x},\mathbf{x}'}\}$ have a ' δ -gap' from $C\mathcal{P}$.
- Construct a δ_g -net $\mathcal{G} \subseteq \Delta$; $|\mathcal{G}|$ depends on \mathcal{X} but *independent of n*
- There exists 'sufficiently large' $\mathcal{C}'' \subseteq \mathcal{C}'$; $\forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}''$, $T_{\mathbf{x}, \mathbf{x}'} \approx \hat{T}_{X, X'} \in \mathcal{G}$.
 - ▶ Proof uses Ramsey theory \Rightarrow Given code C with k "covering couplings", \exists subcode C' (monochromatic clique) of size $\Omega((\log(|C'|))^{1/(k+1)})$.
- $\hat{T}_{X,X'}$ corresp. to \mathcal{C}' may be symmetric or asymmetric
 - ▶ Need *separate* analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\hat{T}_{X,X'}$

(글) ★ 글 ▶ ... 글

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}'$, $T_{\mathbf{x}} = T_X$.
- For converse, 'good' $\mathcal{C}' \Rightarrow \forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}'$, the self coupling $T_{\mathbf{x},\mathbf{x}'} \notin \mathcal{K}(T_X)$.
 - C' self-couplings $\{T_{\mathbf{x},\mathbf{x}'}\}$ have a ' δ -gap' from $C\mathcal{P}$.
- Construct a δ_g -net $\mathcal{G} \subseteq \Delta$; $|\mathcal{G}|$ depends on \mathcal{X} but *independent of n*
- There exists 'sufficiently large' $\mathcal{C}'' \subseteq \mathcal{C}'$; $\forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}''$, $\mathcal{T}_{\mathbf{x},\mathbf{x}'} \approx \hat{\mathcal{T}}_{X,X'} \in \mathcal{G}$.
 - ► Proof uses Ramsey theory \Rightarrow Given code C with k "covering couplings", \exists subcode C' (monochromatic clique) of size $\Omega((\log(|C'|))^{1/(k+1)})$.

• $\hat{T}_{X,X'}$ corresp. to \mathcal{C}' may be symmetric or asymmetric

▶ Need *separate* analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\hat{T}_{X,X'}$

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}'$, $T_{\mathbf{x}} = T_X$.
- For converse, 'good' $\mathcal{C}' \Rightarrow \forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}'$, the self coupling $T_{\mathbf{x},\mathbf{x}'} \notin \mathcal{K}(T_X)$.
 - C' self-couplings $\{T_{\mathbf{x},\mathbf{x}'}\}$ have a ' δ -gap' from $C\mathcal{P}$.
- Construct a δ_g -net $\mathcal{G} \subseteq \Delta$; $|\mathcal{G}|$ depends on \mathcal{X} but *independent of n*
- There exists 'sufficiently large' $\mathcal{C}'' \subseteq \mathcal{C}'$; $\forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}''$, $T_{\mathbf{x}, \mathbf{x}'} \approx \hat{T}_{X, X'} \in \mathcal{G}$.
 - ▶ Proof uses Ramsey theory \Rightarrow Given code C with k "covering couplings", \exists subcode C' (monochromatic clique) of size $\Omega((\log(|C'|))^{1/(k+1)})$.
- $\hat{T}_{X,X'}$ corresp. to \mathcal{C}' may be symmetric or asymmetric
 - Need separate analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) T_{X,X'}

(문) (문) 문

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}'$, $T_{\mathbf{x}} = T_X$.
- For converse, 'good' $\mathcal{C}' \Rightarrow \forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}'$, the self coupling $T_{\mathbf{x},\mathbf{x}'} \notin \mathcal{K}(T_X)$.
 - C' self-couplings $\{T_{\mathbf{x},\mathbf{x}'}\}$ have a ' δ -gap' from $C\mathcal{P}$.
- Construct a δ_g -net $\mathcal{G} \subseteq \Delta$; $|\mathcal{G}|$ depends on \mathcal{X} but *independent of n*
- There exists 'sufficiently large' $\mathcal{C}'' \subseteq \mathcal{C}'$; $\forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}''$, $T_{\mathbf{x}, \mathbf{x}'} \approx \hat{T}_{X, X'} \in \mathcal{G}$.
 - ▶ Proof uses Ramsey theory \Rightarrow Given code C with k "covering couplings", \exists subcode C' (monochromatic clique) of size $\Omega((\log(|C'|))^{1/(k+1)})$.

• $\hat{T}_{X,X'}$ corresp. to \mathcal{C}' may be symmetric or asymmetric

▶ Need *separate* analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\hat{T}_{X,X'}$

Sidharth Jaggi (CUHK)

Adversarial channels: When do large codes exist?

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}'$, $T_{\mathbf{x}} = T_X$.
- For converse, 'good' $\mathcal{C}' \Rightarrow \forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}'$, the self coupling $T_{\mathbf{x},\mathbf{x}'} \notin \mathcal{K}(T_X)$.
 - C' self-couplings $\{T_{\mathbf{x},\mathbf{x}'}\}$ have a ' δ -gap' from $C\mathcal{P}$.
- Construct a δ_g -net $\mathcal{G} \subseteq \Delta$; $|\mathcal{G}|$ depends on \mathcal{X} but *independent of n*
- There exists 'sufficiently large' $\mathcal{C}'' \subseteq \mathcal{C}'$; $\forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}''$, $T_{\mathbf{x}, \mathbf{x}'} \approx \hat{T}_{X, X'} \in \mathcal{G}$.
 - ▶ Proof uses Ramsey theory \Rightarrow Given code C with k "covering couplings", \exists subcode C' (monochromatic clique) of size $\Omega((\log(|C'|))^{1/(k+1)})$.

• $\hat{T}_{X,X'}$ corresp. to \mathcal{C}' may be symmetric or asymmetric

▶ Need *separate* analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\hat{T}_{X,X'}$

(글) ★ 글 ▶ ... 글

- Recall constant composition codes only $\Rightarrow \forall \mathbf{x} \in \mathcal{C}'$, $T_{\mathbf{x}} = T_X$.
- For converse, 'good' $\mathcal{C}' \Rightarrow \forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}'$, the self coupling $T_{\mathbf{x},\mathbf{x}'} \notin \mathcal{K}(T_X)$.
 - C' self-couplings $\{T_{\mathbf{x},\mathbf{x}'}\}$ have a ' δ -gap' from $C\mathcal{P}$.
- Construct a δ_g -net $\mathcal{G} \subseteq \Delta$; $|\mathcal{G}|$ depends on \mathcal{X} but *independent of n*
- There exists 'sufficiently large' $\mathcal{C}'' \subseteq \mathcal{C}'$; $\forall \mathbf{x}, \mathbf{x}' \in \mathcal{C}''$, $T_{\mathbf{x}, \mathbf{x}'} \approx \hat{T}_{X, X'} \in \mathcal{G}$.
 - ► Proof uses Ramsey theory \Rightarrow Given code C with k "covering couplings", \exists subcode C' (monochromatic clique) of size $\Omega((\log(|C'|))^{1/(k+1)})$.
- $\hat{T}_{X,X'}$ corresp. to \mathcal{C}' may be symmetric or asymmetric
 - ▶ Need *separate* analysis for symmetric (generalized-Plotkin) and asymmetric (Fourier-analytic) $\hat{T}_{X,X'}$

(문) ← 문 ▶ - 문

Classical Plotkin bound for binary codes/Hamming distance

• Code
$$\mathcal{C} \subseteq \{0,1\}^n$$
, $d_{min}(\mathcal{C}) \geq \frac{n(1+\epsilon)}{2}$, $\epsilon > 0$, $\Rightarrow |\mathcal{C}| \in \mathcal{O}\left(\frac{1}{\epsilon}\right)$.

"Geometric" proof:

• Map
$$\mathcal{C} \in \{0,1\}^n$$
 to $\overline{\mathcal{C}} \in \{-1,1\}^n$.

• $d_{\min}(\mathcal{C}) \geq \frac{n(1+\epsilon)}{2} \Rightarrow \langle \bar{\mathbf{x}}, \bar{\mathbf{x}}' \rangle \leq -\epsilon n.$

• Codewords $\bar{\mathbf{x}} \neq \bar{\mathbf{x}}'$ make obtuse angles w.r.t. each other over \mathbb{R}^n .

$$0 \leq (\sum_{\bar{\mathbf{x}} \in \bar{\mathcal{C}}} \bar{\mathbf{x}}), (\sum_{\bar{\mathbf{x}} \in \bar{\mathcal{C}}} \bar{\mathbf{x}})^{T} \rangle = \underbrace{\left(\sum_{\bar{\mathbf{x}} \in \bar{\mathcal{C}}} \langle \bar{\mathbf{x}}, \bar{\mathbf{x}}^{T} \rangle \right)}_{\leq n |\bar{\mathcal{C}}| (2)} + \underbrace{\left(\sum_{\bar{\mathbf{x}}, \bar{\mathbf{x}}' \in \bar{\mathcal{C}}} \langle \bar{\mathbf{x}}, \bar{\mathbf{x}}^{T} \rangle \right)}_{\leq -\epsilon n \frac{|\bar{\mathcal{C}}|(\bar{\mathcal{C}}-1)|}{2} (3)}$$

Symmetric Self-Couplings Generalized Plotkin bound

Useful "facts" [Hall '62]:

- Let CoP denote the set of co-positive matrices, i.e. symmetric matrices Q such that for any non-negative vector x, x^TQx ≥ 0.
- The cone *CoP* of copositive matrices is dual to the cone *CP* of completely positive matrices.
- Ignoring the (controllable) δ_g quantization deviation due to the grid, suppose \mathcal{C}'' s.t. all self-couplings exactly $\hat{T} \notin CP \Rightarrow \exists Q \in CoP$ s.t. $||Q||_F = 1$, $\langle Q, \hat{T} \rangle \leq -\epsilon$.

$$0 \underbrace{\leq}_{Q \in CoP, (\underline{1})} \sum_{\mathbf{x}, \mathbf{x}' \in \mathcal{C}''} \langle Q, T(\mathbf{x}, \mathbf{x}') \rangle = \underbrace{\sum_{\mathbf{x} \in \mathcal{C}''} \langle diag(P_X), Q \rangle}_{\substack{\mathbf{x} \in \mathcal{C}'' \\ (||Q||_F = 1, \\ diag(P_X) \in CP)} + \underbrace{\sum_{\mathbf{x}, \mathbf{x}' \in \mathcal{C}'' \\ \mathbf{x} \neq \mathbf{x}'} \langle \hat{T}, Q \rangle}_{\leq -\epsilon_n \frac{|\mathcal{C}''|(|\mathcal{C}''-1|)}{2} (\underline{3})}$$

イロン イロン イヨン イヨン 二年

- Constant composition codes with asymmetric joint types:
 - Constant composition codes C: $T(\underline{x}_i) = T(\underline{x}_i), \forall i, j$
 - Asymmetric joint type: $\forall i < j, T(\underline{x}_i, \underline{x}_j) = T_{XY}$. T_{XY} is asymmetric.

Let $\Sigma = \mathbb{Z}_3 = \{0, 1, 2\}$, N = 3, and $(X_1, X_2, X_3) = (U, U + A, U + B)$, where U is uniform and (A, B) are independent of U, jointly distributed as:

а	b	$\Pr[A = a, B = b]$
0	1	2/7
1	1	2/7
1	0	1/7
1	2	1/7
2	0	1/7

- The pairs (X_1, X_2) , (X_1, X_3) and (X_2, X_3) are identically distributed as T• $T = \frac{1}{21} \begin{bmatrix} 2 & 4 & 1 \\ 1 & 2 & 4 \\ 4 & 1 & 2 \end{bmatrix}$
- Asymmetry: $\operatorname{asymm}(X, Y) \triangleq \max_{x,y \in \Sigma} \Pr[X = x, Y = y] - \Pr[X = y, Y = x] = 3/21.$

Can find code with asymmetric couplings via LP

- Suppose we want to find the largest asymm(X, Y) for N ≥ 3 random variables X₁, · · · , X_N with each taking value from a size 3 alphabet X.
- We can formulate the problem as a linear program.

maximize	$P_{X_1X_2}(1,2) - P_{X_1X_2}(2,1)$
subject to	$P_{X_1} = P_{X_i}, \forall i \in [N]$
	$P_{X_1X_2} = P_{X_jX_k}, \forall j < k$
variables	$P_{X_1X_2\cdots X_N} \in \Delta(\mathcal{X} ^N)$

• The number of variables is exponential in *N*.

イロト 不得 トイヨト イヨト

 $|\Sigma| = 3$ w.l.o.g.

- Given any asymmetric joint type over finite alphabet ${\cal X}$
 - Find $i \neq j$ such that $T_{ij} \neq T_{ji}$.
 - ▶ Combine all other symbols in X\{i, j} into a single symbol
 - W.I.o.g. for tradeoff between code-size and asymmetry, assume $|\Sigma| = 3$.

・ロン ・回 と ・ヨン ・ヨン

When N is large, the asymmetry must go to zero. More precisely,

Theorem

Assume $\operatorname{asymm}(X, Y) > \epsilon$. Let X_1, \ldots, X_N is a sequence of random variables such that for every $1 \le i < j \le N$, the joint type of (X_i, X_j) is statistically $\epsilon/2$ -close to (X, Y). Then $N \le \exp K/(\operatorname{asymm}(X, Y) - \epsilon)$ for some universal constant K.

<ロ> (四) (四) (三) (三) (三)

Lemma

There is an embedding $\rho: \Sigma \to \mathbb{C}_3^{\times}$ such that

$$\operatorname{Im} \mathbb{E}[\rho(X)\overline{\rho(Y)}] \geq \frac{\sqrt{3}}{2} \cdot \operatorname{asymm}(X, Y).$$

Proof:

• We show that at least one of the following embeddings $\rho_1, \rho_2, \rho_3 \colon \{x, y, \star\} \to \mathbb{C}_3^{\times}$ satisfies the claim:

$$\begin{array}{c|cccc} & x & \star & y \\ \hline \rho_1 & \overline{\zeta} & \zeta & \zeta \\ \rho_2 & \overline{\zeta} & \overline{\zeta} & \zeta \\ \rho_3 & \overline{\zeta} & 1 & \zeta \end{array}$$

イロン イヨン イヨン イヨン

Proof:

Observe that

$$\mathbb{E}_{X,Y} \mathbb{E}_{i \sim \{1,2,3\}} [\operatorname{Im} \rho_i(X) \overline{\rho_i(Y)}] = \frac{\sqrt{3}}{2} \cdot (\Pr[X = x, Y = y] - \Pr[X = y, Y = x]).$$

• By linearity of the $\mathbb E$ and Im operators the desired inequality must hold for at least one of $\rho_1,\rho_2,\rho_3.$

-

イロト イヨト イヨト イヨト

Definition (Zero-sum game G_N)

- Alice chooses a function f: {1,..., N} → C₃[×] = {1, ζ, ζ}, where C₃[×] consists of cube roots of unity.
- Bob chooses a pair of indices $1 \le I < J \le N$.

• Bob pays Alice $\operatorname{im} f(I)\overline{f(J)}$ dollars.

Asymmetric Self-Couplings A Game

Observations about the game:

- This game has a unique value (by von Neumann's min-max theorem).
- For every N the value G_N can be shown to be strictly positive.
 - Alice can ensure an expected payout of Ω(1/(N − 1)) by playing the following mixed strategy:

$$f(x) = egin{cases} \zeta, & ext{if } x \leq K \ 1, & ext{otherwise}, \end{cases}$$

where the cutoff K is chosen uniformly at random from $\{1, \ldots, N-1\}$.

イロン イロン イヨン イヨン 二年

Lemma

The value of G_N is at most $O(1/\log N)$.

Proof via:

- Fourier analysis over the Boolean hypercube
- Gibbs phenomenon

3

・ロン ・回 と ・ヨン ・ヨン

In Conclusion

Sidharth Jaggi (CUHK)

◆□> ◆□> ◆臣> ◆臣> ○臣

Rate and Review!

We study a general (zit Omniscient Arbitrarily Varying Channel) (AVC) problem where Alice wishes to communicate a message to receiver Bob by inputting a length-\$n\$ vector \$zvec(x)\$ to a channel. Jammer James observes \$zvec(x)\$, and as a function of \$zvec(x)\$ chooses a state sequence \$zvec(s)\$. Bob observes \$zvec(x)\$ (such that channel inputs and outputs are related component-wise as \$y_i = w(x_{i,s}_{i,s})\$ for some deterministic function \$w(.,)\$) form which he must estimate \$m\$ with no error. Input

3

< 回 ト < 三 ト < 三 ト