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Abstract

For an acyclic directed network with multiple pairs of sources and sinks and a set of Menger’s
paths connecting each pair of source and sink, it is known that the number of mergings among
these Menger’s paths is closely related to network encoding complexity. In this paper, we focus
on networks with two pairs of sources and sinks and we derive bounds on and exact values of
two functions relevant to encoding complexity for such networks.

1 Introduction

Let G = (V,E) denote an acyclic directed graph, where V denotes the set of all the vertices (or
points) in G and E denotes the set of all the edges (or links) in G. In this paper, a path in G is
treated as a set of concatenated edges. For k paths β1, β2, . . . , βk in G, we say these paths merge [6]
at an edge e ∈ E if

1. e ∈ ⋂k
i=1 βi,

2. there are at least two distinct edges f, g ∈ E such that f, g are immediate predecessors of e
in some βi, βj , i 6= j, respectively.

We call the maximal subpath that starts with e and is shared by all βi’s (i.e., e together with the
subsequent concatenated edges shared by all βi’s until some βi branches off) merged subpath (or
simply merging) by all βi’s at e; see Figure 1 for a quick example.

For any two vertices u, v ∈ V , we call any set consisting of the maximum number of pairwise
edge-disjoint directed paths from u to v a set of Menger’s paths from u to v. By Menger’s the-
orem [10], the cardinality of Menger’s paths from u to v is equal to the size of a minimum cut
between u and v. Here, we remark that the Edmonds-Karp algorithm [4] can find a minimum cut
and a set of Menger’s paths from u to v in polynomial time.

Assume that G has two sources S1, S2 and two distinct sinks R1, R2. For i = 1, 2, let ci denote
the size of a minimum edge-cut between Si and Ri, and let αi = {αi,1, αi,2, . . . , αi,ci} denote a set of
Menger’s paths from Si to Ri, whose elements are often referred to as αi-paths. We are interested
in the number of mergings among paths from different αi’s, denoted by ||G||(α1, α2). In this paper
we will count the number of mergings without multiplicity: all the mergings at the same edge e
will be counted as one merging at e. And we define
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Figure 1: Paths β1, β2 merge at edge A → B and at merged subpath (or merging) A → B →
C → D, and paths β1, β2, β3 merge at edge B → C and at merged subpath (or merging) B → C
(Here, arrows in the figure represents edges, and the terminal points of arrows should be naturally
interpreted as vertices; the same convention applies to other figures in this paper).

M(G) , min
α1,α2

||G||(α1, α2),

where the minimum is taken over all possible Menger’s path sets αi’s, i = 1, 2. Roughly speaking,
M(G) corresponds to the best choice of α1, α2 in terms of minimizing the number of mergings.

Let N∗(c1, c2) denote the set of all directed networks with one source S, two distinct sinks
R1, R2, satisfying that the minimum size of edge cut between S and Ri is ci for i = 1, 2. We define

M∗(c1, c2) , sup
G∈N∗(c1,c2)

M(G).

Let N(c1, c2) denote the set of all directed networks with two distinct sources S1, S2, two distinct
sinks R1, R2, satisfying that the minimum size of edge cut between Si and Ri is ci for i = 1, 2. We
define

M(c1, c2) , sup
G∈N(c1,c2)

M(G).

The above definitions can be roughly interpreted as follows: for a given G, we try to choose
α1, α2 to obtain the minimal number of mergings, andM andM∗ give us the minimum number
corresponding to the worst-case scenarios among all possible G.

It is first shown in [8] that M∗(c1, c2) is finite for all c1, c2 (see Theorem 22 in [8]). It was
first conjectured thatM(c1, c2) is finite in [13]. Here, we remark that all the aforementioned work
are done primarily in the context of network coding and we have rephrased their results using our
notation and terminologies.

In [6], we have shown that for any c1, c2,M∗(c1, c2),M(c1, c2) are both finite, and we further
studied the behaviors of M∗,M as functions of the sizes of minimum cuts. One novel aspect of
our approach is that paths, rather than vertices and edges, are treated as “elementary” objects,
which can be transformed to different paths through reroutings. The effectiveness of this approach
is further evidenced by this work, where the lines of the thoughts in [6] are continued to derive
exact values of and tighter bounds onM∗ andM for certain parameters. The contribution of this
paper can be summarized as follows:

• novel methods are used to derive the exact values of some M∗ with two parameters (Theo-
rems 4.1).

• through a non-trivial refinement of the arguments in [6], we obtain tighter upper bounds
(Theorems 5.3, 5.8) and a scaling law (Theorem 5.10).
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• using the new techniques of “glueing” smaller graphs to obtain larger graphs, we give construc-
tive proofs for tighter lower bounds (Theorems 5.2, 5.6) and some inequality relationships
between M∗ and M (Theorems 6.1, 6.2). These inequalities may serve as a first step to
understand the connections between single-source and multiple-source networks.

• our constructive proofs (for the lower bounds on M and M∗ in Sections 4, 5 and 6) reveal
the topological structure of some worse case networks (in terms of the number of encoding
nodes required), which may shed some light on the implementation of efficient network coding
strategies.

2 Network Encoding Complexity

One of the most fundamental yet challenging problems in the theory of network coding [17] is to
determine the encoding complexity [8] for a given network, that is, the minimum number of encoding
nodes required for the existence of a network coding solution. It turns out that the combinatorial
notions defined in Section 1, such as M ,M∗ andM, are closely related to the encoding complexity
for a variety of networks, as elaborated below. Roughly speaking, for a network with multiple
groups of Menger’s paths, each of which is used to transmit a set of messages to a particular sink,
network encodings are only needed at mergings by different groups of Menger’s paths. As a result,
with respect to a given set of Menger’s paths, the number of encoding nodes required in the network
is always upper bounded by the number of mergings.

Next, we illustrate in greater details the aforementioned connections in multicast networks, two-
way channels and multiple unicast networks. Throughout this section, we assume that each link in
the considered network is of unit capacity and there is no delay during the message transmission
on each link.

Multicast networks. For illustrative purposes, we first consider the famous “butterfly net-
work” [9]. As depicted in Figure 2(a), for the purpose of transmitting messages a, b simultaneously
from the source S to the sinks R1, R2, network encoding has to be done at node C. Another
way to interpret the necessity of network coding at C (for the simultaneous transmission to R1

and R2) is as follows: If the transmission to R2 is ignored, Menger’s paths S → A → R1 and
S → B → C → D → R1 can be used to transmit messages a, b from S to R1; if the transmission to
R1 is ignored, Menger’s paths S → A→ C → D → R2 and S → B → R2 can be used to transmit
messages a, b from S to R2. For the simultaneous transmission to R1 and R2, merging by these
two groups of Menger’s paths at C → D becomes a “bottleneck”, therefore network coding at C is
required to avoid the possible congestions.

Generally speaking, consider a network G ∈ N∗(c1, c2) with one source S and two sinks R1, R2

and chosen Menger’s path sets αi = {αi,1, αi,2, . . . , αi,ci}, i = 1, 2. Assume that all ci are equal to
c and messages a1, a2, . . . , ac are to be transmitted to each sink simultaneously. It is well-known
that the Jaggi et al. algorithm [7] can be applied along Menger’s paths to obtain a network coding
solution. An examination of the algorithm reveals that as long as the field size is large enough,
appropriately chosen network encoding functions at all the tails of the mergings will produce a
linear network coding solution. Therefore, for given αi, i = 1, 2, the number of encoding nodes
needed in the Jaggi et al. algorithm is just ||G||(α1, α2); and moreover, M(G) gives the minimum
number of encoding nodes required for the existence of a network coding solution andM∗(c, c) is
the largest such number among all possible G ∈ N∗(c, c).

Two-way channels. We first illustrate the idea using a variant of the classical butterfly
network (see Example 17.2 of [16]; cf. the two-way channel in [3, Page 519]) with two sources and
two sinks, where the source S1 is attached to the sink R2 to form a group and the source S2 is
attached to the sink R1 to form the other group. As depicted in Figure 2(b), the two groups wish
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Figure 2: (a) Network coding in the butterfly network (b) Network coding in a two-way channel
(c) Network coding in two sessions of unicast

to exchange messages a and b through the network. Similarly as in the previous example, the edge
A→ B is where the Menger’s paths S1 → A→ B → R1 and S2 → A→ B → R2 merge with each
other, which is a bottleneck for the simultaneous transmission of messages a, b. The simultaneous
transmission is achievable if upon receiving the messages a and b, network encoding is performed
at the node A and the newly derived message a+ b is sent over the channel A→ B.

More generally, consider a network G ∈ N(c1, c2) with two sources S1, S2 and two sinks R1, R2

and chosen Menger’s path sets αi = {αi,1, αi,2, . . . , αi,ci}, i = 1, 2, where the source S1 is attached to
the sink R2 to form a group and the source S2 is attached to the sink R1 to form the other group.
Assume that messages a1, a2, . . . , ac1 are to be sent from S1 to R1, and messages b1, b2, . . . , bc2
from S2 to R2. Similarly as in multicast networks, with the field size chosen large enough and
appropriately chosen encoding functions the tails of all mergings, the Jaggi et al. algorithm can be
applied along Menger’s paths so that R1 (or R2), together with its complete knowledge of messages
bj (or ai), can decode messages ai (or bj) based on what has been transmitted along α1 (or α2).
Therefore, for given αi, i = 1, 2, the number of encoding nodes needed in the Jaggi et al. algorithm
is just ||G||(α1, α2); and moreover, M(G) gives the minimum number of encoding nodes required
for the existence of a network coding solution andM(c1, c2) is the largest such number among all
possible G ∈ N(c1, c2).

Multiple unicast networks. Our idea can be best illustrated using the following example
network with two sessions of unicast [11]. As shown in Figure 2(c), the source S1 is to transmit
message a to the sink R1 using path S1 → A→ B → E → F → C → D → R1. And the source S2

is to transmit message b to the sink R2 using two Menger’s paths S2 → A → B → C → D → R2

and S2 → E → F → R2. Since mergings A→ B, C → D and E → F become bottlenecks for the
simultaneous transmission of messages a and b, network coding at these bottlenecks, as shown in
Figure 2(c), is performed to ensure the simultaneous message transmission.

More generally, consider a network G ∈ N(c1, c2) with two sources S1, S2 and two sinks R1, R2

and chosen Menger’s path sets αi = {αi,1, αi,2, . . . , αi,ci}, i = 1, 2. Assume that all ci are equal
to 2 and message ai is to be transmitted from Si to Ri through αi, i = 1, 2, simultaneously.
Similarly, with appropriately chosen field and encoding functions at the tails of all mergings, the
Jaggi et al. algorithm can be applied along Menger’s paths to obtain a network coding solution.
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Therefore, for given αi, i = 1, 2, the number of encoding nodes needed in the Jaggi et al. algorithm
is just ||G||(α1, α2); and moreover, M(G) gives the minimum number of encoding nodes required
for the existence of a network coding solution and M(2, 2) is the largest such number among all
possible G ∈ N(2, 2). For closely related work on the network coding solvability in multiple unicast
networks, we refer to [2, 11, 12].

3 Notation and Terminology

3.1 Basic Notation

For a path β in G, let t(β), h(β) denote the tail (or starting point) and the head (or ending point)
of path β, respectively; let β[u, v] denote the subpath of β with the starting point u and the ending
point v. For two distinct paths ξ, η in G, we say ξ is smaller than η (or, η is larger than ξ) if there
is a directed path from h(ξ) to t(η); if ξ, η and the connecting path from h(ξ) to t(η) are subpaths
of path β, we say ξ is smaller than η on β. Note that the relation “smaller” only imposes a partial
order among all paths in G, rather than a total order; and this definition also applies to the case
when paths degenerate to vertices/edges (in other words, in the definition, ξ, η or the connecting
path from h(ξ) to t(η) can be vertices/edges in G, which can be viewed as degenerated paths). If
h(ξ) = t(η), we use ξ ◦ η to denote the path obtained by concatenating ξ and η subsequently.

A graph G in N(c1, c2) (or N
∗(c1, c2)) is said to be minimal if for any e ∈ E, G\{e} 6∈ N(c1, c2)

(or G \ {e} 6∈ N∗(c1, c2)). It is clear that in order to compute M(c1, c2) (or M∗(c1, c2)), it is
enough to consider all the minimal graphs with distinct (or identical) sources. Since every graph
in N(c1, c2) has at least one minimal subgraph in N(c1, c2), it follows that

M(c1, c2) = sup
G∈N(c1,c2)
G is minimal

M(G),

and similarly
M∗(c1, c2) = sup

G∈N∗(c1,c2)
G is minimal

M(G).

A graph G in N(c1, c2) (or N
∗(c1, c2)) is said to be a (c1, c2)-graph if there exists a set αi of ci

edge-disjoint paths from Si to Ri, i = 1, 2, such that every edge in G belongs to some αi,j . For a
(c1, c2)-graph G, we say αi is reroutable if there exists a different set of Menger’s paths α′

i from Si

to Ri, and we say G is reroutable (or alternatively, there is a rerouting in G), if some αi, i = 1, 2,
is reroutable. Note that for a non-reroutable G, the choice of αi’s is unique, so we often write
||G||(α1, α2) as ||G|| for notational simplicity.

It follows from the following theorem that to compute M(c1, c2) (or M∗(c1, c2)), it is enough
to consider all non-reroutable (c1, c2)-graphs with distinct (or identical) sources.

Theorem 3.1. A graph G in N(c1, c2) (or N
∗(c1, c2)) is minimal if and only if it is a non-reroutable

(c1, c2)-graph.

Proof. Here we prove its equivalent statement: G is not minimal if and only if G is reroutable or
G is not a (c1, c2)-graph.

Necessity: If G is not minimal, there exists e ∈ G such that G \ {e} ∈ N(c1, c2) (or N
∗(c1, c2)).

If e belongs to some α1-path or α2-path, there exists a different set of Menger’s paths α′

i from Si

to Ri (or from S to Ri) for some i ∈ {1, 2} in G, implying G is reroutable. If e does not belong to
any α1-path or α2-path, G is not a (c1, c2)-graph by definition.

Sufficiency: If G is not a (c1, c2)-graph, then there exists e ∈ G that does not belong to any
α1-path or α2-path. So G \ {e} in N(c1, c2) (or N∗(c1, c2)), and hence G is not minimal. If G is

5



S1

S2

R1
R2

α1,1

α1,2
α2,1 α2,2

γ1

γ2

γ3

γ4

Figure 3: An example of a reroutable graph

a reroutable (c1, c2)-graph, by symmetry, assume that there exists another set of Menger’s paths
α′

1 = {α′

1,1, α
′

1,2, . . . , α
′

1,c1} from S1 to R1 (or from S to R1) with α′

1,i sharing the same outgoing edge
to R1 as α1,i, for 1 ≤ i ≤ c1. Pick an α′-path, say, α′

1,i1
, such that α′

1,i1
6= α1,i1 , and let vi1 denote

the largest vertex on α1,i1 where they leave each other. Assume that, after vi1 , α
′

1,i1
first meets some

α-path, say, α1,i2 , at the vertex ui1 . Denote by vi2 the largest vertex where α′

1,i2
and α1,i2 leave each

other. Assume that, after vi2 , α
′

1,i2
first meets some α-path, say, α1,i3 at the vertex ui2 . Continue

the procedure in a similar manner to obtain an index sequence i1, i2, . . . , it, . . ., and similarly define
vit ’s and uit ’s. Pick the smallest k such that ik = ij for some j < k. Notice that each edge of
α′

1,it
[vit , uit ], j ≤ t ≤ k − 1, belongs to an α2-path. So, for j ≤ t ≤ k − 1, the smallest edge et+1 on

α1,it+1 [vit+1 , uit ] does not belong to any α′

1-path or α2-path. ThusG\{ej+1, ej+2, . . . , ek} ∈ N(c1, c2)
(or N∗(c1, c2)) and thereby G is not minimal.

Now, for a fixed i, reverse the directions of edges that do not belong to any αi-path to obtain
a new graph G′. For any two mergings λ, µ, if there exists a directed path in G′ from the head (or
tail) of λ to the head (or tail) of µ, we say the head (or tail) of λ semi-reaches [6] the head (or tail)
of µ along αi, or simply, λ semi-reaches µ along αi from head (or tail) to head (or tail) 1. It is easy
to check that G is reroutable if and only if there exists i and a merging λ such that λ semi-reaches
itself along αi from head to head, which is equivalent to the condition that there exists i′ and a
merging λ′ such that λ′ semi-reaches itself along αi′ from tail to tail.

Example 3.2. For the graph depicted in Figure 3, the source S1 is connected to the sink R1 by a
group of Menger’s paths

α1 ={α1,1, α1,2} = {S1 → t(γ1)→ h(γ1)→ t(γ4)→ h(γ4)→ R1,

S1 → t(γ3)→ h(γ3)→ t(γ2)→ h(γ2)→ R1}

and the source S2 is connected to the sink R2 by a group of Menger’s paths

α2 ={α2,1, α2,2} = {S2 → t(γ1)→ h(γ1)→ t(γ2)→ h(γ2)→ R2,

S2 → t(γ3)→ h(γ3)→ t(γ4)→ h(γ4)→ R2}.
1Roughly, λ semi-reaches µ along α1 means that in order to get to µ from λ, one has to traverse along the

orientation of α1 and against that of α2
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Then γ1, γ2, γ3, γ4 are mergings by α1-paths and α2-paths. The mergings γ1, γ3 are smaller than
γ2 and γ4.

The group of Menger’s paths α1 is reroutable, since there exists another group of Menger’s
paths

α′

1 ={α′

1,1, α
′

1,2} = {S1 → h(γ1)→ t(γ1)→ h(γ2)→ t(γ2)→ R1,

S1 → h(γ3)→ t(γ3)→ h(γ4)→ t(γ4)→ R1}

from S1 to R1. Similarly, α2 is also reroutable. Hence, G is reroutable. It is easy to check, by
definition, that γ2 semi-reaches γ4 along α1 from tail to tail, γ1 semi-reaches γ4 along α1 from head
to tail, γ1 semi-reaches itself along α1 from head to head, and γ4 semi-reaches itself along α2 from
tail to tail.

3.2 Merging sequences

Consider a (c1, c2)-graph G with sources S1, S2, sinks R1, R2, a set of ci disjoint paths αi =
{αi,1, αi,1, . . . , αi,ci} from Si to Ri, for i = 1, 2. Assume that there are ω mergings in G. It follows
from the acyclicity of G that all the mergings in G can be ordered from upstream to downstream,
or more precisely, they can be listed as a sequence (M1,M2, . . . ,Mω) such that as long as Mi and
Mj , i < j, are comparable (which means there is a directed path between Mi and Mj), then Mi

is smaller than Mj. For i = 1, 2, . . . , ω, suppose that Mi belongs to α1,ki and α2,k̃i
. The sequence

of index pairs ((k1, k̃1), (k2, k̃2), . . . , (kω , k̃ω)) is called a merging sequence of G. There might be
multiple merging sequences associated with the same (c1, c2)-graph.

The consideration of merging sequences is motivated by the fact that they can be used to ex-
haustively “generate” all (c1, c2)-graphs (up to some graph isomorphism). Intuitively, consider the
following procedure to “draw” a (c1, c2)-graph based on the sequence ((k1, k̃1), (k2, k̃2), . . . , (kω , k̃ω)):
For “fixed” edge-disjoint paths α2,1, α2,2, . . . , α2,c2 from S2 to R2, we draw edge-disjoint paths
α1,1, α1,2, . . . , α1,c1 from S1 to merge with α2-paths until we reach R1. More specifically, the pro-
cedure of drawing is done by extending α1-paths edge by edge, and in the i-th step, we further
extend path α1,ki to merge with path α2,k̃i

, while ensuring the new merging is larger than any
existing mergings on path α2,k̃i

. Clearly, the drawing procedure, which is uniquely determined by

the merging sequence, yields a (c1, c2)-graph.

Example 3.3. Consider the following two graphs in Figure 4 (here and hereafter, all the

mergings in this paper are represented by solid dots instead). Listing the elements in the
merging sequence, Figure 4(a) can be described by ((1, 2), (2, 1)), or alternatively ((2, 1), (1, 2)).
And Figure 4(b) can be described by a merging sequence ((1, 1), (2, 1), (2, 2), (3, 2)). Note that
it cannot be described by ((1, 1), (2, 1), (3, 2), (2, 2)), since (3, 2) (or, more precisely, the merging
corresponding to (3, 2)) is larger than (2, 2) on α2,2.

3.3 Alternating sequences

Consider a non-reroutable (c1, c2)-graph G with two sources S1, S2, two distinct sinks R1, R2, a set
of Menger’s paths αi = {αi,1, αi,2, . . . , αi,ci} from Si to Ri for i = 1, 2. An edge in G is said to be
private if it is not shared by any pair of α1-path and α2-path. An alternating sequence in G consists
of a set of private edges such that when the orientation of G is ignored, all edges form a path whose
intermediate vertices are from V \ {S1, S2, R1, R2} and whose pair of terminal vertices is one of
the following: (S1, S2), (S1, R1), (R2, S2) and (R2, R1). The length of an alternating sequence π,
denoted by L(π), is defined to be the number of intermediate vertices that are either heads or tails
of a merging.
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Figure 4: Two examples of merging sequences (as in Remark 3.3, all the mergings in this figure are
represented by solid dots instead)

Alternatively, an alternating sequence can be generated through the following procedure on
G, where, as an example, S1 and S2 are supposed to be distinct. For each i, starting from S1,
traverse along path α1,i until we reach the tail of some merged subpath, we then traverse against
the associated α2-path (corresponding to the merged subpath just visited) until we reach the
head of another merged subpath, we then traverse along the associated α1-path, . . . Continue this
procedure of alternately traversing along α1-paths or traversing against α2-paths until we reach a
merged subpath in the same manner as above, then the fact that G is non-reroutable and acyclic
guarantees that eventually we will reach R1 or S2 (since otherwise, as in the proof of Theorem
II.1 in [6], one can find some merging that semi-reaches itself from head to head and thus G is
reroutable, a contradiction). Then, an S1-alternating sequence is produced by sequentially listing
all the edges visited during the procedure. Clearly, a similar procedure starting from R2 will
produce an R2-alternating sequence.

Remark 3.4. For the case when S1 and S2 are distinct, to compute M(c1, c2), without loss of
generality, we can assume that each Menger’s path in G merges at least once, which implies that
each alternating sequence is of positive length.

For the case when S1 and S2 are identical, by Proposition III.6 in [6], we can restrict our
attention to the case when c1 = c2. For the purpose of computing M∗(c2, c2), without loss of
generality, we assume that paths α1,i and α2,i share a starting subpath (a maximal shared subpath
by α1,i and α2,i starting from the source) for i = 1, 2, . . . , c2 (since otherwise either some α1-path
or α2-path would be reroutable, a contradiction to non-reroutability of G). Note that the existence
of c2 starting subpaths implies that any alternating sequence is of positive length and has terminal
pair of vertices (R1, R2). The length of an alternating sequence π, denoted by L(π), is defined to
be the number of intermediate vertices that are terminal (heads or tails) of a merging or heads of
a starting subpath.

It turns out that the lengths of alternating sequences are closely related to the number of
mergings in G.

Proposition 3.5. For a non-reroutable (c1, c2)-graph G with distinct sources,

||G|| = 1

2

∑

π

L(π); (1)
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for a non-reroutable (c2, c2)-graph G with identical sources and c2 starting subpaths,

||G|| = 1

2

(
∑

π

L(π)− c2

)
, (2)

where the two summations above are over the all the possible alternating sequences π’s in G (Here
the summations implicitly involve c1 and/or c2).

Proof. We first consider the case when G has distinct sources. For an alternating sequence π, let
Vπ denote the set of intermediate vertices, each of which is the head or tail of some merging in π.
Then, (1) immediately follows from the observation that all Vπ’s are mutually exclusive and any
merging is adjacent to some vertex in

⋃
π Vπ.

For the case when G has identical sources, (2) follows from the same observation as above and
the fact that each of the c2 starting paths is also adjacent to some vertex in

⋃
π Vπ.

Example 3.6. Consider the two graphs in Figure 5. In Graph (a), sequentially listing the edges
visited during the above-mentioned procedure, the two S1-alternating sequences can be represented
by ((S1, t(γ1)), (S2, t(γ1))) and

((S1, t(γ2)), (h(γ1), t(γ2)), (h(γ1), t(γ5)), (h(γ4), t(γ5)), (h(γ4), R1)).

Similarly, the two R2-alternating sequences can be represented by ((h(γ3), R2), (h(γ3), R1)) and

((h(γ5), R2), (h(γ5), t(γ3)), (h(γ2), t(γ3)), (h(γ2), t(γ4)), (S2, t(γ4))).

It is easy to see that that the number of mergings is 5, which is half of (1 + 4 + 1 + 4), the sum of
lengths of all alternating sequences.

In Graph (b), sequentially listing the edges visited during the above-mentioned procedure, the
three R2-alternating sequences can be represented by ((h(γ2), R2), (h(γ2), R1)),

((h(ω1), R2), (h(ω1), t(γ1)), (h(ω2), t(γ1)), (h(ω2), t(γ4)), (h(γ3), t(γ4)), (h(γ3), R1))

and
((h(γ4), R2), (h(γ4), t(γ2)), (h(γ1), t(γ2)), (h(γ1), t(γ3)), (h(ω3), t(γ3)), (h(ω3), R1)).

Clearly, the number of mergings is 4, which is half of (5 + 1 + 5− 3).

Lemma 3.7. The shortest S1-alternating sequence (R2-alternating sequence) is of length at most
1.

Proof. Suppose, by contradiction, that the shortest S1-alternating sequence is of length at least 2.
Pick any α1-path, say, α1,i0 . Assume that α1,i0 first merges with α2,j0 at merging λi0,j0 . Since the
S1-alternating sequence associated with α1,i0 is of length at least 2, there exists an α1-path, say,
α1,i1 , such that α1,i1 has a merging, say, µi1,j0 , smaller than λi0,j0 on α2,j0 . Now assume that α1,i1

first merges with α2,j1 at merging λi1,j1 , then similarly there exists an α1-path, say, α1,i2 , such that
α1,i2 has a merging, say, µi2,j1, smaller than λi1,j1 on α2,j1 . Continue this procedure in the similar
manner to obtain α2,j2 , λi2,j2 , α1,i3 , µi3,j2 , α2,j3 , λi3,j3 , α1,i4 , µi4,j3 , . . . Choose the smallest l such that
there exists k < l such that ik = il. Note that

α1,ik [t(λik,jk), t(µil,jl−1
)] ◦ α2,jl−1

[t(µil,jl−1
), t(λil−1,jl−1

)] ◦ α1,il−1
[t(λil−1,jl−1

), t(µil−1,jl−2
)]

◦ α2,jl−2
[t(µil−1,jl−2

), t(λil−2,jl−2
)] ◦ · · · ◦ α1,ik+1

[t(λik+1,jk+1
), t(µik+1,jk)] ◦ α2,jk [t(µik+1,jk), t(λik ,jk)]

constitutes a cycle, which contradicts the assumption that G is acyclic.
A parallel argument can be applied to the shortest R2-alternating sequence.
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(a) (b)

S1

S2 S

R1R1

R2R2

α1,1

α1,1 α1,2

α1,2

α1,3

α2,1α2,1

α2,2

α2,2 α2,3

ω1 ω2 ω3

γ1

γ1

γ2

γ2 γ3

γ3

γ4

γ4

γ5

Figure 5: Two examples of alternating sequences

Lemma 3.8. For a non-reroutable graph G, any path pair occurs at most once in any given alter-
nating sequence.

Proof. By way of contradiction, suppose that (i, j) occurs in an alternating sequence twice. Let
u1, u2 be the two vertices where α1,i and α2,j meets. Then, as in the proof of Lemma II.4 in [6],
one can prove that u1 semi-reaches itself from head to head through α1. So G is reroutable, which
is a contradiction.

Remark 3.9. It then immediately follows from Lemma 3.8 that in a non-reroutable (c1, c2)-graph
with distinct sources,

• the longest S1-alternating sequence (R2-alternating sequence) is of length at most c1c2;

• any α1-path (α2-path) merges at most c1c2 times.

And in a non-reroutable (c2, c2)-graph with identical sources,

• the longest R2-alternating sequence is of length at most c22;

• any α1-path (α2-path) merges at most c22 times.

4 Exact Values

In this section, we give exact values ofM andM∗ for certain special parameters.

Theorem 4.1.

M(2, c2) = 3c2 − 1.

Proof. We first show thatM(2, c2) ≥ 3c2−1. Consider the following (2, c2)-graph specified by the
merging sequence (Ωk)

3c2−1
k=1 (for a simple example, see Figure 6(a)), where

Ωk =





([i]2, 1) if k = 3i− 2 for 1 ≤ i ≤ c2,

([i]2, i+ 1) if k = 3i− 1 for 1 ≤ i ≤ c2 − 1,

([i+ 1]2, i+ 1) if k = 3i for 1 ≤ i ≤ c2 − 1,

([n + 1]2, 1) if k = 3c2 − 1.

10



(a) (b)

S1 S1

S2

S2

R1 R1

R2
R2

A

B

C

D

E

F

J

K

L

M

N

α1,1 α1,2

Figure 6: (a) A non-reroutable (2, 3)-graph with 8 mergings (b) An example of a (2, 5)-graph

where [x]2 = 1 when x is odd, [x]2 = 2 when x is even. The above graph is non-reroutable with
3c2 − 1 mergings, which implies thatM(2, c2) ≥ 3c2 − 1.

Next, we show thatM(2, c2) ≤ 3c2−1. Consider a non-reroutable (2, c2)-graph G with distinct
sources S1, S2, sinks R1, R2, and a set of Menger’s paths αi = {αi,1, αi,2, . . . , αi,ci} from Si to Ri,
for i = 1, 2. Define

Σ = {(λ, µ) : merging λ is smaller than merging µ on some α2-path

and there is no other merging between them on this path}.

Note that for any (λ, µ) ∈ Σ, λ, µ must belong to different α1-paths. We say (λ, µ) ∈ Σ is of
type I, if λ belongs to α1,1, and (λ, µ) ∈ Σ is of type II, if λ belongs to α1,2. For any two different
elements (λ1, µ1), (λ2, µ2) ∈ Σ. We say (λ1, µ1) ≺ (λ2, µ2) if either (they are of the same type
and λ1 is smaller than λ2) or (they are of different types and λ1 is smaller than µ2). Clearly, the
relationship defined by ≺ is a strict total order.

Letting x denote the number of elements in Σ, we define

Θ = (Θ1,Θ2, . . . ,Θx)

to be the sequence of the ordered (by ≺) elements in Σ. Now we consecutively partition Θ into z
“medium-blocks” B1, B2, . . . , Bz, and further consecutively partition each Bi into yi “mini-blocks”
Bi,1, Bi,2, . . . , Bi,yi (see Example 4.3 for an example) such that

• for any i, j, the elements in Bi,j are of the same type.

• for any i, j, Bi,j is linked to Bi,j+1 in the following sense: let (λi,j, µi,j) denote the element
with the largest second component in Bi,j and let (λi,j+1, µi,j+1) denote the element with the
smallest first component in Bi,j+1, then µi,j = λi,j+1.

• for any i, Bi,yi is not linked to Bi+1,1.

11



A mini-block is said to be a singleton if it has only one element. We then have the following
lemma.

Lemma 4.2. Between any two “adjacent” singletons (meaning there is no other singleton between
these two singletons) in a medium-block, there must exist a mini-block containing at least three
elements.

Proof. Suppose, by way of contradiction, that there exist two adjacent singletons Θi, Θj with
i < j in a medium-block such that each of Θi+1,Θi+2, . . . ,Θj−1 contains exactly two elements. Let
Θj = (λ, µ). Then it is easy to see that µ semi-reaches itself along α2 from head to head, which
implies G is reroutable, a contradiction.

Letting y denote the number of mini-blocks in Θ and xi denote the number of elements in
medium-block Bi for 1 ≤ i ≤ z, we then have

x = x1 + x2 + · · ·+ xz,

y = y1 + y2 + · · ·+ yz.

Suppose there are k singletons in Θ, then by Lemma 4.2, we can find (k − 1) mini-blocks, each
of which has at least three elements. And any other mini-block has at least two elements. Hence,
for 1 ≤ i ≤ z,

xi ≥ 1 · k + 3 · (k − 1) + 2 · [yi − k − (k − 1)] = 2yi − 1, (3)

which implies

x =
z∑

i=1

xi ≥
z∑

i=1

(2yi − 1) = 2y − z. (4)

For any two linked mini-blocks Bi,j and Bi,j+1, let (λi,j, µi,j) denote the element with the
largest second component in Bi,j, and let (λi,j+1, µi,j+1) denote the element with the smallest first
component in Bi,j+1. By the definition (of two mini-blocks being linked), we have µi,j = λi,j+1,
which means Bi,j and Bi,j+1 share a common merging. Together with the fact that each element
in Σ is a pair of mergings, this further implies that the number of mergings in G is

||G|| = 2x− (y − z). (5)

Notice that λi,j , λi,j+1, µi,j+1 belong to the same α2-path, and furthermore, there exists only
one α1-path passing by both an element (more precisely, passing by both its mergings) in Bi,j and
an element in Bi,j+1. So, c2, the number of α2-paths in G, can be computed as

c2 = x− (y − z). (6)

It then follows from (4), (5), (6) and the fact z ≥ 1 that

c2 = x− y + z ≥ (2y − z)− y + z = y, (7)

and furthermore

||G|| = 2x− y + z = 2c2 + y − z ≤ 2c2 + c2 − 1 = 3c2 − 1, (8)

which establishes the theorem.
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Example 4.3. Consider the graph in Figure 6(b) and assume the context is as in the proof of
Theorem 4.1. Then we have,

Σ = {(A, J), (B,K), (L,C), (K,D), (F,M), (E,N)}.

Among all the elements in Σ, (A, J), (B,K), (F,M) and (E,N) are of type I, and (L,C),
(K,D) are of type II. It is easy to see that

Θ = ((A, J), (B,K), (K,D), (L,C), (E,N), (F,M)),

which is partitioned into three mini-blocks ((A, J), (B,K)), ((K,D), (L,C)) and ((E,N), (F,M)).
The first mini-block is linked to the second one, but the second one is not linked to the third, so Θ
is partitioned into two medium-blocks

((A, J), (B,K), (K,D), (L,C)) and ((E,N), (F,M)).

Remark 4.4. The proof of Theorem 4.1 reveals in greater depth the topological structure of non-
reroutable (2, c2)-graphs achieving 3c2 − 1 mergings, and further helps to determine the number of
such graphs.

Assume a non-reroutable (2, c2)-graph G has 3c2 − 1 mergings. Then, in the proof of Theo-
rem 4.1, equalities hold for (8). It then follows that

• z = 1, namely, there is only one medium-block in Θ;

• equalities hold necessarily for (7), (4) and eventually (3), which further implies that between
two adjacent singletons, only one mini-block has three elements and any other mini-block has
two elements.

Furthermore, it can be verified that

• for a mini-block with two elements ((λ1, µ1), (λ2, µ2)), µ2 is smaller than µ1;

• for a mini-block with three elements ((λ1, µ1), (λ2, µ2), (λ3, µ3)), either (µ2 is smaller than
µ3 and µ3 is smaller than µ1) or (µ3 is smaller than µ1 and µ1 is smaller than µ2).

Assume that G is “reduced” in the sense that, other than S1, S2, R1, R2, each vertex in G is
a head or tail of some merging. The properties above allow us to count how many reduced non-
reroutable (2, c2)-graphs (up to graph isomorphism) can achieve 3c2 − 1 mergings: suppose that
there are k (1 ≤ k ≤

⌊
c2+1
2

⌋
) singletons in G, then necessarily, there are (k − 1) three-element

mini-blocks and (c2 − 2k + 1) two-element mini-blocks in Θ. Obviously, the number of ways for
these c2 mini-blocks to form Θ for some (2, c2)-graph is

(
c2

2k−1

)
2k−1. This implies that the number

of (2, c2)-graph, whose Θ consists of k singletons, (k−1) three element mini-blocks and (c2−2k+1)
two element mini-blocks, is

(
c2

2k−1

)
2k−1. Through a computation summing over all feasible k, the

number of reduced non-reroutable (2, c2)-graphs with 3c2 − 1 mergings can be computed as

⌊

c2+1
2

⌋

∑

k=1

(
c2

2k − 1

)
2k−1 =

(1 +
√
2)c2 − (1−

√
2)c2

2
√
2

= Pc2 ,

where Pc2 is the c2-th Pell number [1].
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Remark 4.5. The following table lists exact values of M(c1, c2) with some small parameters,
obtained via an exhaustive graph searching aided by a personal computer. Note that these results
confirm the proven facts that M(1, c2) = c2 (see Example II.10 in [6]) M(2, c2) = 3c2 − 1 (see
Theorem 4.1), and M(3, 3) = 13 (see Theorem 3.1 in [14]). However, the computational power
required explodes drastically as parameters increase, and we are not able to fill in the blanks in the
table.

c1, c2 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 5 8 11 14 17

3 3 8 13 18 23 28

4 4 11 18 27

5 5 14 23

6 6 17 28

And we also find the following results via computer searching: M∗(4, 4) = 9 (which has also been
proven in Theorem III.1 in [15]),M∗(5, 5) = 16,M∗(6, 6) = 27.

5 Bounds

5.1 Bounds on M∗(c2, c2)

In this section, for any positive integer c2, we will construct a non-reroutable (c2, c2)-graph E(c2, c2)
with one source S, two sinks R1, R2, a set of Menger’s paths αi = {αi,0, αi,1, . . . , αi,c2−1} from S to
Ri for i = 1, 2, and (c2 − 1)2 mergings, thus giving a lower bound onM∗(c2, c2).

The graph E(c2, c2) can be described as follows: for each 0 ≤ i ≤ c2−1, paths α1,i and α2,i share
a starting subpath ωi. After ωc2−1, path α1,c2−1 does not merge any more, directly “flowing” to R1;
after ω0, path α2,0 does not merge any more, directly “flowing” to R2. The rest of the graph can
be determined how paths α1,0, α1,1, . . . , α1,c2−2 merge with α2,1, α2,2, . . . , α2,c2−1. In more detail,
for a given c2, we define

X ={xi,j = i(2c2 − i− 2) + j : 0 ≤ i ≤ c2 − 2, 1 ≤ j ≤ c2 − i− 1}
and

Y ={yi,j = i(2c2 − i− 3) + (c2 − 1) + j : 0 ≤ i ≤ c2 − 3, 1 ≤ j ≤ c2 − i− 2}.
Clearly, xi,j’s, yi,j’s are distinct and

X ∪ Y = {1, 2, . . . , (c2 − 1)2}.
Now we define a mapping f : {1, 2, . . . , (c2 − 1)2} 7→ {(i, j) : 0 ≤ i, j ≤ c2 − 1} by

f(k) =

{
(i, j) if k = xi,j,

(c2 − 1− j, c2 − 1− i) if k = yi,j.

Then the merging sequence of the rest of the graph can be defined as (f(k))
(c2−1)2

k=1 . For example,
E(4, 4), as illustrated in Figure 7, is determined by the merging sequence

((0, 1), (0, 2), (0, 3), (2, 3), (1, 3), (1, 1), (1, 2), (2, 2), (2, 1)).

Now, we prove that
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Figure 7: Graph E(4, 4) with 9 mergings

Lemma 5.1. E(c2, c2) is non-reroutable.

Proof. Let z = c2− 1. For each i, j = 0, 1, . . . , z, label each merging (i, j) in the merging sequence
as γi,j (Here, note that no two mergings share the same label).

We only prove that there is only one possible set of Menger’s paths from S to R1. The uniqueness
of Menger’s path sets from S to R2 can be established using a parallel argument.

Let α1 be an arbitrary yet fixed set of Menger’s paths from S to R1. It suffices to prove that
α1 is non-reroutable. Note that each path in α1 must end with either ωz → R1 or γi,z−i → R1,
i = 0, 1, . . . , z − 1 (here and hereafter, slightly abusing the notations “→” and “←”, for paths (or
vertices) A1, A2, . . . , Ak, we use A1 → A2 → · · · → Ak or Ak ← · · · ← A2 ← A1 to denote the path
which sequentially passes through A1, A2, . . . , Ak; note that such an expression uniquely determines
a path in this proof). In α1, label the Menger’s path ending with γi,z−i → R1 as the i-th Menger’s
path for 0 ≤ i ≤ z − 1, and the Menger’s path ending with ωz → R1 as the z-th one.

It is obvious that in E(c2, c2), there is only one Menger’s path ending at ωz → R1, which implies
that the z-th Menger’s path in α1 is “fixed” (as S → ωz → R1); or, more rigorously, for any set
of Menger’s paths α′

1, the z-th Menger’s path in α′

1 is the same as the z-th one in α1. So, for the
purpose of choosing other Menger’s paths, all the edges on S → ωz → R1 are “occupied”. It then
follows that, in α1, γ0,z must “come” from γ0,z−1; more precisely, in α1, γ0,z−1 is smaller than γ0,z
on the 0-th path and there is no other merging between them on this path. Now, all the edges on
γ0,z−1 → γ0,z → R1 are occupied.

Inductively, only considering unoccupied edges, one can verify that for 0 ≤ i ≤ z − 2, γi,z−i

must come from γi,z−i−1; in other words, for 0 ≤ i ≤ z − 2, the i-th Menger’s path must end
with γi,z−i−1 → γi,z−i → R1. It then follows that the (z − 1)-th Menger’s path must come from
γz−1,2 ← γz−1,3 ← · · · ← γz−1,z ← ωz−1; so, the (z − 1)-th Menger’s path is fixed as S → ωz−1 →
γz−1,z → γz−1,z−1 → · · · → γz−1,2 → γz−1,1 → R1.

We now proceed by induction on j, j = z − 2, z − 3, . . . , 1. Suppose that, for j + 1 ≤ i ≤ z,
the i-th Menger’s path is already fixed (and hence the edges on these paths are all occupied), and
for 0 ≤ i ≤ j, the i-th Menger’s path ends with γi,j−i+1 → γi,j−i+2 → · · · → γi,z−i → R1 (so,
the edges on these paths are all occupied). Only considering the unoccupied edges, similarly, for
0 ≤ i ≤ j−1, γi,j−i+1 must come from γi,j−i. It then follows that the j-th Menger’s path, which ends
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with γj,1 → γj,2 → · · · → γj,z−j → R1, must come from γj,z−j+1← γj,z−j+2← · · · ← γj,z ← ωj. So,
the j-th Menger’s path can now be fixed as S → ωj → γj,z → γj,z−1 → · · · → γj,z−j+1 → γj,1 →
γj,2 → · · · → γj,z−j → R1. Now, for j ≤ i ≤ z, the i-th Menger’s path is fixed, and for 0 ≤ i ≤ j−1,
the i-th Menger’s path must end with γi,j−i → γi,j−i+1 → · · · → γi,z−i → R1.

It follows from the above inductive argument that for 1 ≤ i ≤ z, the i-th Menger’s path is fixed,
and the 0-th Menger’s path must end with γ0,1 → γ0,2 → · · · → γ0,z → R1. It turns out that γ0,1
must come from ω0, which implies that the 0-th Menger’s path is fixed as S → ω0 → γ0,1 → γ0,2 →
· · · → γ0,z → R1. The proof of uniqueness of Menger’s path set from S to R1 is then complete.

The above lemma then immediately implies a lower bound onM∗(c2, c2).

Theorem 5.2.

M∗(c2, c2) ≥ (c2 − 1)2.

The following theorem gives an upper bound onM∗(c2, c2). First, we remind the reader that,
by Proposition III.6 in [6],M∗(c1, c2) =M∗(c2, c2) for any c1 ≥ c2.

Theorem 5.3.

M∗(c2, c2) ≤
⌈c2
2

⌉
(c22 − 4c2 + 5).

Proof. Consider any (c2, c2)-graph G with one source S, sinks R1, R2, a set of Menger’s paths
αi = {αi,1, αi,2, . . . , αi,c2} from S to Ri for i = 1, 2.

As discussed in Section 3.3, we assume that, for 1 ≤ i ≤ n, paths α1,i and α2,i share a starting
subpath, and paths α1,c2 and α2,1 do not merge with any other paths, directly flowing to the
sinks (then, necessarily, each R2-alternating sequence is of positive length, and by Lemma 3.7, the
shortest R2-alternating sequence is of length 1). We say that the path pair (α1,i, α2,j) is matched
if i = j, otherwise, unmatched. Clearly, each starting subpath corresponds to a matched path pair;
and among the set of all path pairs, each of which corresponds some merging in G, there are at
most (c2 − 2) matched and at most (c22 − 3c2 + 3) unmatched.

We then consider the following two cases (note that they may not be mutually exclusive):
Case 1: there exists a shortest R2-alternating sequence associated with a matched path pair.

By Lemma 3.8 and the fact that each starting subpath corresponds to a matched path pair, there
are at most

⌊
c2−1
2

⌋
mergings corresponding to this path pair, at most

⌊
c2−2
2

⌋
corresponding to any

other matched path pair, and at most
⌊
c2−1
2

⌋
mergings corresponding to any unmatched. So, the

number of mergings is upper bounded by
⌊
c2 − 1

2

⌋
+ (c2 − 3)

⌊
c2 − 2

2

⌋
+ (c22 − 3c2 + 3)

⌊
c2 − 1

2

⌋
. (9)

Case 2: there exists a shortest R2-alternating sequence associated with an unmatched path
pair. Again, by Lemma 3.8 and the fact that each starting subpath corresponds to a matched path
pair, there are at most

⌊
c2
2

⌋
mergings corresponding to this path pair, at most

⌊
c2−1
2

⌋
mergings

corresponding to any other unmatched path pair, and at most
⌊
c2−2
2

⌋
mergings corresponding to

any matched. So, the number of mergings is upper bounded by
⌊c2
2

⌋
+ (c2 − 2)

⌊
c2 − 2

2

⌋
+ (c22 − 3c2 + 2)

⌊
c2 − 1

2

⌋
. (10)

ThenM∗(c2, c2) ≤ max{(9), (10)}. For odd c2, (9) is larger than (10), so we have

M∗(c2, c2) ≤
(
c2 − 1

2

)
+ (c2 − 3)

(
c2 − 3

2

)
+ (c22 − 3c2 + 3)

(
c2 − 1

2

)

= (c22 − 4c2 + 5)

(
c2 + 1

2

)
.
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For even c2, (10) is larger than (9), so we have

M∗(c2, c2) ≤
(c2
2

)
+ (c2 − 2)

(
c2 − 2

2

)
+ (c22 − 3c2 + 2)

(
c2 − 2

2

)

= (c22 − 4c2 + 5)
(c2
2

)
.

The proof is then complete.

5.2 Bounds on M(c1, c2)

Consider the following (c2, c2)-graph F(c2, c2) with distinct sources S1, S2, distinct sinks R1, R2,
a set of Menger’s paths α1 = {α1,1, α1,2, . . . , α1,c2} from S1 to R1, a set of Menger’s paths α2 =

{α2,1, α2,2, . . . , α2,c2} from S2 to R2, and a merging sequence (Ωk)
2c22−3c2+2
k=1 , where

Ωk =





([j − i]c2 , i+ 1) if k = 2i(c2 − 1) + j

for (0 ≤ i ≤ c2 − 1, 1 ≤ j ≤ c2 − 1) or (i = c2 − 1, j = c2),

(c2 − i, [i − j + 2]c2) if k = (2i+ 1)(c2 − 1) + j for 0 ≤ i ≤ c2 − 2, 1 ≤ j ≤ c2 − 1,

where, for any integer x, [x]c2 denotes the least strictly positive residue of x modulo c2. For a quick
example, see F(3, 3) in Figure 8(a), whose merging sequence is

((1, 1), (2, 1), (3, 1), (3, 3), (3, 2), (1, 2), (2, 2), (2, 1), (2, 3), (3, 3), (1, 3)).

Then, as in the proof of Lemma 5.1, through verifying the uniqueness of the set of Menger’s paths
from Si to Ri, we have

Lemma 5.4. F(c2, c2) is non-reroutable.

Consider a non-reroutable (k, c2)-graph G(k, c2) with distinct sources Ŝ1, Ŝ2, sinks R̂1, R̂2, a

set of Menger’s paths α̂1 = {α̂1,1, α̂1,2, . . . , α̂1,k} from Ŝ1 to R̂1, a set of Menger’s paths α̂2 =

{α̂2,1, α̂2,2, . . . , α̂2,c2} from Ŝ2 to R̂2. For a fixed merging sequence of G(k, c2), assume, without
loss of generality, that the first element is (1, c2). Now, we consider the following procedure of
concatenating graphs F(c2, c2) and G(k, c2) to obtain a new graph:

1. split R1 into c2 copies R
(1)
1 , R

(2)
1 , . . . , R

(c2)
1 such that path α1,i has the ending point R

(i)
1 ; split

R2 into c2 copies R
(1)
2 , R

(2)
2 , . . . , R

(c2)
2 such that path α2,i has the ending point R

(i)
2 ;

2. split Ŝ1 into k copies Ŝ
(1)
1 , Ŝ

(2)
1 , . . . , Ŝ

(k)
1 such that path α̂1,i has the starting point Ŝ

(i)
1 ; split

Ŝ2 into c2 copies Ŝ
(1)
2 , Ŝ

(2)
2 , . . . , Ŝ

(c2)
2 such that path α̂2,i has the starting point Ŝ

(i)
2 ;

3. delete all edges on α1,1 and all edges on α2,c2 , each of which is larger than merging (α1,1, α2,c2)
to obtain new α1,1 and α2,c2 ;

4. delete all edges on α̂1,1 and all edges on α̂2,c2 , each of which is smaller than merging (α̂1,1, α̂2,c2)
to obtain new α̂1,1 and α̂2,c2 ;

5. concatenate α1,1 and ˆα1,1 to obtain α1,1◦α̂1,1 (so, necessarily, α2,c2 and α̂2,c2 are concatenated
simultaneously and we obtain α2,c2 ◦ α̂2,c2);

6. identify S1, Ŝ
(2)
1 , Ŝ

(3)
1 , . . . , Ŝ

(k)
1 ; identify R̂1, R

(2)
1 , R

(3)
1 , . . . , R

(k)
1 ; identify R

(i)
2 and Ŝ

(i)
2 for 1 ≤

i ≤ n− 1.
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Figure 8: (a) Graph F(3, 3) with 11 mergings (b) Splitting of R1 in F(3, 3)

Obviously, such procedure produces a (k+c2−1, c2)-graph with distinct sources S1, S2 and distinct

sinks R̂1 and R̂2, a set of (k + c2 − 1) Menger’s paths {α1,1 ◦ α̂1,1, α1,2, α1,3, . . . , α1,c2 , α̂1,2, α̂1,3,

. . . , α̂1,k} from S1 to R̂1 and a set of c2 Menger’s paths {α2,1 ◦ α̂2,1, α2,2 ◦ α̂2,2, . . . , α2,c2 ◦ α̂2,c2} from
S2 to R̂2. For example, in Figure 9, we concatenate F(2, 2) and a non-reroutable (2, 2)-graph to
obtain a (3, 2)-graph.

We then have the following lemma, whose proof is similar to Lemma 5.1 and thus omitted.

Lemma 5.5. The concatenated graph as above is a non-reroutable (k + c2 − 1, c2)-graph with the
number of mergings equal to ||F(c2, c2)||+ ||G(k, c2)|| − 1.

We are now ready for the following theorem, which gives us a lower bound onM(c1, c2).

Theorem 5.6.

M(c1, c2) ≥ 2c1c2 − c1 − c2 + 1.

Proof. Without loss of generality, assume that c1 ≤ c2. For 1 ≤ c′1 ≤ c1 and 1 ≤ c′2 ≤ c2, we will
iteratively construct a sequence of non-reroutable (c′1, c

′

2)-graphs with 2c′1c
′

2− c′1− c′2 +1 mergings,
which immediately implies the theorem.

First, for any k, H(1, k), a non-reroutable (1, k)-graph can be given by specifying its merging
sequence

((1, 1), (1, 2), . . . , (1, k)).

Next, consider the case 2 ≤ c1 ≤ c2. Assume that for any c′1, c
′

2 such that c′1 ≤ c′2, c
′

1 ≤ c1,
c′2 ≤ c2, however (c′1, c

′

2) 6= (c1, c2), we have constructed a non-reroutable (c′1, c
′

2)-graph, which
is effectively a non-reroutable (c′2, c

′

1)-graph as well. We obtain a new (c1, c2)-graph through the
following procedure:

1. if c1 = c2, concatenate F(c1, c1) and an already constructed non-reroutable (1, c1)-graph
H(1, c1);

2. if c1 < c2, concatenate F(c1, c1) and an already constructed non-reroutable (c2 − c1 + 1, c1)-
graph.
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Ŝ1

R̂1

Ŝ2
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Figure 9: Concatenation of F(2, 2) and a non-reroutable (2, 2)-graph

For the first case, according to Lemma 5.5, the obtained graph is a non-reroutable (c1, c1)-graph
with the number of mergings

(2c21 − 3c1 + 2) + c1 − 1 = 2c21 − 2c1 + 1.

Similarly, for the second case, the obtained graph is a non-reroutable (c1, c2)-graph with the
number of mergings

(2c21 − 3c1 + 2) + [2(c2 − c1 + 1)c1 − (c2 − c1 + 1)− c1 + 1]− 1 = 2c1c2 − c1 − c2 + 1.

We then have established the theorem.

Example 5.7. To construct a non-reroutable (4, 6)-graph with 39 mergings, one can concatenate
F(4, 4) and a non-reroutable (3, 4)-graph, which can be obtained by concatenating F(3, 3) and
a non-reroutable (2, 3)-graph. The latter can be obtained by concatenating F(2, 2) and a non-
reroutable (2, 2)-graph. Finally, a non-reroutable (2, 2)-graph can be obtained by concatenating
F(2, 2) and H(1, 2). One readily verifies that the number of mergings in the eventually obtained
graph is

||F(4, 4)|| + ||F(3, 3)|| + ||F(2, 2)|| + ||F(2, 2)|| + ||H(1, 2)|| − 4 = 22 + 11 + 4 + 4 + 2− 4 = 39.

Theorem 5.8.

M(c1, c2) ≤ (c1 + c2 − 1) + (c1c2 − 2)

⌊
c1 + c2 − 2

2

⌋
.

Proof. Consider any (c1, c2)-graph G with distinct sources S1, S2, distinct sinks R1, R2, and a set
of Menger’s paths αi = {αi,1, αi,2, . . . , αi,ci} from Si to Ri for i = 1, 2. As discussed in Section 3.3,
we assume that all the alternating sequences are of positive lengths. By Lemma 3.7, the shortest
S1-alternating sequence and R2-alternating sequence are both of length 1. We then consider the
following two cases (note that they may not be mutually exclusive):

Case 1: there exists a shortest S1-alternating sequence and a shortest R2-alternating sequence,
which are associated with the same path pair. By Lemma 3.8, there are at most

⌊
c1+c2

2

⌋
mergings
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corresponding to this path pair, and at most
⌊
c1+c2−2

2

⌋
mergings corresponding to any other path

pair. So, the number of mergings is upper bounded by
⌊
c1 + c2

2

⌋
+ (c1c2 − 1)

⌊
c1 + c2 − 2

2

⌋
. (11)

Case 2: there exists a shortest S1-alternating sequence and a shortest R2-alternating sequence,
which are associated with two distinct path pairs. Again, by Lemma 3.8, there are at most

⌊
c1+c2−1

2

⌋

mergings corresponding to each of these two path pairs, and at most
⌊
c1+c2−2

2

⌋
mergings correspond-

ing to any other path pair. So, the number of mergings is upper bounded by

2

⌊
c1 + c2 − 1

2

⌋
+ (c1c2 − 2)

⌊
c1 + c2 − 2

2

⌋
. (12)

Then,M(c1, c2) ≤ max{(11), (12)}. Straightforward computations then lead to the claimed result.

Remark 5.9. It has been established in [8] that

c2(c2 − 1)/2 ≤M∗(c2, c2) ≤ c32.

By summarizing all the four bounds, we obtain

(c2 − 1)2 ≤M∗(c2, c2) ≤
⌈c2
2

⌉
(c22 − 4c2 + 5),

2c1c2 − c1 − c2 + 1 ≤ M(c1, c2) ≤ (c1 + c2 − 1) + (c1c2 − 2)

⌊
c1 + c2 − 2

2

⌋
.

5.3 Bounds on M(3, c2)

In this section, we give the following scaling law forM when c1 = 3.

Theorem 5.10.

M(3, c2) ≤ 14c2.

Proof. Consider any non-reroutable (3, c2)-graph G with distinct sources S1, S2, sinks R1, R2, a
set of Menger’s paths α1 = {α1,1, α1,2, α1,3} from S1 to R1 and a set of Menger’s paths α2 =
{α2,1, α2,2, . . . , α2,c2} from S2 to R2. If a merging is the smallest (the largest) on an α2-path, we
say it is an x-terminal (y-terminal) merging on the α2-path, or simply a α2-terminal merging. For
a set of vertices v1, v2, . . . , vk in G, define G〈v1, . . . , vk〉 to be the subgraph of G induced on the set
of vertices, each of which is smaller or equal to some vi, i = 1, 2, . . . , k.

Consider the following iterative procedure (Figures 10, 11 and 12 roughly illustrate the proce-
dure), where, for notational simplicity, we treat a graph as the union of its vertex set and edge set.
Initially set S(0) = ∅, and R(0) = G. Now for each j = 1, 2, 3, pick a merging γ0,j such that γ0,j
belongs to path α1,j and

||R(0)〈t(γ0,1), t(γ0,2), t(γ0,3)〉|| = 14,

where one can choose γ0,j to be S1 if such merging does not exist on α1,j. Now set

L1 = R(0)〈t(γ0,1), t(γ0,2), t(γ0,3)〉,

and S(1) = S(0) ∪ L1, R(1) = G \ S(1). Suppose that we already obtain

Li = R(i−1)〈t(γi−1,1), t(γi−1,2), t(γi−1,3)〉,
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Figure 10: Partition a (3, c2)-graph into blocks

and S(i) = S(i−1) ∪ Li, R(i) = G \ S(i), where Li contains exactly 14 mergings and at least two
α2-terminal mergings. We then continue to pick merging γi,j on α1,j from R(i) such that

||R(i)〈t(γi,1), t(γi,2), t(γi,3)〉|| = 14

and there are at least two α2-terminal mergings in R(i)〈t(γi,1), t(γi,2), t(γi,3)〉. If such γi,j ’s exist,
set

Li+1 = R(i)〈t(γi,1), t(γi,2), t(γi,3)〉,
and if |R(i)| < 14, set Li+1 = R(i) and terminate the iterative procedure. So far, for any obtained
“block” Li+1, either we have ||Li+1|| < 14 or (||Li+1|| = 14 and there are at least two α2-terminal
mergings in Li+1); such block Li+1 is said to be normal. If |R(i)| ≥ 14, however, we cannot find a
normal block, we continue the procedure and define a singular Li+1 in the following.

Note that S(i) = L1 ∪ L2 ∪ · · · ∪ Li. Let zi =
∑i

j=1(xj − yj), where xi and yi denote the
numbers of x-terminal and y-terminal mergings in the α2-paths in Li, respectively; then zi is the
number of α2-paths which can continue to merge within R(i). If a normal block does not exist
after i iterations, necessarily we will have zi ≥ 3 (suppose zi ≤ 2, by the fact that M(3, 3) = 13
(see Theorem 3.1 in [14]), we would be able to obtain a normal block Li+1, which contains two
x-terminal mergings or (an x-terminal merging and a y-terminal merging)). We say that a merging
is critical within a subgraph of G if the corresponding α2-path, does not merge any more after this
merging within this subgraph. It then follows that the number of the critical mergings within S(i)
is zi.

Now, let Ki denote the set of all the mergings within R(i), each of which can semi-reach the
tail of some critical merging within S(i) along φ. Note that at least one of those α1-paths, each of
which contains at least one critical merging within S(i), does not contain any merging within Ki.
Without loss of generality, we assume that α1,3 ∩Ki = ∅. Now we consider the following two cases:

Case 1: α1,1∩Ki 6= ∅ and α1,2∩Ki 6= ∅. As shown in Figure 11, assume that within Ki, λi,1, λi,2

are the largest mergings on α1,1, α1,2, respectively. Now, set

Li+1 = R(i)〈t(λi,1), t(λi,2)〉, Qi = α1,1[t(γi−1,1), t(λi,1)] ∪ α1,2[t(γi−1,2), t(λi,2)].
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Figure 11: Case 1

Note that for λi,j, j = 1, 2, the associated α2-path, from λi,j, may merge outside Qi next time. If
this α2-path merges within Qi again after a number of mergings outside Qi, we call it an excursive
α2-path. Note that there are at most one excursive α2-path (since, otherwise, we can find a cycle
in G, which is a contradiction). On the other hand, for any merging from Ki other than λi,1, λi,2 ,
say, µ, the associated α2-path, from µ, can only merge within Qi and will not merge outside Qi.
So, the number of connected α2-paths that contain at least one merging within Li+1 ∩Qi is upper
bounded by yi+1 + 2. Then, by the fact thatM(2, c2) = 3c2 − 1 (see Theorem 4.1), we have

||Li+1 ∩Qi|| ≤ 3(yi+1 + 2)− 1. (13)

It is clear that all non-excursive α2-paths that contain at least one merging within Li+1 \ Qi must
have x-terminal mergings in Li+1. Thus, again by the fact thatM(2, c2) = 3c2 − 1, we have

||Li+1 \ Qi|| ≤ 3(xi+1 + 1)− 1. (14)

It then immediately follows from (13) and (14) that

||Li+1|| = ||Li+1 ∩ Qi||+ ||Li+1 \ Qi|| ≤ 3(xi+1 + yi+1) + 7.

Next, we claim that xi+1+yi+1 ≥ 3. To see this, suppose, by contradiction, that xi+1+yi+1 ≤ 2.
Observing that yi+1 ≥ zi − 2 ≥ 1, we then consider the following two cases:

If xi+1 + yi+1 = 2, we have

||Li+1|| ≤ 3(xi+1 + yi+1) + 7 = 13,

which implies that we can continue to choose a normal block (with two α2-terminal mergings), a
contradiction.

If xi+1 + yi+1 = 1, we have xi+1 = 0, yi+1 = 1. Note that if there is no excursive α2-path, we
have zi ≤ yi+1+2; if there is one excursive α2-path, then zi ≤ yi+1+1. This, together with zi ≥ 3,
implies that zi = 3 and there is no excursive α2-path. Consequently, we have

||Li+1 ∩ Qi|| ≤ M(2, 3) = 8, ||Li+1 \ Qi|| = 0.
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Figure 12: Case 2

But this, together withM(3, 3) = 13, implies that we can continue to choose a normal block with
an x-terminal merging and a y-terminal merging, which is a contradiction.

Case 2: α1,1 ∩ Ki 6= ∅ and α1,2 ∩ Ki = ∅. As shown in Figure 12, assume that within Ki, λi,1 is
the largest merging on α1,1. Clearly, there is no excursive α2-path. By the fact thatM(1, c2) = c2
(see Example II.10 of [6]) andM(2, c2) = 3c2 − 1, we have

||Li+1 ∩ Qi|| ≤ yi+1 + 1, ||Li+1 \ Qi|| ≤ 3xi+1 − 1.

It then immediately follows that ||Li+1|| ≤ 3xi+1 + yi+1.
Similarly as before, we claim that xi+1 + yi+1 ≥ 3. To see this, suppose, by contradiction,

that xi+1 + yi+1 ≤ 2. From yi+1 + 1 ≥ zi ≥ 3, we infer that yi+1 = 2 and xi+1 = 0, and further
||Li+1|| ≤ 3xi+1 + yi+1 = 2, which implies that we can in fact obtain a normal block with two
y-terminal mergings, a contradiction.

Combining the above two cases, we conclude that the number of mergings within the singular
block Li+1 is upper bounded by 3(xi+1 + yi+1) + 7, where xi+1 + yi+1 ≥ 3.

We continue these operations in an iterative fashion to further obtain normal blocks and sin-
gular blocks until there are no mergings left in the graph. Suppose there are q1 singular blocks
Lj1 ,Lj2 , . . . ,Ljq1 and q2 normal blocks. Note that each singular block has at least three α2-terminal
mergings and each normal block except the last one has at least two α2-terminal mergings. If the
last normal block has at least two α2-terminal mergings, we then have

3q1 ≤
q1∑

i=1

(xji + yji) ≤ 2c2 − 2q2.

It then follows that

||G|| ≤ 14q2 +

q1∑

i=1

[3(xji + yji) + 7] ≤ 14q2 + 3(2c2 − 2q2) + 7q1 = 6c2 + 7q1 + 8q2 ≤ 14c2. (15)
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If the last normal block has only one α2-terminal merging, necessarily, there are at most three
mergings in the last normal block, we then have

3q1 ≤
q1∑

i=1

(xji + yji) ≤ 2c2 − 2(q2 − 1)− 1.

It then follows that

||G|| ≤ 14(q2 − 1) + 3 +

q1∑

i=1

[3(xji + yji) + 7] ≤ 6c2 + 7q1 + 8q2 − 8 ≤ 14c2. (16)

Combining (15) and (16), we then have established the theorem.

6 Inequalities

Consider two non-reroutable (c2, c2)-graph G(1), G(2). For j = 1, 2, assume that G(j) has one source

S(j), two sinks R
(j)
1 , R

(j)
2 . Let α

(j)
1 = {α(j)

1,1, α
(j)
1,2, . . . , α

(j)
1,c2
} denote the set of Menger’s paths from

S(j) to R
(j)
1 and α

(j)
2 = {α(j)

2,1, α
(j)
2,2, . . . , α

(j)
2,c2
} denote the set of Menger’s paths from S(j) to R

(j)
2 .

As before, we assume that, for 1 ≤ i ≤ c2, paths α
(j)
1,i and α

(j)
2,i share a starting subpath.

Now, consider the following procedure of concatenating graphs G(1) and G(2):

1. reverse the direction of each edge in G(2) to obtain a new graph Ĝ(2) (for 1 ≤ i ≤ c2, path

α
(2)
1,i in G(2) becomes path α̂

(2)
1,i in Ĝ(2) and path α

(2)
2,i in G(2) becomes path α̂

(2)
2,i in Ĝ(2));

2. split S(1) into c2 copies S
(1)
1 , S

(1)
2 , . . . , S

(1)
c2 in G(1) such that paths α

(1)
1,i and α

(1)
2,i have the same

starting point S
(1)
i ; split S(2) into c2 copies S

(2)
1 , S

(2)
2 , . . . , S

(2)
c2 in Ĝ(2) such that paths α̂

(2)
1,i

and α̂
(2)
2,i have the same ending point S

(2)
i ;

3. for 1 ≤ i ≤ c2, identify S
(1)
i and S

(2)
i .

Obviously, such procedure produces a (c2, c2)-graph with two distinct sources R
(2)
1 , R

(2)
2 , two sinks

R
(1)
1 , R

(1)
2 , a set of Menger’s paths {α̂(2)

1,1 ◦ α
(1)
1,1, α̂

(2)
1,2 ◦ α

(1)
1,2, . . . , α̂

(2)
1,c2
◦ α(1)

1,c2
} from R

(2)
1 to R

(1)
1 and a

set of Menger’s paths {α̂(2)
2,1 ◦α

(1)
2,1, α̂

(2)
2,2 ◦α

(1)
2,2, . . . , α̂

(2)
2,c2
◦α(1)

2,c2
} from R

(2)
2 to R

(1)
2 . See Figure 13 for an

example where we concatenate two (3, 3)-graphs. The following theorem then follows from the fact
that the concatenated graph as above is a non-reroutable (c2, c2)-graph withM(G(1))+M(G(2))+c2
mergings. So we have the following theorem

Theorem 6.1.

M(c2, c2) ≥ 2M∗(c2, c2) + c2.

Consider a non-reroutable (c2 + 1, c2 + 1)-graph G(1) and a non-reroutable (c2 − 1, c2 − 1)-

graph G(2). The graph G(1) has one source S(1), two sinks R
(1)
1 , R

(1)
2 , a set of Menger’s paths

α1 = {α1,0, α1,1, . . . , α1,c2} from S(1) to R
(1)
1 and a set of Menger’s paths α2 = {α2,0, α2,1, . . . , α2,c2}

from S(1) to R
(1)
2 . As discussed in Section 3.3, we assume paths α1,i and α2,i share a starting

subpath ωi, and paths α1,c2 , α2,0 do not merge with any other paths in G(1), directly flowing to

the sinks. The graph G(2) has one source S(2), two sinks R
(2)
1 , R

(2)
2 , and a set of Menger’s paths

24



S(2)

S(1)

R
(2)
1R

(2)
1

R
(2)
2R

(2)
2

R
(1)
1R

(1)
1

R
(1)
2R

(1)
2

Figure 13: Concatenation of two (3, 3)-graphs

ζi = {ζi,1, ζi,2, . . . , ζi,c2−1} from S(2) to R
(2)
i , for i = 1, 2. Again, assume paths ζ1,i and ζ2,i share a

starting subpath.
Now, we consider the following procedure of concatenating graphs G(1) and G(2):

1. reverse the direction of each edge in G(2) to obtain a new graph Ĝ(2) (for 1 ≤ i ≤ c2− 1, path

ζ1,i in G(2) becomes path ζ̂1,i in Ĝ(2) and path ζ2,i in G(2) becomes path ζ̂2,i in Ĝ(2));

2. split S(1) into c2 + 1 copies S
(1)
0 , S

(1)
1 , . . . , S

(1)
c2 in G(1) such that paths α1,i and α2,i have the

same starting point S
(1)
i ; split S(2) into c2 − 1 copies S

(2)
1 , S

(2)
2 , . . . , S

(2)
c2−1 in Ĝ(2) such that

paths ζ̂1i and ζ̂2i have the same ending point S
(2)
i ;

3. delete all edges on α1,c2 , each of which is larger than ωc2 ; delete all edges on α2,0, each of
which is larger than ω0;

4. identify R
(2)
1 and S

(1)
0 ; for 1 ≤ i ≤ c2 − 1, identify S

(2)
i and S

(1)
i ; identify R

(2)
2 and S

(1)
c2 .

Obviously, such procedure produces a (c2, c2)-graph with two distinct sources R
(2)
1 , R

(2)
2 , two

sinks R
(1)
1 , R

(1)
2 , a set of Menger’s paths {α1,0, ζ̂1,1 ◦α1,1, ζ̂1,2 ◦α1,2, . . . , ζ̂1,c2−1 ◦α1,c2−1, } from R

(2)
1

to R
(1)
1 and a set of Menger’s paths {ζ̂2,1 ◦ α2,1, ζ̂2,2 ◦ α2,2, . . . , ζ̂2,c2−1 ◦ α2,c2−1, α2,c2} from R

(2)
2 to

R
(1)
2 . For example, in Figure 14, we concatenate a (2, 2)-graph and a (4, 4)-graph to obtain a (3, 3)-

graph. It turns out that the concatenated graph as above is a non-reroutable (c2, c2)-graph with
M(G(1)) +M(G(2)) + (c2 − 1) mergings. Then we establish the following theorem, which improves
the result in Proposition III.8 of [6].

Theorem 6.2.

M(c2, c2) ≥M∗(c2 + 1, c2 + 1) +M∗(c2 − 1, c2 − 1) + (c2 − 1).
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Figure 14: Concatenation of a (2, 2)-graph and a (4, 4)-graph

7 Conclusions and Future Work

The two functionsM andM∗, originally defined in [6], are of great relevance to network encoding
complexity for a variety of networks, as they indicate the numbers of encoding operations needed for
some worst case networks. One natural and fundamental question in network encoding complexity
is to compute the exact values of these two functions, which, however, appears to be extremely
difficult. It turns out that, even for small parameters, computations of these two functions are far
from straightforward, and these two functions for general parameters remain largely unknown to
date. In this paper, we have further developed the graph theoretical approach proposed in [6] to
derive exact values and bounds for these two functions for certain special parameters. A natural
follow-up problem is to further explore the power of our approach to derive exact values and tighter
bounds for more general parameters.

A central idea that runs through all the proofs (for the upper bound on M and M∗) in this
paper is as follows: for any (c1, c2)-graph G, if the number of mergings is sufficiently large, then
there must exist some “reroutable patterns”. In this sense, the results obtained in this work are of
Ramsey theory [5] flavor.
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