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In this paper, we study the classical problem of noisy constrained
capacity in the case of the binary symmetric channel (BSC), namely,
the capacity of a BSC whose input is a sequence from a constrained
set. Motivated by a result of Ordentlich and Weissman in [26], we
derive an asymptotic formula (when the noise parameter is small) for
the entropy rate of a hidden Markov chain, observed when a Markov
chain passes through a binary symmetric channel. Using this result
we establish an asymptotic formula for the capacity of a binary sym-
metric channel with input process supported on an irreducible finite
type constraint, as the noise parameter tends to zero.

1. Introduction. Let P denote the set of all the stationary stochastic
processes on the binary alphabet, and let Pn denote the set of all the sta-
tionary distributions (again binary) with length n. Consider X = X∞−∞ ∈ P.
The entropy rate of X is defined to be

H(X) = lim
n→∞H(X0

−n)/(n + 1);

here, H on finite length distributions is taken with the usual definition, with
log taken to mean the natural logarithm.

If X is a stationary finite-state Markov chain, then H(X) has a simple
analytic form. A hidden Markov chain Z can be defined as a deterministic
function of a Markov chain. Alternatively a hidden Markov chain is defined
as a Markov chain observed in noise. It is well known that the two definitions
are equivalent. For a hidden Markov chain Z, the entropy rate H(Z) was
studied by Blackwell [6] as early as 1957, where the analysis suggested the
intrinsic complexity of H(Z) as a function of the process parameters. He
gave an expression for H(Z) in terms of a measure Q, obtained by solving an
integral equation dependent on the parameters of the process. The measure
is hard to extract from the equation in any explicit way.

Recently, the problem of computing the entropy rate of a hidden Markov
chain has drawn much interest, and many approaches have been adopted
to tackle this problem. For instance, Blackwell’s measure has been used to
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bound the entropy rate [25] and a variation on the Birch bound [5] was intro-
duced in [10]. An efficient Monte Carlo method for computing the entropy
rate of a hidden Markov chain was proposed independently by Arnold and
Loeliger [1], Pfister et. al. [31], and Sharma and Singh [34]. The connection
between the entropy rate of a hidden Markov chain and the top Lyapunov
exponent of a random matrix product has been observed [12, 17–19]. Results
in [4, 29, 30, 32] show that under certain conditions the top Lyapunov expo-
nent of a random matrix product varies analytically as either the underlying
Markov process varies analytically or as the matrix entries vary analytically,
but not both. In [14], it is shown that under mild positivity assumptions the
entropy rate of a hidden Markov chain varies analytically as a function of
the underlying Markov chain parameters.

Another recent approach is based on computing the coefficients of an
asymptotic expansion of the entropy rate around certain values of the Markov
and channel parameters. The first result along these lines was presented in
[19], where for a binary symmetric channel with crossover probability ε (de-
noted by BSC(ε)), the Taylor expansion of H(Z) around ε = 0 is studied for
a binary hidden Markov chain of order one. In particular, the first deriva-
tive of H(Z) at ε = 0 is expressed very compactly as a Kullback-Liebler
divergence between two distributions on binary triplets, derived from the
marginal of the input process X. Further improvements, and new methods
for the asymptotic expansion approach were obtained in [26], [37], and [15].
In [26] the authors express the entropy rate for a binary hidden Markov chain
where one of the transition probabilities is equal to zero as an asymptotic
expansion including a O(ε log ε) term.

Let W denote all the finite length binary words, and Wn denote all the
binary words with length n. For a binary stationary distribution X (with
length possibly infinite) and a binary word w ∈ W, we say that w is allowed
in X if pX(w) > 0. Let A(X) denote the set of all allowed words in X, and
An(X) = A(X) ∩ Wn. Consider a binary irreducible finite type constraint
(defined in Section 3; for more details, see [22]) S. Let A(S) denote the set
of all allowable words in S, and An(S) = A(S) ∩ Wn. For a constrained
BSC(ε) with input sequences in S, the noisy constrained capacity C(S, ε) is
defined as

C(S, ε) = lim
n→∞

1
n + 1

sup
A(X0

−n)⊆An+1(S)

I(X0
−n, Z0

−n).
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Using the approach in Section 12.4 of [13], one can show that
(1.1)

C(S, ε) = lim
n→∞

1
n + 1

sup
X0
−n∈Pn+1,A(X0

−n)⊆An+1(S)

I(X0
−n, Z0

−n) = sup
X∈P,A(X)⊆A(S)

I(X;Z).

Generally speaking, it is very difficult to calculate the capacity of a generic
channel. For a discrete memoryless channel (DMC), the Blahut-Arimoto al-
gorithm ([3, 7]) can be applied to compute the capacity numerically. A gen-
eralized Blahut-Arimoto algorithm has been proposed to numerically com-
pute the local maximum mutual information rate of a finite state machine
channel [28]. As for C(S, ε), the best results in the literature have been in
the form of bounds and numerical simulations based on producing random
(and, hopefully, typical) channel output sequences (see, e.g., [36], [35], [2]
and references therein). These methods allow for fairly precise numerical ap-
proximations of the capacity for given constraints and channel parameters.

This paper is organized as follows. In section 2 we give asymptotic formu-
las for the entropy rate of a hidden Markov chain, obtained by observing a
binary Markov chain, of arbitrary order, passed through a binary symmetric
channel, as the noise tends to zero. In section 2.1, we review, from [20], the
result when the transition probabilities are strictly positive. In section 2.2,
we develop the formula when some transition probabilities are zero, thereby
generalizing the result from [26]. In section 3, we consider the binary sym-
metric channel with input sequences supported on an irreducible finite type
constraint, and we derive an asymptotic formula for capacity (again as the
noise tends to zero). In section 4, we consider the special case of the (d, k)-
RLL constraint, and compute the coefficients of the asymptotic formulas for
capacity of the constrained binary symmetric channel.

2. Asymptotics of Entropy Rate. Let X = {0, 1}. Let X be an
m-th order binary irreducible Markov process. The process is defined by
the set of conditional probabilities P (Xt = 1|Xt−1

t−m = am
1 ), am

1 ∈ Xm. The
process is equivalently interpreted as a first-order Markov chain on states
st = Xt−1

t−m, t > 0 (we assume X0−m+1 is defined and distributed according
to the stationary distribution of the process). Clearly, a transition from a
state u ∈ Xm to a state v ∈ Xm can have positive probability only if u and
v satisfy um

2 =vm−1
1 , in which case we say that (u, v) is an overlapping pair.

The noise process E = {Ei}i≥1 is Bernoulli (binary i.i.d.), independent of
X, with P (Ei=1) = ε. Let Z = Zε denote the function of the Markov chain
X ×E defined by:

Zi = Xi if Ei = 0,
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and
Zi = Xi if Ei = 1,

where Xi denotes the Boolean complement of Xi. So, Z is the hidden Markov
chain obtained by observing X over BSC(ε).

2.1. When transition probabilities of X are all positive. This case is
treated in [20]:

Theorem 2.1. ([20] (Theorem 3)) If the conditional symbol probabilities
in a m-th order binary Markov process X satisfy P (am+1|am

1 ) > 0 for all
am+1

1 ∈ Xm+1, then the entropy rate of Z for small ε is

(2.1) H(Z) = H(X) + g(X)ε + O(ε2),

where, denoting by z̄i the Boolean complement of zi, and

ž2m+1=z1 . . . zmz̄m+1zm+2 . . . z2m+1,

we have

g(X) =
∑

z2m+1
1

PX(z2m+1
1 ) log

PX(z2m+1
1 )

PX(ž2m+1
1 )

= D
(
PX(z2m+1

1 )||PX(ž2m+1
1 )

)
.(2.2)

Here, D(·||·) is the Kullback-Liebler divergence, applied here to distributions
on X 2m+1 derived from the marginals of X.

In [20] a complete proof is given for first-order Markov chains, as well as
the sketch for the generalization to higher order Markov chains.

We discuss other perspectives on this result.
Let Z̃i = (Zi, Zi+1, . . . , Zi+m−1) and Ẽi = (Ei, . . . , Ei+m−1). An expres-

sion for P (Z̃n
1 ) can be given in terms of a product of matrices, as follows.

Here, vectors are of dimension 2m, and matrices are of dimensions 2m× 2m.
We denote row vectors by bold lowercase letters, matrices by bold uppercase
letters, and we let 1 = [1, . . . , 1]; superscript t denotes transposition. Entries
in vectors and matrices are indexed by vectors in Xm, according to some
fixed order, so that Xm = {a1,a2, . . . ,a2m}. Let

pn = [P (Z̃n
1 , Ẽn=a1), P (Z̃n

1 , Ẽn=a2) . . . P (Z̃n
1 , Ẽn=a2m)]

and let M(Z̃n|Z̃n−1) be a 2m × 2m matrix defined as follows: if (en−1, en) ∈
Xm ×Xm is an overlapping pair, then

(2.3) Men−1,en(Z̃n|Z̃n−1) = PX(Z̃n ⊕ en|Z̃n−1 ⊕ en−1)P (Ẽn=en).
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All other entries are zero. With these definitions, it follows that

(2.4) P (Z̃n
1 ) = p1M(Z̃2|Z̃1) · · ·M(Z̃n|Z̃n−1)1t.

Note that at ε = 0, the matrices M(Z̃n|Z̃n−1) are all rank one and every
column of these matrices is either all positive or all zero. This is exactly
the condition needed to apply [15] (Theorem 2.5), which shows that the
derivatives of all orders of H(Z) with respect to ε at ε = 0 “stabilize” in the
sense that:

H(n)(Z)
∣∣∣
ε=0

= H
(n)
d(n+1)/2em(Z)

∣∣∣
ε=0

,

where the superscript n denotes the n-th order derivative with respect to ε.
This means that “in principle” one can compute the derivatives of all orders.
Theorem 2.1 does this explicitly for the first derivative.

2.2. When transition probabilities of X are not necessarily all positive.
Consider a first order Markov chain X with the following probability tran-
sition matrix

(2.5)

[
1− p p

1 0

]

where 0 ≤ p ≤ 1. This process generates sequences satisfying the (1,∞)
constraint (or, under a different interpretation of rows and columns, the
equivalent (0, 1) constraint). The output sequence Z, however, will gener-
ally not satisfy the constraint. The probability of the constraint-violating
sequences at the output of the channel is polynomial in ε, which will gener-
ally contribute a term O(ε log ε) to the entropy rate H(Z) when ε is small.
This was already observed for the probability transition matrix (2.5) in [26],
where it is shown that

(2.6) H(Z) = H(X)− p(2− p)
1 + p

ε log ε + O(ε)

as ε → 0.
In the following, we shall generalize this result and derive an formula

for entropy rate of any hidden Markov chain Z, obtained when passing a
Markov chain X of any order m through a BSC(ε). By the Birch bound [5],
for n ≥ m, we have:

(2.7) H(Z0|Z−1
−n+m, X−n+m−1

−n , E−n+m−1
−n ) ≤ H(Z) ≤ H(Z0|Z−1

−n).

Note that each of these quantities is a function of ε, and the lower bound is
really just

H(Z0|Z−1
−n+m, X−n+m−1

−n ),

since Z0−n+m, if conditioned on X−n+m−1
−n , is independent of E−n+m−1

−n .
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Lemma 2.2. For a stationary input distribution X = X0−n ∈ Pn+1 and
the corresponding output distribution Z = Z0−n through BSC(ε) and 0 ≤ k ≤
n,

H(Z0|Z−1
−n+k, X

−n+k−1
−n ) = H(X0|X−1

−n)+fk
n(X0

−n)ε log(1/ε)+gk
n(X0

−n)ε+O(ε2 log ε),

where fk
n(X0−n) and gk

n(X0−n) are the functions defined on Pn+1 given by
(2.8) and (2.9), respectively.

Proof. In this proof, w = w−1
−n, where w−j is a single bit, and we let v

denote a single bit. And we use the notation for probability:

pXZ(w) = p(X−n+k−1
−n = w−n+k−1

−n , Z−1
−n+k = w−1

−n+k),

pXZ(wv) = p(X−n+k−1
−n = w−n+k−1

−n , Z−1
−n+k = w−1

−n+k, Z0 = v),

and

pXZ(v|w) = p(Z0 = v|Z−1
−n+k = w−1

−n+k, X
−n+k−1
−n = w−n+k−1

−n ).

We remark that the definition of pXY does depend on how we partition
w−1
−n according to k, however we keep the dependence implicit for notational

convenience.
We split H(Z0|Z−1

−n+k, X
−n+k−1
−n ) into five terms:

H(Z0|Z−1
−n+k, X

−n+k−1
−n ) =

∑

wv∈A(X)

−pXZ(wv) log(pXZ(v|w))

+
∑

w∈A(X),wv/∈A(X)

−pXZ(wv) log(pXZ(v|w))+
∑

pXZ(w)=Θ(ε),pXZ(wv)=Θ(ε)

−pXZ(wv) log(pXZ(v|w))

+
∑

pXZ(w)=Θ(ε),pXZ(wv)=Θ(ε2)

−pXZ(wv) log(pXZ(v|w))+
∑

pXZ(w)=O(ε2)

−pXZ(wv) log(pXZ(v|w)),

here by α = Θ(β), we mean there exist positive constant C1, C2 such that
C1|β| ≤ |α| ≤ C2|β|, while by α = O(β), we mean there exists positive
constant C such that |α| ≤ C|β|; note that pXZ(w) = Θ(ε) is equivalent to
the statement that the Hamming distance of w from A(X) is 1 and achieved
by flipping one of the bits in w−1

−n+k.
For the fourth term, we have

∑

pXZ(w)=Θ(ε),pXZ(wv)=Θ(ε2)

−pXZ(wv) log(pXZ(v|w)) = O(ε2 log ε).
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For the fifth term, we have
∑

pXZ(w)=O(ε2)

−pXZ(wv) log(pXZ(v|w)) =
∑

pXZ(w)=O(ε2)

−pXZ(w)
∑
v

pXZ(v|w) log(pXZ(v|w))

≤ (log 2)
∑

pXZ(w)=O(ε2)

pXZ(w) = O(ε2),

where we use −∑
v pXZ(v|w) log(pXZ(v|w)) ≤ log 2 for any w. We conclude

that the sum of the fourth term and the fifth term is O(ε2 log ε).
For a binary sequence u−1

−n, define hk
n(u−1

−n) to be:

hk
n(u−1

−n) =
n−k∑

j=1

pX(u−j−1
−n ū−ju

−1
−j+1)− (n− k)pX(u−1

−n).

Note that with this notation, hk
n(w) and hk

n+1(wv) can be expressed as
derivatives with respect to ε at ε = 0:

hk
n(w) = p′XZ(w)|ε=0, hk

n+1(wv) = p′XZ(wv)|ε=0.

Then for the first term, we have
∑

wv∈A(X)

−pXZ(wv) log(pXZ(v|w))

= −
∑

wv∈A(X)

(pX(wv)+hk
n+1(wv)ε+O(ε2)) log(pX(v|w)+

hk
n+1(wv)pX(w)− hk

n(w)pX(wv)
p2

X(w)
ε+O(ε2))

= H(X0|X−1
−n)−

∑

wv∈A(X)

(
hk

n+1(wv) log pX(v|w) +
hk

n+1(wv)pX(w)− hk
n(w)pX(wv)

pX(w)

)
ε+O(ε2).

For the second term, it is easy to check that for w ∈ A(X) and wv /∈ A(X),
pXZ(v|w) = Θ(ε) and

pXZ(wv) = hk
n+1(wv)ε + O(ε2),

we obtain

∑

w∈A(X),wv/∈A(X)

−pXZ(wv) log(pXZ(v|w)) = −
∑

w∈A(X),wv/∈A(X)

hk
n+1(wv)ε log

hk
n+1(wv)ε + O(ε2)

pX(w)
+O(ε2) log Θ(ε)

=
∑

w∈A(X),wv/∈A(X)

hk
n+1(wv)ε log(1/ε)−


 ∑

w∈A(X),wv/∈A(X)

hk
n+1(wv) log

hk
n+1(wv)
pX(w)


 ε+O(ε2 log ε).
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For the third term, we have
∑

pXZ(w)=Θ(ε),pXZ(wv)=Θ(ε)

−pXZ(wv) log(pXZ(v|w))

= −
∑

pXZ(w)=Θ(ε),pXZ(wv)=Θ(ε)

(hk
n+1(wv)ε + O(ε2)) log

(
hk

n+1(wv)
hk

n(w)
+ O(ε)

)

= −

 ∑

pXZ(w)=Θ(ε),pXZ(wv)=Θ(ε)

hk
n+1(wv) log

(
hk

n+1(wv)
hk

n(w)

)
 ε + O(ε2).

In summary, H(Z0|Z−1
−n+k, X

−n+k−1
−n ) can be rewritten as

H(Z0|Z−1
−n+k, X

−n+k−1
−n ) = H(X0|X−1

−n)+fk
n(X0

−n)ε log(1/ε)+gk
n(X0

−n)ε+O(ε2 log ε),

where

(2.8) fk
n(X0

−n) =
∑

w∈A(X),wv/∈A(X)

hk
n+1(wv),

and

gk
n(X0

−n) = −
∑

wv∈A(X)

(
hk

n+1(wv) log pX(v|w) +
hk

n+1(wv)pX(w)− hk
n(w)pX(wv)

pX(w)

)

(2.9)

−
∑

w∈A(X),wv/∈A(X)

hk
n+1(wv) log

hk
n+1(wv)
pX(w)

−
∑

pXZ(w)=Θ(ε),pXZ(wv)=Θ(ε)

hk
n+1(wv) log

(
hk

n+1(wv)
hk

n(w)

)
.

Remark 2.3. For any δ > 0 and fixed n, the constant in O(ε2 log ε) in
Lemma 2.2 can be chosen uniformly on Sn,δ, where Sn,δ denotes the collec-
tion of stationary distributions X ∈ Pn+1, such that for all w ∈ An+1(X),
p(w) ≥ δ.

Theorem 2.4. For an m-th order Markov chain X passing through a
BSC(ε), with Z as the output hidden Markov chain,

H(Z) = H(X) + f(X)ε log(1/ε) + g(X)ε + O(ε2 log ε),

where f(X) = f0
2m(X0−2m) = fm

2m(X0−2m) and g(X) = g0
3m(X0−3m) = gm

3m(X0−3m).
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Proof. We apply Lemma 2.2 to the Birch upper and lower bounds (eqn.
(2.7)) of H(Z). For the upper bound, k = 0, we have, for all n,

H(Z0|Z−1
−n) = H(X0|X−1

−n) + f0
n(X0

−n)ε log(1/ε) + g0
n(X0

−n)ε + O(ε2 log ε).

And for the lower bound, k = m, we have, for n ≥ m,

H(Z0|Z−1
−n+m, X−n+m−1

−n ) = H(X0|X−1
−n)+fm

n (X0
−n)εlog(1/ε)+gm

n (X0
−n)ε+O(ε2 log ε).

The first term always coincides for the upper and lower bounds. When
n ≥ m, since X is an m-th order Markov chain,

H(X0|X−1
−n) = H(X0|X−1

−m) = H(X).

Again let w = w−1
−n, where w−j is a single bit, and v denotes a single bit.

If w ∈ A(X) and wv /∈ A(X), then p(w−1
−mv) = 0. It then follows that for an

m-th order Markov chain, when n ≥ 2m,

fm
n (X0

−n) = f0
n(X0

−n) = f0
2m(X0

−2m) = fm
2m(X0

−2m).

Now consider gk
n(X0−n). When 0 ≤ k ≤ m, we have (for detailed derivation

of (2.10)-(2.12), see Appendix A)

(2.10) if wv ∈ A(X), pX(v|w) = pX(v|w−1
−m), for n ≥ m,

(2.11)

if w ∈ A(X), wv /∈ A(X),
hk

n+1(wv)
pX(w)

is constant (as function of n and k) for n ≥ 2m, 0 ≤ k ≤ m,

(2.12)

if pXZ(w) = Θ(ε), pXZ(wv) = Θ(ε),
hk

n+1(wv)
hk

n(w)
is constant for n ≥ 3m, 0 ≤ k ≤ m.

It then follows from the “stabilizing” property of the quantities above that
(for detailed derivation of (2.13)-(2.15), see Appendix A)
(2.13)

∑

wv∈A(X)

hk
n+1(wv)pX(w)− hk

n(w)pX(wv)
pX(w)

is constant (as a function of n) for n ≥ 2m, 0 ≤ k ≤ m,

(2.14)
∑

w∈A(X),wv/∈A(X)

hk
n+1(wv) log

hk
n+1(wv)
pX(w)

is constant for n ≥ 2m, 0 ≤ k ≤ m,
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and
(2.15)

∑

wv∈A(X)

hk
n+1(wv) log pX(v|w)+

∑

pXZ(w)=Θ(ε),pXZ(wv)=Θ(ε)

hk
n+1(wv) log

hk
n+1(wv)
hk

n(w)
is constant for n ≥ 3m, 0 ≤ k ≤ m.

Consequently, we have

gm
n (X0

−n) = g0
n(X0

−n) = g0
3m(X0

−3m) = gm
3m(X0

−3m).

Let f(X) = f0
2m(X0−2m) and g(X) = g0

3m(X0−3m), then the theorem follows.

Remark 2.5. Note that this result applies in particular to the case when
the transition probabilities are all positive; thus in this case the formula
should reduce to that of Theorem 2.1, i.e., f is zero and g reduces to the
Kullback-Leibler divergence expression in Theorem 2.1.

3. Asymptotics of Capacity. A finite type constraint [22] S is defined
by a finite set (denoted by F) of forbidden words. A prominent example is
the (d, k)-RLL constraint S(d, k) which forbids any sequence with fewer than
d or more than k consecutive zeros in between two 1’s. Let A(S) denote the
set of all allowable words in S, and An(S) = A(S) ∩ Wn. A finite type
constraint is irreducible if for any u, v ∈ A(S), there is a w ∈ A(S) such that
uwv ∈ A(S).

Consider a binary irreducible finite type constraint S defined by F , which
consists of forbidden words with length m̂ + 1. In general, there are many
such F ’s corresponding to the same S with different lengths; here we may
choose F to be the one with the smallest length m̂ + 1. And m̂ = m̂(S) is
defined to be the topological order of the constraint S. Note that the order
of S(d, k) is k.

The conventional BSC channel capacity (with unconstrained binary input
sequences) C(ε) can be easily computed as follows:

C(ε) = 1−H(ε),

where H(ε) = −ε log ε − (1 − ε) log(1 − ε). For a constrained BSC(ε) with
input sequences X0−n in S and with the corresponding output Z0−n(ε), the
capacity C(S, ε) can be written as:

C(S, ε) = lim
n→∞ sup

X0
−n∈Pn+1,A(X0

−n)⊆An+1(S)

H(Z0−n(ε))−H(Z0−n(ε)|X0−n)
n + 1

imsart-aap ver. 2007/12/10 file: capacity_asymptotics_14.tex date: March 24, 2008



INPUT-CONSTRAINED CHANNEL CAPACITY 11

= lim
n→∞ sup

X0
−n∈Pn+1,A(X0

−n)⊆An+1(S)

H(Z0
−n(ε))/(n + 1)−H(ε)

= lim
n→∞ sup

X0
−n∈Pn+1,A(X0

−n)⊆An+1(S)

H(Z0(ε)|Z−1
−n(ε))−H(ε),

where the last equality follows from the the fact that

H(Z0
−n(ε)) =

n∑

j=0

H(Z0(ε)|Z−1
−j (ε)),

and
H(Z0(ε)|Z−1

−j1
(ε)) ≥ H(Z0(ε)|Z−1

−j2
(ε)) for j1 ≤ j2.

Alternatively

(3.1) C(S, ε) = sup
X∈P,A(X)⊆A(S)

H(Zε)−H(ε),

where Zε is the output process corresponding to X.
We shall derive in this section an asymptotic formula for capacity of this

noisy constrained channel as ε → 0.
Now let

Hn(S, ε) = sup
X0
−n∈Pn+1,A(X0

−n)⊆An+1(S)

H(Z0(ε)|Z−1
−n(ε)),

and letting Mm denote the set of all m-th order binary irreducible Markov
chains, we define

hm(S, ε) = sup
X∈Mm,A(X)⊆A(S)

H(Zε).

Now let Cm(S, ε) denote the maximum mutual information rate over all
m-th order input Markov chains supported on S transmitted over BSC(ε);
then

(3.2) Cm(S, ε) = hm(S, ε)−H(ε),

and we have bounds on C(S, ε):

(3.3) hm(S, ε)−H(ε) ≤ C(S, ε) ≤ Hn(S, ε)−H(ε).

Noting that

sup
X0
−n∈Pn+1,A(X0

−n)(An+1(S)

H(X0|X−1
−n) < sup

X0
−n∈Pn+1,A(X0

−n)=An+1(S)

H(X0|X−1
−n),
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12 G. HAN, B. MARCUS

sup
X∈Mm,A(X)(A(S)

H(X) < sup
X∈Mm,A(X)=A(S)

H(X),

and H(Z0(ε)|Z−1
−n(ε)), H(Zε) are continuous at ε = 0, we conclude that for

ε sufficiently small (ε < ε0), one may choose δ > 0 (here, δ depends on n
and m) such that

Hn(S, ε) = sup
X0
−n∈Pn+1,A(X0

−n)=An+1(S),X0
−n∈Sn,δ

H(Z0(ε)|Z−1
−n(ε)),

and
hm(S, ε) = sup

X∈Mm,A(X)=A(S),X∈Sm,δ

H(Zε).

So from now on we only consider stationary distributions and Markov
chains whose allowed words coincide with those of S. Let ~p denote the joint
probability vector (indexed by An+1(S)),

~p = (p(w) : w ∈ An+1(S)).

In the following, the input and output of a BSC(ε) will be parameterized
by ~p. More specifically, we use X~p to denote the binary irreducible Markov
chain. Let Z~p,ε denote the output process obtained by passing X~p through
BSC(ε). Similarly, we use X0−n(~p) to denote the stationary input distribution
X0−n, and let Z0−n(~p, ε) denote the output distribution obtained by passing
X0−n(~p) through BSC(ε).

Lemma 3.1. H(X0(~p)|X−1
−n(~p)), as a function of ~p in the space of distri-

butions X0−n(~p) ∈ Pn+1 with A(X0−n(~p)) = An+1(S), has a negative definite
Hessian matrix.

Proof. Note that

H(X0(~p)|X−1
−n(~p)) = −

∑

x0
−n∈A(S)

p(x0
−n) log p(x0|x−1

−n).

For two different probability vectors ~p and ~q, consider the convex combina-
tion

~r(t) = t~p + (1− t)~q,

where 0 ≤ t ≤ 1. It suffices to prove that H(X0(~r(t))|X−1
−n(~r(t))) has a

strictly negative second derivative with respect to t. Now consider a single
term in H(X0(~p)|X−1

−n(~p)):

−(tp(x0
−n) + (1− t)q(x0

−n)) log
tp(x0−n) + (1− t)q(x0−n)
tp(x−1

−n) + (1− t)q(x−1
−n)

.
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Note that for two symbols α and β, if we assume α′′ = 0 and β′′ = 0, the
second order formal derivative of α log α

β can be computed as:

(
α log

α

β

)′′
=

(
α′√
α
−√α

β′

β

)2

.

It then follows that the second derivative of this term (with respect to t)
can be calculated as:

−

 p(x0−n)− q(x0−n)√

tp(x0−n) + (1− t)q(x0−n)
−

√
tp(x0−n) + (1− t)q(x0−n)

p(x0
−(n−1))− q(x0

−(n−1))

tp(x0
−(n−1)) + (1− t)q(x0

−(n−1))




2

.

That is, the expression above is always non-positive, and is equal to 0 only
if

p(x0−n)− q(x0−n)
tp(x0−n) + (1− t)q(x0−n)

=
p(x0

−(n−1))− q(x0
−(n−1))

tp(x0
−(n−1)) + (1− t)q(x0

−(n−1))
,

which is equivalent to

(3.4) p(x0|x−1
−n) = q(x0|x−1

−n).

Since S is an irreducible finite type constraint andA(X0−n(~p)) = A(X0−n(~q)) =
An+1(S), the expression (3.4) can’t hold true for every x0−n unless ~p = ~q. So
we conclude that the second derivative of H(X0(~r(t))|X−1

−n(~r(t))) (with re-
spect to t) is strictly negative. Thus H(X0(~p)|X−1

−n(~p)) has a strictly negative
definite Hessian as a function of ~p.

For m ≥ m̂, over all m-th order Markov chains X with A(X) = A(S),
H(X~p) is maximized at some unique value ~pmax

m (see [22, 27]). Moreover
X~pmax

m
doesn’t depend on m and is an m̂-th order Markov chain, so we

will drop the subscript m and use X~pmax instead to denote X~pmax
m

for any
m ≥ m̂. The same idea shows that over all stationary distributions X0−n

(n ≥ m̂) with A(X0−n) = An+1(S), H(X0(~p)|X−1
−n(~p)) is maximized at ~pmax

n ,
which corresponds to X~pmax as well.

Let C(S) = C(S, 0) denote the noiseless capacity of the constraint S.
This quantity has been extensively studied, and several interpretations and
methods for its explicit derivation are known (see, e.g., [24] and extensive
bibliography therein). It is well known that C(S) = H(X~pmax) (see [22, 27]).

Theorem 3.2. 1. If n ≥ 3m̂(S),

Hn(S, ε) = C(S) + f(X~pmax)ε log(1/ε) + g(X~pmax)ε + O(ε2 log2 ε).
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14 G. HAN, B. MARCUS

2. If m ≥ m̂(S),

hm(S, ε) = C(S) + f(X~pmax)ε log(1/ε) + g(X~pmax)ε + O(ε2 log2 ε).

Proof. We first prove the statement for Hn(S, ε). As mentioned before,
for ε sufficiently small (ε < ε0), Hn(S, ε) is achieved by X0−n with A(X0−n) =
An+1(S); and one may choose δ such that

Hn(S, ε) = sup
~p:X0

−n(~p)∈Pn+1,A(X0
−n(~p))=An+1(S),X0

−n(~p)∈Sn,δ

H(Z0(~p, ε)|Z−1
−n(~p, ε)).

Below, we assume ε < ε0, A(X0−n(~p)) = An+1(S) and X0−n(~p) ∈ Sn,δ.
For a distribution p on words with length n + 1, define

fn(~p) = f0
n(X0

−n(~p)),

and
gn(~p) = g0

n(X0
−n(~p)).

In Lemma 2.2, we have proved that

H(Z0(~p, ε)|Z−1
−n(~p, ε)) = H(X0(~p)|X−1

−n(~p))+fn(~p)ε log(1/ε)+gn(~p)ε+O(ε2 log ε).

Moreover, by Remark 2.3, for any δ > 0, O(ε2 log ε) is uniform on Sn,δ, i.e.,
there is a constant C (depending on n) such that for all X with A(X0−n) =
An+1(S) and X0−n(~p) ∈ Sn,δ,

|H(Z0(~p, ε)|Z−1
−n(~p, ε))−H(X0(~p)|X−1

−n(~p))− fn(~p)ε log(1/ε)− gn(~p)ε| ≤ Cε2 log ε.

Let ~q = ~p− ~pmax
n . Since H(X0(~p)|X−1

−n(~p)) is maximized at ~pmax
n , we can

expand H(X0(~p)|X−1
−n(~p)) around ~pmax

n :

H(X0(~p)|X−1
−n(~p)) = H(X0(~pmax

n )|X−1
−n(~pmax

n ))+~qtK1~q+O(|~q|3) = H(X~pmax)+~qtK1~q+O(|~q|3),

where K1 is a negative definite matrix by Lemma 3.1 (the second equality
follows from the fact that X~pmax is an m̂-th order Markov chain). So for |~q|
sufficiently small, we have

H(X0(~p)|X−1
−n(~p)) < H(X~pmax) + (1/2)~qtK1~q.

Now we expand fn(~p) and gn(~p) around ~pmax
n :

fn(~p) = fn(~pmax
n ) + K2 · ~q + O(|~q|2),

gn(~p) = gn(~pmax
n ) + K3 · ~q + O(|~q|2),
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INPUT-CONSTRAINED CHANNEL CAPACITY 15

(here, K2 and K3 are vectors of first order partial derivatives). Then, for |~q|
sufficiently small, we have

fn(~p) ≤ fn(~pmax
n ) + 2

∑

j

|K2,j ||~qj |,

gn(~p) ≤ gn(~pmax
n ) + 2

∑

j

|K3,j ||~qj |.

With a change of coordinates, if necessary, we may assume K1 is a di-
agonal matrix with strictly negative diagonal elements K1,j . In the follow-
ing we assume 0 < ε < ε0. And we may further assume that for some
` ≥ 1, |qj | > 4|K2,j/K1,j |ε log(1/ε) + 4|K3,j/K1,j |ε for j ≤ ` − 1, and
|qj | ≤ 4|K2,j/K1,j |ε log(1/ε)+4|K3,j/K1,j |ε for j ≥ `. Then for each j ≤ l−1,
we have (1/2)K1,jq

2
j + 2|K2,j ||qj |ε log(1/ε) + 2|K3,j ||~qj |ε < 0. Thus,

H(Z0(~p, ε)|Z−1
−n(~p, ε)) < H(X~pmax) + fn(~pmax

n )ε log(1/ε) + gn(~pmax
n )ε

+
∑

j

((1/2)K1,jq
2
j + 2|K2,j ||qj |ε log(1/ε) + 2|K3,j ||~qj |ε) + Cε2 log ε

< H(X~pmax)+fn(~pmax
n )ε log(1/ε)+gn(~pmax

n )ε+
∑

j≥l

(1/2)K1,j(4|K2,j/K1,j |ε log(1/ε)+4|K3,j/K1,j |ε)2

+
∑

j≥l

2|K2,j |(4|K2,j/K1,j |ε log(1/ε) + 4|K3,j/K1,j |ε)ε log(1/ε)

+
∑

j≥l

2|K3,j |(4|K2,j/K1,j |ε log(1/ε) + 4|K3,j/K1,j |ε)ε + Cε2 log ε.

Collecting terms, we eventually reach:

H(Z0(~p, ε)|Z−1
−n(~p, ε)) < H(X~pmax)+fn(~pmax

n )ε log(1/ε)+gn(~pmax
n )ε+O(ε2 log2 ε),

and since Hn(S, ε) is the sup of the left hand side expression, together with
H(X~pmax) = C(S), we have

Hn(S, ε) ≤ C(S) + fn(~pmax
n )ε log(1/ε) + gn(~pmax

n )ε + O(ε2 log2 ε).

As discussed in Theorem 2.4, we have

(3.5) fn(~pmax
n ) = f(X~pmax), n ≥ 2m̂,

and

(3.6) gn(~pmax
n ) = g(X~pmax), n ≥ 3m̂.
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16 G. HAN, B. MARCUS

So eventually we reach

Hn(S, ε) ≤ C(S) + f(X~pmax)ε log(1/ε) + g(X~pmax)ε + O(ε2 log2 ε).

The reverse inequality follows trivially from the definition of Hn(ε).
We now prove the statement for hm(S, ε). First, observe that

H3m(S, ε) ≥ hm(S, ε) ≥ hm̂(S, ε) ≥ H(X~pmax)

By part 1, H3m(S, ε) is of the form C(S)+f(X~pmax)ε log(1/ε)+g(X~pmax)ε+
O(ε2 log2 ε). By Theorem 2.4, H(X~pmax) is of the same form. Thus, hm(S, ε)
is also of the same form, as desired.

Corollary 3.3. Cm(S, ε) (m ≥ m̂(S)) and C(S, ε) are of the form

C(S) + (f(X~pmax)− 1)ε log(1/ε) + (g(X~pmax)− 1)ε + O(ε2 log2 ε).

Proof. This follows from Theorem 3.2, (3.2) and (3.3), and the fact that

H(ε) = ε log 1/ε + (1− ε) log 1/(1− ε) = ε log 1/ε + ε + O(ε2).

4. Binary Symmetric Channel with (d, k)-RLL Constrained In-
put. We now apply the results of the preceding section to compute asypm-
totics for the the noisy constrained BSC channel with inputs restricted to
the RLL constraint S(d, k). Expressions (2.8) and (2.9) allow us to explicitly
compute f(~pmax) and g(~pmax). In this section, as an example, we derive the
explicit expression for f(~pmax), omitting the computation of g(~pmax) due to
tedious derivation. We remark that for a BSC(ε) with (d, k)-RLL constrained
input, similar expressions have been independently obtained in [21].

It is first shown in [21] that in the case k ≤ 2d, in fact for any Markov
chain X, of any order, supported on S(d, k), f(X) = 1, and so, in this case,
C(S(d, k), ε) = C(S(d, k))+O(ε), i.e., the noisy constrained capacity differs
from the noiseless capacity by O(ε), rather than O(ε log ε). In the following,
we take a look at this using different approach. For this, first note that for
any d, k, f(X) takes the form:
(4.1)
f(X) =

∑

l1+l2≤k−1,0≤l2≤d−1,l1≥d

p(10l1+l2+11)+
∑

l1+l2=k,l1≥d

p(10l110l2)+
∑

1≤l≤d

p(10l).
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Now, when k ≤ 2d,
∑

l1+l2=k,l1≥d

p(10l110l2) =
∑

d≤l1≤k

p(10l11) = p(1),

and
∑

l1+l2≤k−1,0≤l2≤d−1,l1≥d

p(10l1+l2+11) = p(10d+1) + p(10d+2) + · · ·+ p(10k).

So

f(X) = p(1) + p(10) + · · ·+ p(10d) + p(10d+1) + · · ·+ p(10k) = 1,

as desired.

Now we consider the general RLL constraint S(d, k). By Corollary 3.3,
we have
(4.2)
C(S(d, k), ε) = C(S(d, k)) + (f(pmax)− 1)ε log 1/ε + (g(pmax)− 1)ε + o(ε),

where C(S(d, k)) is the capacity of noiseless (d, k)-RLL system.
For any irreducible finite type constraint, the noiseless capacity and Markov

process of maximal entropy rate can be computed in various ways (which
all go back to Shannon; see [24] or [22] (p. 444)). Let A denote the ad-
jacency matrix of the standard graph presentation, with k + 1 states, of
S(d, k). Let ρ denote the reciprocal of the largest eigenvalue. One can write
C(S(d, k)) = − log ρ0, and in this case ρ0 is the real root of

(4.3)
k∑

`=d

ρ`+1
0 = 1.

In the following we compute f(pmax) explicitly in terms of ρ0. Let ~w =
(w0, w1, · · · , wk) and ~v = (v0, v1, · · · , vk) denote the left and right eigenvec-
tors of A. Assume that ~w and ~v are scaled such that ~w · ~v = 1. Then one
checks that with X = X~pmax ,

p(1) = w0v0 =
1

(k + 1)−∑k
j=d+1

∑j−d−1
l=0 1/ρl−j

0

,

p(10l1+l2+11) = p(1)ρl1+l2+2
0 , p(10k1) = p(1)ρk+1

0 ,

p(10l110l2) = p(10l110l21) + p(10l110l2+11) + · · ·+ p(10l110k1)
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18 G. HAN, B. MARCUS

= p(1)ρl1+l2+2
0 (1 + ρ0 + · · ·+ ρk−l2

0 ) = p(1)ρl1+l2+2
0

1− ρk−l2+1
0

1− ρ0

and
p(10l) = p(10l1) + p(10l+11) + · · ·+ p(10k1)

= p(1)ρl+1
0 (1 + ρ0 + · · ·+ ρk−l

0 ) = p(1)ρl+1
0

1− ρk−l+1
0

1− ρ0
.

So we obtain an explicit expression:

f(~pmax) =
∑

l1+l2≤k−1,0≤l2≤d−1,l1≥d

p(10l1+l2+11)+(
∑

l1=k,l2=0

+
∑

l1+l2=k,k−1≥l1≥d

)p(10l110l2)+
∑

1≤l≤d

p(10l)

= p(1)ρk+1
0 +

∑

l1+l2≤k−1,0≤l2≤d−1,l1≥d

p(1)ρl1+l2+2
0

+
∑

l1+l2=k,k−1≥l1≥d

p(1)ρl1+l2+2
0

1− ρk−l2+1
0

1− ρ0
+

∑

1≤l≤d

p(1)ρl+1
0

1− ρk−l+1
0

1− ρ0
.

We remark similar computations apply to the calculation of g, which takes
more complicated form.

Example 4.1. Consider a first order input Markov chain X supported
on RLL(1,∞) constraint S, transmitted over BSC(ε) with corresponding
output Z, a hidden Markov chain. In this case, ~p takes the form:

~p = (p(00), p(01), p(10)).

Note that m̂(S) = 1, and the only sequence w−2w−1v, which satisfies the
requirement that w−2w−1 is allowable in S and w−2w−1v is disallowable in
S, is 011. It then follows that

f(~p) = p(011̄) + p(01̄1) + p(0̄11) = π01(2− π01)/(1 + π01),

where π01 denotes the transition probability from 0 to 1 in X. Tedious
computations also leads to

g(~p) = (1+π01)−1(2π01−π2
01−2π3

01+3π4
01−π5

01+(−2π01+4π3
01−2π4

01) ln(2)

+(−1+3π01−π2
01−2π3

01+5π4
01−3π5

01) ln(π01)+(2−6π01+7π3
01−8π4

01+3π5
01) ln(1−π01)

+(2π01 + π2
01 − 3π3

01 + π4
01) ln(2− π01))

Thus,

H(Z) = H(X)+(π01(2−π01)/(1+π01))ε log(1/ε)+(g(~p)−1)ε+O(ε2 log ε).
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This asymptotic formula was originally proven in [26], with the less precise
result that replaces (g(~p)− 1)ε + o(ε) by O(ε).

The maximum entropy Markov chain on S = RLL(1, ∞) is defined by
the transition matrix: [

1/λ 1/λ2

1 0

]

and
C(S) = H(X~pmax) = log λ,

where λ is the golden mean. Thus, in this case π01 = 1/λ2 and so by Corol-
lary 3.3, we obtain:

C(ε) = log λ− ((2λ + 2)/(4λ + 3))ε log(1/ε) + (g(ε)|π01 − 1)ε + O(ε2 log2 ε).

Acknowledgements: We are grateful to Wojciech Szpankowski, who
raised the problem addressed in this paper and suggested a version of the
result in Corollary 3.3.

Appendices.

APPENDIX A: DERIVATIONS

We first prove (2.10)-(2.12).
• (2.10) follows trivially from the fact that X is an m-th order Markov

chain.
• Now consider (2.11). For w ∈ A(X) and wv /∈ A(X),

hk
n+1(wv) =

n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1v)+pX(w−1

−nv̄) =
m∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1v)+pX(w−1

−nv̄).

So
hk

n+1(wv)
pX(w)

=
∑m

j=1 pX(w−j−1
−n w̄−jw

−1
−j+1v) + pX(w−1

−nv̄)

pX(w−1
−n)

=
(
∑m

j=1 pX(w−j−1
−m w̄−jw

−1
−j+1v|w−m−1

−2m ) + pX(w−1
−mv̄|w−m−1

−2m ))pX(w−m−1
−n )

pX(w−1
−m|w−m−1

−2m )pX(w−m−1
−n )

=
∑m

j=1 pX(w−j−1
−2m w̄−jw

−1
−j+1v) + pX(w−1

−2mv̄)

pX(w−1
−2m)

.
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• For (2.12), there are two cases. If pX(w−m−1
−n ) = 0,

hk
n+1(wv)
hk

n(w)
=

∑n−k
j=1 pX(w−j−1

−n w̄−jw
−1
−j+1v)

∑n−k
j=1 pX(w−j−1

−n w̄−jw
−1
−j+1)

=
∑n−k

j=m+1 pX(w−j−1
−n w̄−jw

−1
−j+1v)

∑n−k
j=m+1 pX(w−j−1

−n w̄−jw
−1
−j+1)

= pX(v|w−1
−m).

If pX(w−m−1
−n ) > 0,

hk
n+1(wv)
hk

n(w)
=

∑n−k
j=1 pX(w−j−1

−n w̄−jw
−1
−j+1v)

∑n−k
j=1 pX(w−j−1

−n w̄−jw
−1
−j+1)

=
∑2m

j=1 pX(w−j−1
−n w̄−jw

−1
−j+1v)

∑2m
j=1 pX(w−j−1

−n w̄−jw
−1
−j+1)

=
∑2m

j=1 pX(w−j−1
−3m w̄−jw

−1
−j+1v)

∑2m
j=1 pX(w−j−1

−3m w̄−jw
−1
−j+1)

.

Using (2.10)-(2.12), we now proceed to prove (2.13)-(2.15).
• For (2.13), we have

∑

wv∈A(X)

hk
n+1(wv)pX(w)− hk

n(w)pX(wv)
pX(w)

=
∑

wv∈A(X)

hk
n+1(wv)−

∑

wv∈A(X)

hk
n(w)pX(v|w−1

−m)

=
∑

wv∈A(X)

(
n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1v)+pX(w−1

−nv̄))−(n+1−k)
∑

wv∈A(X)

pX(wv)

−
∑

wv∈A(X)

n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1)pX(v|w−1

−m) + (n− k)
∑

wv∈A(X)

pX(wv)

=
∑

wv∈A(X)

n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1v)−

∑

w∈A(X)

n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1)+

∑

wv∈A(X)

pX(w−1
−nv̄)−1

=
∑

wv∈A(X)

n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1v)−

∑

w∈A(X)

(
n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+10)

+
n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+11)) +

∑

w−1
−mv∈A(X)

pX(w−1
−mv̄)− 1

=
∑

wv∈A(X)

n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1v)−

∑

wv∈A(X)

n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1v)

−
∑

w∈A(X),wv/∈A(X)

n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1v) +

∑

w−1
−mv∈A(X)

pX(w−1
−mv̄)− 1

= −
∑

w−1
−2m∈A(X),w−1

−2mv/∈A(X)

m∑

j=1

pX(w−j−1
−2m w̄−jw

−1
−j+1v)+

∑

w−1
−mv∈A(X)

pX(w−1
−mv̄)−1.
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• For (2.14), we have

∑

w∈A(X),wv/∈A(X)

hk
n+1(wv) log

hk
n+1(wv)
pX(w)

=
∑

w∈A(X),wv/∈A(X)

hk
n+1(wv) log

h0
2m+1(w

−1
−2mv)

pX(w−1
−2m)

=
∑

w∈A(X),wv/∈A(X)

n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1v) log

h0
2m+1(w

−1
−2mv)

pX(w−1
−2m)

=
∑

w−1
−2m∈A(X),w−1

−2mv/∈A(X)

m∑

j=1

pX(w−j−1
−2m w̄−jw

−1
−j+1v) log

h0
2m+1(w

−1
−2mv)

pX(w−1
−2m)

.

• For (2.15), we have

∑

wv∈A(X)

hk
n+1(wv) log pX(v|w)+

∑

pXZ(w)=Θ(ε),pXZ(wv)=Θ(ε)

hk
n+1(wv) log

h0
n+1(wv)
h0

n(w)

=
∑

wv∈A(X)

(
n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1v)+pX(w−1

−nv̄)−(n+1−k)pX(wv)) log pX(v|w−1
−m)

+
∑

pXZ(w)=Θ(ε),pXZ(wv)=Θ(ε),pX(w−m−1
−n )=0

hk
n+1(wv) log

hk
n+1(wv)
hk

n(w)

+
∑

pXZ(w)=Θ(ε),pXZ(wv)=Θ(ε),pX(w−m−1
−n )>0

hk
n+1(wv) log

hk
n+1(wv)
hk

n(w)

= (
∑

wv∈A(X)

+
∑

pXZ(w)=Θ(ε),pXZ(wv)=Θ(ε),pX(w−m−1
−n )=0

)(
n−k∑

j=1

pX(w−j−1
−n w̄−jw

−1
−j+1v)+pX(w−1

−nv̄)) log pX(v|w−1
−m)

−(n + 1− k)
∑

w−1
−mv∈A(X)

pX(w−1
−mv) log pX(v|w−1

−m)

+
∑

pXZ(w−1
−3m)=Θ(ε),pXZ(w−1

−3mv)=Θ(ε),pX(w−m−1
−3m )>0

h0
3m+1(wv) log

h0
3m+1(wv)
h0

3m(w)

= (n− k −m)
∑

w−1
−mv∈A(X)

pX(w−1
−mv) log pX(v|w−1

−m)

+
∑

wv∈A(X)

(
m∑

j=1

p(w−j−1
−n w̄−jw

−1
−j+1v) + pX(w−1

−nv̄)) log pX(v|w−1
−m)
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−(n + 1− k)
∑

w−1
−mv∈A(X)

pX(w−1
−mv) log pX(v|w−1

−m)

+
∑

pXZ(w−1
−3m)=Θ(ε),pXZ(w−1

−3mv)=Θ(ε),pX(w−m−1
−3m )>0

h0
3m+1(wv) log

h0
3m+1(wv)
h0

3m(w)

= (−m− 1)
∑

w−1
−mv∈A(X)

pX(w−1
−mv) log pX(v|w−1

−m)

+
∑

w−1
−2mv∈A(X)

(
m∑

j=1

pX(w−j−1
−2m w̄−jw

−1
−j+1v) + pX(w−1

−2mv̄)) log pX(v|w−1
−m)

+
∑

pXZ(w−1
−3m)=Θ(ε),pXZ(w−1

−3mv)=Θ(ε),pX(w−m−1
−3m )>0

h0
3m+1(wv) log

h0
3m+1(wv)
h0

3m(w)
.
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