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Introduction

I NAND flash memories have beed used widely in real-life
applications such as storage devices for computers and
cellphones.

I Flash memories have been more vulnerable to various device
or circuit level noises due to the rapidly growing density.
Various fault-tolerance techniques such as error correction
coding and constrained coding have been proposed to
overcome the inter-cell interference (ICI).

I The information-theoretic capacity limits of NAND flash
memory have been estimated by analysis of communication
channel models; Representative work includes Dong et al.
2011 and 2012, Cai et al. 2013, Li et al. 2014, Taranalli et al.
2015.
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Introduction

Motivation

I It has been observed by Siegel and his group members that a
“101” in the programming sequence of NAND flash memory
is more prone to become a “111” due to inter-cell interference
while other patterns are more likely to be programmed
correctly.

I In 2014 Qin and Siegel proposed constrained codes to
mitigate ICI.

I To increase the rate of constrained codes, in 2018 Buzaglo and
Siegel proposed the weakly constrained codes to mitigate ICI.

In this work, we model this phenomenon by a communication
channel and derive bounds on the channel capacity.

4 / 17



5/17

Channel Model

Consider a flash memory channel with inter-cell interference
suggested by Buzaglo and Siegel, whose channel law is given by

P(Y n
1 = yn1 |X n+1

0 = xn+1
0 ) =

n∏
i=1

P(Yi = yi |X i+1
i−1 = x i+1

i−1 ),

where P(Yi = 0|X i+1
i−1 = x i+1

i−1 ) =


1− ε x i+1

i−1 = 101

0 xi = 1

1 otherwise

.
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Channel Model

Remarks

I When ε = 1, any “101” in the input sequence will be
converted to “111” in the output sequence and “101” is not
decodable. We can regard this channel as an encoder for the
constrained system S with 101 as the forbidden word. The
capacity of the channel model is 0.8114.

I When ε = 0, Yi is always equal to Xi . The channel is
noiseless with capacity 1.

I “0” is an unambiguous symbol, that is, Yi = 0 implies that
Xi = 0 and Xi−1 = yi−1 and Xi+1 = yi+1.
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Markov Approximation

For channels with memory or states, there is no closed-form
characterization of channel capacity. A natural idea is using the

so-called Markov approximation scheme to compute C
(m)
Markov and

its capacity achieving distribution.

Theorem
For an indecomposable finite-state channel,

C = CShannon = lim
m→∞

C
(m)
Markov ,

where

C
(m)
Markov = sup I (X ;Y ),

and the supremum is taken over all m-th order stationary Markov
chains X .
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Mutual Information Rate

Theorem
For m ≥ 2, let X be an m-th order stationary and ergodic Markov
chain and Y be the corresponding output. Then

I (X ;Y ) = −pX 0
−2

(101)h(ε)

+
0∑

i=−∞

∑
y−1
i ∈Ai

pY−1
i−m

(0 · · · 0y−1i )h(pY0|Y−1
i ,X i−1

i−m
(0|0 · · · 0y−1i )), (1)

where Ai is the set of y−1i such that yi = 1 and y−1i contains no
m-consecutive 0’s.
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Mutual Information Rate

Proof

Lemma
For m ≥ 2, let X be an m-th order stationary Markov chain and Y
be the corresponding output. For −n + m ≤ i ≤ 0, let
y i−1i−m = 0 · · · 0, then p(y0|y−1−n ) = pY0|X i−1

i−mY
−1
i

(y0|0 · · · 0y−1i ).
Then

H(Y0|Y−1−n ) = −
∑
y0
−n

p(y0
−n) log p(y0|y−1−n ) = T1 + T2,

whereT1 = −
0∑

i=−n+m

∑
y0
−n∈Ai,n

p(y0
−n) log pY0|Y−1

i ,X i−1
i−m

(y0|0 · · · 0y−1i ),

T2 = −
∑

y0
−n∈Bn

p(y0
−n) log p(y0|y−1−n )

and Bn is the set of y0−n such that y−1−n contains no m-consecutive
0’s. 9 / 17
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Mutual Information Rate

Proof
To complete the proof, it suffices to show that T2→ 0 as n→∞.

T2 = −
∑

y0
−n∈Bn

p(y0
−n) log p(y0|y−1−n )

=
∑

y−1
−n∈Bn

p(y−1−n )h(pY0|Y−1
−n

(0|y−1−n ))

≤
∑

y0
−n∈Bn

p(y−1−n )

=P(Bn)
(a)→ 0, (2)

where (a) follows from the Poincare’s recurrence theorem.
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Asymptotics of Channel Capacity

Theorem
When ε is sufficiently small, we have that

C (ε) = 1 +
ε log ε

8
+ O(ε). (3)

Proof
Lower bound: Using the previous theorem with X being i.i.d.
with P(X = 0) = 1/2, we have that

C (ε) ≥ 1 +
ε log ε

8
+ (

3

4
− log 2e

8
)ε + O(ε2).
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Asymptotics of Channel Capacity

Proof
Upper bound:

C (ε) = sup
X : stationary

I (X ;Y )

= sup
X

H(Y )− pX 0
−2

(101)h(ε)

≤ sup
X

H(Y0|Y−1−n )− pX 0
−2

(101)h(ε)

≤ sup
X 1
−n−1

H(Y0|Y−1−n )− pX 0
−2

(101)h(ε)
4
= Cn(ε),

where the supremum is taken over probability mass functions in a
small neighbourhood of pX 1

−n−1
(x1−n−1) = 1/2n+3 for small ε.
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Asymptotics of Channel Capacity

Proof
We now expand H(Y0|Y−1−n )− pX 0

−2
(101)h(ε) around

pX 1
−n−1

(x1−n−1) = 1/2n+3 to obtain

H(Y0|Y−1−n )− pX 0
−2

(101)h(ε)

= H(X0|X−1−n ) + pX 0
−2

(101)ε log ε + O(ε)

= 1 +
1

8
ε log ε +

1

2
qTn Hqn + (pX 0

−2
(101)− 1

8
)ε log ε + o(|qn|2),

where H is the Hessian of H(X0|X−1−n ) and q is the difference of
probability mass function of X 1

−n−1 and n + 3 dimensional vector

1/2n+31. Together with the concavity of H(X0|X−1−n ) with respect

to pX 1
−n−1

, we can show that Cn(ε) ≤ 1 + ε log ε
8 + O(ε).
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Numerical Simulation

Upper Bound

The capacity is upper bounded by

C ≤ Cstationary ≤ sup
p
X1
−3

(·)

H(Y0|Y−1−2 )− pX 0
−2

(101)h(ε),

where the supremum is taken over all probability mass functions
pX 1

−3
(·) such that pX 0

−3
(·) = pX 1

−2
(·).

Remark
Without the stationarity condition this upper bound is equal to 1
achieved by pX 1

−3
(00000) = pX 1

−3
(00010) = 1/2.

Lower Bound
The lower bound of the channel capacity is derived by
optimizing (1) for m = 2.

14 / 17



14/17

Numerical Simulation

Upper Bound

The capacity is upper bounded by

C ≤ Cstationary ≤ sup
p
X1
−3

(·)

H(Y0|Y−1−2 )− pX 0
−2

(101)h(ε),

where the supremum is taken over all probability mass functions
pX 1

−3
(·) such that pX 0

−3
(·) = pX 1

−2
(·).

Remark
Without the stationarity condition this upper bound is equal to 1
achieved by pX 1

−3
(00000) = pX 1

−3
(00010) = 1/2.

Lower Bound
The lower bound of the channel capacity is derived by
optimizing (1) for m = 2.

14 / 17



14/17

Numerical Simulation

Upper Bound

The capacity is upper bounded by

C ≤ Cstationary ≤ sup
p
X1
−3

(·)

H(Y0|Y−1−2 )− pX 0
−2

(101)h(ε),

where the supremum is taken over all probability mass functions
pX 1

−3
(·) such that pX 0

−3
(·) = pX 1

−2
(·).

Remark
Without the stationarity condition this upper bound is equal to 1
achieved by pX 1

−3
(00000) = pX 1

−3
(00010) = 1/2.

Lower Bound
The lower bound of the channel capacity is derived by
optimizing (1) for m = 2.

14 / 17



15/17

Numerical Simulation
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Conclusion

Conclusion
For a flash memory channel with inter-cell interference with
Markovian inputs, we derive a rather ‘explicit’ formula for the
mutual information rate and then apply this formula to derive the
asymptotics of channel capacity in the high SNR regime. We also
numerically compute the lower and upper bounds on the channel
capacity.
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