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A new “fact” about random variables...

Given a joint p.m.f. PX ,X ′ over alphabet X ×X , when is it possible to create
a “long” sequence {X1,X2, . . . ,Xm} such that each (ordered) pair (Xi ,Xj) is
(ε-approximately) distributed as PX ,X ′?
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(ε-approximately) distributed as PX ,X ′?

If PX ,X ′(x , x ′) =
∑

u PU(u)PX |u(x)PX |u(x
′), can construct arbitrarily long

sequences.
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∑

u PU(u)PX |u(x)PX |u(x
′), can construct arbitrarily long

sequences.

Set of such PX ,X ′ called completely positive distributions, have been studied
in convex optimization. Forms a convex set.

If PX ,X ′ is at least ε-far from being completely positive, then can only exist
sequences of length O

(
exp

(
1
ε

))
.
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A standard communication scenario...
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A standard communication scenario...

Aim: To communicate a ‘large’ message ‘reliably’ to the receiver
over the random noise channel.
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An adversarial communication scenario...
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The adversarial communication problem setup
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Example: The Binary communication setup

Channel WY |X ,S is state-deterministic with output Y = X ⊕ S .

Alice’s input constraint ΓX = {x : wtH(x) ≤ nw}, 0 ≤ w ≤ 1/2.

James’ state constraint ΛS = {s : wtH(s) ≤ np}, 0 ≤ p ≤ 1/2.

Denoted A-BSC(p)
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The Adversarial Communication problem setup
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The Adversarial Communication problem setup

In this talk, only symbolwise, state-deterministic channels WY |X ,S .

Symbolwise channel: yi depends only on xi , si .
• Example: A-BSC(p) channel shown before, with yi = xi ⊕ si .
• Non-example: Deletion channels

State-deterministic channel: yi is a deterministic function of xi and si .
• Example: A-BSC(p) channel shown before, with yi = xi ⊕ si .

• Non-example: WY |X ,S(y |x , s) =

{
x ⊕ s with probability 1-q
x ⊕ s ⊕ 1 with probability q
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The Adversarial Communication problem setup

Three key parameters: the channel, Alice’s input constraints and James’
state constraints.

I Arbitrarily Varying Channel (AVC) is specified by A = (WY |X ,S , ΓX , ΛS).

User/Adversary strategies:
I Alice & Bob pick a feasible (acc. to ΓX ) codebook C.
I James picks a feasible (acc. to ΛS) jamming sequence s (as a function of C

and x).
I Private randomization turns out not to benefit any of Alice/Bob/James.
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The Adversarial Communication problem setup

AVC A reliability criterion: Zero error (requiring vanishing-error turns out not
to change the problem for state-deterministic AVCs)

∀m, ∀s, m̂ = m

Principal metric of interest: optimum throughput or capacity

C := sup{R : ‘coding rate’R is ‘achievable’}.
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AVC A reliability criterion: Zero error (requiring vanishing-error turns out not
to change the problem for state-deterministic AVCs)

∀m, ∀s, m̂ = m

Principal metric of interest: optimum throughput or capacity

C := sup{R : ‘coding rate’R is ‘achievable’}.

In this talk, just want to understand precisely when R > 0 is possible.
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Example: Capacity for the Binary communication setup
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Example: Capacity for the Binary communication setup

Key Fact

Capacity for A-BSC(p) is ‘strictly’ smaller than for standard BSC(p)!!
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Observation: Constant Composition codes suffice

Constant composition (CC) code: All codewords of the same type.

Fact: Number of types polynomial in n (at most (n + 1)|X |).

Sub-codebook of largest size C′ ⊆ C: essentially of same rate.
I Vanishing (in n) rate loss in C′ vis-à-vis C.
I Codebook C robust to errors ⇒ sub-codebook C′ also robust to errors.

So we henceforth analyze only constant composition codes.
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Joint types or Couplings

Important: Properties of joint pair types of codewords in C′ ⊆ C.

Definition (Couplings/Self-couplings)

• The joint type of a pair of vectors or a pair-type is called a coupling.
• A coupling TX ,X ′ with TX = TX ′ is called a self-coupling.
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Example: Coupling

0 1 1 0 0 2 2 1 0 0 2 0 1 1 0 1 2 0 1 0 2 1 1 0 2 

0 1 0 0 2 2 0 1 2 2 1 0 0 1 0 2 0 1 0 2 1 0 1 1 1

,

� dH(x,x�) = n �CHamming, TX,X��

|X | = 3

• C�1 �

�

�
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�

� � d1(x,x�) �
n�

i=1

|xi � x�
i| = n �C1, TX,X��

Sidharth Jaggi (CUHK) Adversarial channels: When do large codes exist? 11 / 29



Geometry of Sets
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Geometry of Sets

Row constraints: ∀i ∈ [|X |],
|X |∑
j=1

(TX ,X ′)i,j = PX (i),

Column constraints: ∀j ∈ [|X |],
|X |∑
i=1

(TX ,X ′)i,j = PX (j),

2|X | − 1 linearly independent constraints.

J (PX ) is a polytope.
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Geometry of Sets

(rank 1 matrix)
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Geometry of Sets

Terrible idea for code design!
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Geometry of Sets

codewords

Random code

Each entry

x

x�

i

jj
� PX(j)
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Geometry of Sets

codewords

…

…

What else is possible?
“Completely positive”

self-coupling PXX’

Example:

“Cloud” code
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Geometry of Sets

Slice of the “Completely positive cone”
(well-studied object in convex analysis) 

Codes with positive rate, and 
self-couplings concentrated around
any point in CP(PX) possible.
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What about the adversary?

Observation 1:

Not necessarily true if channel not symbolwise, for instance for deletion
channels.
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What about the adversary?

Observation 2:
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What about the adversary?

Observation 3 (Convexity):

.	.	.
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What about the adversary?

Observation 4: (Constraints from A)

TXX ′ confusable ⇒ ∃ TXX ′SS′Y such that

(Consistency with TXX ′):

∀(x , x ′) ∈ X × X ,
∑

s,s′,y TXX ′SS′Y (x , x ′, s, s ′, y) = TXX ′(x , x ′).

(Consistency with input constraints ΛS):

TS ,
∑

x,x′,s′,y TXX ′SS′Y (x , x ′, s, s ′, y) satisfies TS ∈ ΛS ,

TS′ ,
∑

x,x′,s,y TXX ′SS′Y (x , x ′, s, s ′, y) satisfies TS′ ∈ ΛS .

(Consistency with channel WY |X ,S):

TXSY ,
∑

x′,s′ TXX ′SS′Y (x , x ′, s, s ′, y) compatible with WY |X ,S ,

TX ′S′Y ,
∑

x,s TXX ′SS′Y (x , x ′, s, s ′, y) compatible with WY |X ,S .

All constraints linear, hence checking to see if a given TXX ′ is in the
confusability set K is a computationally efficient convex optimization problem
(given membership oracle for ΛS).

If ΛS is a polytope (common in many classical models – e.g. noise weight
≤ pn) then K also a polytope.
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Achievability

Confusability set properties:

Characterized by subset K(A) of self-couplings J (PX ).
Convex.
Transpositionally symmetric.
Efficiently computable.
diag(PX ) always in K(A)
Polytope, if ΛS a polytope.
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Achievability

Can construct AVCs A and Ā that are distinct (for instance, with different
output alphabets Y), but with the same confusability polytope K.
Hence good codes for A also good for Ā ⇒ capacity regions the same.
Confusability polytopes fundamentally characterize capacities of
state-deterministic AVCs!
Not true for non-state-deterministic AVCs. Can construct non-SD AVCs with
the same confusability polytope, but provably different capacities.

Sidharth Jaggi (CUHK) Adversarial channels: When do large codes exist? 15 / 29



Achievability

So if the completely positive slice CP(PX ) contains self-couplings outside the
confusability set K(A), a positive rate is possible.

For instance, if PX .PX
T /∈ K(A), then a positive rate is possible.

I Indeed, in this case, a more careful analysis shows a “Gilbert-Varshamov (GV)
type” (greedy packing) achievable rate (matching GV bound in known cases):

max
PX∈ΓX

min
PXX ′∈K(A)

I (X ; X ′)

I Same rate also achievable via random coding + expurgation. Rate governed
by large-deviations exponent.
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Achievability

If PX .PX
T ∈ K(A), GV-type rate = 0.

However, if ∃ completely positive distribution PXX ′ =
∑

u PU(u)PX |u.PX |u
T

s.t. PXX ′ /∈ K(A), positive rate still possible via cloud codes.
Can construct examples of such AVCs ⇒ GV codes ( cloud codes.

I GV-type rate for cloud codes:

max
PX ∈ ΓX ,

PXX ′ ∈ CP(PX )

min
PXX ′∈KU (A)

I (X ; X ′|U)
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Achievability

If all completely positive couplings always within the confusability polytope,
i.e., for PX ∈ ΓX , CP(PX ) ⊆ K(A), then prior arguments do not give positive
rate.
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Achievability

If all completely positive couplings always within the confusability polytope,
i.e., for PX ∈ ΓX , CP(PX ) ⊆ K(A), then prior arguments do not give positive
rate.

Indeed, other half of main result shows no positive rate possible in this
scenario.
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Converse

Recall constant composition codes only ⇒ ∀x ∈ C′, Tx = TX .

For converse, ‘good’ C′ ⇒ ∀x, x′ ∈ C′, the self coupling Tx,x′ 6∈ K(TX ).

Construct a δg -net G ⊆ ∆; |G| depends on X but independent of n

There exists ‘sufficiently large’ C′′ ⊆ C′; ∀x, x′ ∈ C′′, Tx,x′ ≈ T̂X ,X ′ ∈ G.
I Proof uses Ramsey theory ⇒ Given code C with k “covering couplings”, ∃

subcode C′ (monochromatic clique) of size Ω((log(| C′ |))1/(k+1)).

T̂X ,X ′ corresp. to C′ may be symmetric or asymmetric
I Need separate analysis for symmetric (generalized-Plotkin) and asymmetric

(Fourier-analytic) T̂X ,X ′
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Symmetric Self-Couplings
Classical Plotkin bound for binary codes/Hamming distance

Code C ⊆ {0, 1}n, dmin(C) ≥ n(1+ε)
2 , ε > 0, ⇒ |C| ∈ O

(
1
ε

)
.

“Geometric” proof:

Map C ∈ {0, 1}n to C̄ ∈ {−1, 1}n.

dmin(C) ≥ n(1+ε)
2 ⇒ 〈x̄, x̄′〉 ≤ −εn.

I Codewords x̄ 6= x̄′ make obtuse angles w.r.t. each other over Rn.

0 ≤︸︷︷︸
1©

〈
(
∑

x̄∈C̄ x̄), (
∑

x̄∈C̄ x̄)T
〉

=

∑
x̄∈C̄

〈
x̄, x̄T

〉
︸ ︷︷ ︸

≤n|C̄| 2©

+

 ∑
x̄, x̄′ ∈ C̄
x̄ 6= x̄′

〈
x̄, x̄T

〉
︸ ︷︷ ︸

≤−εn |C̄|(|C̄−1|)
2

3©
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Symmetric Self-Couplings
Generalized Plotkin bound

Useful “facts” [Hall ’62]:

Let CoP denote the set of co-positive matrices, i.e. symmetric matrices Q
such that for any non-negative vector x, xTQx ≥ 0.

The cone CoP of copositive matrices is dual to the cone CP of completely
positive matrices.

Ignoring the (controllable) δg quantization deviation due to the grid, suppose

C′′ s.t. all self-couplings exactly T̂ /∈ CP ⇒
∃Q ∈ CoP s.t. ||Q||F = 1,

〈
Q, T̂

〉
≤ −ε.

0 ≤|{z}
Q∈CoP, 1©

P
x,x′∈C′′ 〈Q, T (x, x′)〉 =

X
x∈C′′

〈diag(PX ), Q〉| {z }
≤ n|C′′| 2©
(||Q||F = 1,

diag(PX ) ∈ CP)

+
X

x, x′ ∈ C′′

x 6= x′

D
T̂ , Q

E
| {z }
≤−εn

|C′′|(|C′′−1|)
2

3©
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Asymmetric Self-Couplings

Constant composition codes with asymmetric joint types:
I Constant composition codes C: T (x i ) = T (x j), ∀i , j
I Asymmetric joint type: ∀i < j , T (x i , x j) = TXY . TXY is asymmetric.
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Asymmetric Self-Couplings
Example

Let Σ = Z3 = {0, 1, 2}, N = 3, and (X1,X2,X3) = (U,U + A,U + B), where U is
uniform and (A,B) are independent of U, jointly distributed as:

a b Pr[A = a,B = b]
0 1 2/7
1 1 2/7
1 0 1/7
1 2 1/7
2 0 1/7

The pairs (X1,X2), (X1,X3) and (X2,X3) are identically distributed as T

I T = 1
21

242 4 1
1 2 4
4 1 2

35
Asymmetry:
asymm(X ,Y ) , maxx,y∈Σ Pr[X = x ,Y = y ]− Pr[X = y ,Y = x ] = 3/21.
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Asymmetric Self-Couplings

Can find code with asymmetric couplings via LP

Suppose we want to find the largest asymm(X ,Y ) for N ≥ 3 random
variables X1, · · · ,XN with each taking value from a size 3 alphabet X .

We can formulate the problem as a linear program.

maximize PX1X2(1, 2)− PX1X2(2, 1)
subject to PX1 = PXi ,∀i ∈ [N]

PX1X2 = PXjXk
,∀j < k

variables PX1X2···XN
∈ ∆(|X |N)

The number of variables is exponential in N.
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Asymmetric Self-Couplings

|Σ| = 3 w.l.o.g.

Given any asymmetric joint type over finite alphabet X
I Find i 6= j such that Tij 6= Tji .
I Combine all other symbols in X\{i , j} into a single symbol
I W.l.o.g. for tradeoff between code-size and asymmetry, assume |Σ| = 3.
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Asymmetric Self-Couplings

When N is large, the asymmetry must go to zero. More precisely,

Theorem

Assume asymm(X ,Y ) > ε. Let X1, . . . ,XN is a sequence of random variables such
that for every 1 ≤ i < j ≤ N, the joint type of (Xi ,Xj) is statistically ε/2-close to
(X ,Y ). Then N ≤ expK/(asymm(X ,Y )− ε) for some universal constant K.
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Asymmetric Self-Couplings

Lemma

There is an embedding ρ : Σ → C×
3 such that

Im E[ρ(X )ρ(Y )] ≥
√

3

2
· asymm(X ,Y ).
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Asymmetric Self-Couplings

Proof:

We show that at least one of the following embeddings
ρ1, ρ2, ρ3 : {x , y , ?} → C×

3 satisfies the claim:

x ? y

ρ1 ζ ζ ζ

ρ2 ζ ζ ζ

ρ3 ζ 1 ζ
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Asymmetric Self-Couplings

Proof:

Observe that

EX ,Y Ei∼{1,2,3}[Im ρi (X )ρi (Y )] =

√
3

2
·(Pr[X = x ,Y = y ]−Pr[X = y ,Y = x ]).

By linearity of the E and Im operators the desired inequality must hold for at
least one of ρ1, ρ2, ρ3.
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Asymmetric Self-Couplings
A Game

Definition (Zero-sum game GN)

Alice chooses a function f : {1, . . . ,N} → C×
3 = {1, ζ, ζ}, where C×

3 consists
of cube roots of unity.

Bob chooses a pair of indices 1 ≤ I < J ≤ N.

Bob pays Alice imf (I )f (J) dollars.
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Asymmetric Self-Couplings
A Game

Observations about the game:

This game has a unique value (by von Neumann’s min-max theorem).

For every N the value GN can be shown to be strictly positive.
I Alice can ensure an expected payout of Ω(1/(N − 1)) by playing the following

mixed strategy:

f (x) =

(
ζ, if x ≤ K

1, otherwise,

where the cutoff K is chosen uniformly at random from {1, . . . , N − 1}.
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Asymmetric Self-Couplings
A Game

Lemma

The value of GN is at most O(1/ log N).

Proof via:

Fourier analysis over the Boolean hypercube

Gibbs phenomenon
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In Conclusion
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Rate and Review!
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