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Abstract

We propose two modified versions of the classical gradient ascent method to com-
pute the capacity of finite-state channels with Markovian inputs. For the case that
the channel mutual information is strongly concave in a parameter taking values in a
compact convex subset of some Euclidean space, our first algorithm proves to achieve
polynomial accuracy in polynomial time and, moreover, for some special families of
finite-state channels our algorithm can achieve exponential accuracy in polynomial
time under some technical conditions. For the case that the channel mutual informa-
tion may not be strongly concave, our second algorithm proves to be at least locally
convergent.

Index Terms: channel capacity, finite-state channels, gradient ascent, hidden Markov
process.

1 Introduction

As opposed to a discrete memoryless channel, which can be characterized by the conditional
distribution of the output given the input, in a finite-state channel this conditional distri-
bution depends on an underlying state variable which evolves with time. Encompassing
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discrete memoryless channels as special cases, finite-state channels have long been used in
a wide range of communication scenarios where the current behavior of the channel may be
affected by its past. Among many others, conventional examples of such channels include
inter-symbol interference channels [8], partial response channels [22, 23] and Gilbert-Elliott
channels [21].

While it is well-known that the Blahut-Arimoto algorithm [2, 4] can be used to efficiently
compute the capacity of a discrete memoryless channel, the computation of the capacity of
a general finite-state channel has long been a notoriously difficult problem, which has been
open for decades. The difficulty of this problem may be justified by the widely held (yet
not proven) belief that the capacity of a finite-state channel may not be achieved by any
finite-order Markovian input, and an increase of the memory of the input may lead to an
increase of the channel capacity.

We are mainly concerned with finite-state channels with Markov processes of a fixed
order as their inputs. Possibly an unavoidable compromise we have to make in exchange for
progress in computing the capacity, the extra fixed-order assumption imposed on the input
processes is also necessary for the situation where the channel input has to satisfy certain
constraints, notably finite-type constraints [19] that are commonly used in magnetic and
optical recording. On the other hand, the focus on Markovian inputs can also be justified by
the known fact that the Shannon capacity of an indecomposable finite-state channel [9] can
be approximated by the Markov capacity with increasing orders (see Theorem 2.1 of [18]).
Recently, there has been some progress in computing the capacity of finite-state channels
with such input constraints. Below we only list the most relevant work in the literature,
and we refer the reader to [12] for a comprehensive list of references. In [15], the Blahut-
Arimoto algorithm was reformulated into a stochastic expectation-maximization procedure
and a similar algorithm for computing a lower bound on the capacity of finite-state channels
was proposed, which led to a generalized Blahut-Arimoto algorithm [24] that proves to
compute the capacity under some concavity assumptions. More recently, inspired by ideas
in stochastic approximation, a randomized algorithm was proposed [12] to compute the
capacity under weaker concavity assumptions, which can be verified to hold true for several
families of practical channels [14, 16]. Both of the above-mentioned algorithms, however,
are of a randomized nature (a feasible implementation of the generalized Blahut-Arimoto
algorithm will necessitate a randomization procedure). By comparison, among many other
advantages, our algorithms, which are deterministic in nature, can be used to derive accurate
estimates on the channel capacity, as evidenced by the tight bounds in Section 3.2.

In this paper, we first deal with the case that the mutual information of the finite-state
channel is strongly concave in a parameter taking values in a compact convex subset of
some Euclidean space, for which we propose our first algorithm that proves to converge
to the channel capacity exponentially fast. This algorithm largely follows the spirit of the
classical gradient ascent method. However, unlike the classical case, the lack of an explicit
expression for our target function and the boundedness of the variable domain (without
an explicit description of the boundary) pose additional challenges. To overcome the first
issue, a convergent sequence of approximating functions (to the original target function)
is used instead in our treatment; meanwhile, an additional check condition is also added
to ensure that the iterates stay inside the given variable domain. A careful convergence
analysis has been carried out to deal with the difficulties caused by such modifications.
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This algorithm is efficient in the sense that, for a general finite-state channel (satisfying the
above-mentioned concavity condition and some additional technical conditions), it achieves
polynomial accuracy in polynomial time (see Theorem 3.12), and for some special families of
finite-state channels it achieves exponential accuracy in polynomial time (see Section 3.2).

It is well known that the mutual information rate of a finite-state channel may not be
concave under the natural parametrization in several examples; see, e.g., [14, 16]. Another
modification of the classical gradient ascent method is proposed to handle this challenging
scenario. Similar to our first algorithm, our second one replaces the original target func-
tion with a sequence of approximating functions, which unfortunately renders conventional
methods such as the Frank-Wolfe method (see, e.g., [3]) or methods using the  Lojasiewicz
inequality (see, e.g., [1]) inapplicable. To address this issue, among other subtle modifica-
tions, we impose an extra check in the algorithm to slow down the pace “a bit” to avoid
an immature convergence to a non-stationary point but “not too much” to ensure the local
convergence.

As variants of the classical gradient ascent method, our algorithms can be applied to any
sequence of convergent functions, so they can be of particular interest in information theory
since many information-theoretic quantities are defined as the limit of their finite-block
versions. On the other hand though, we would like to add that our algorithms are actually
stated in a much more general setting and may have potential applications in optimization
scenarios where the target functions are difficult to compute but amenable to approximations.

The remainder of this paper is organized as follows. In Section 2, we describe our channel
model in greater detail. Then, we present our first algorithm (Algorithm 3.3) in Section 3 and
analyze its convergence behavior in Section 3.1 under some strong concavity assumptions.
Applications of this algorithm for computing the capacity of finite-state channels under
concavity assumptions will be discussed in Section 3.2. In particular, in this section, we show
that the estimation of the channel capacity can be improved by increasing the Markov order
of the input process in some examples. In Section 4, our second algorithm (Algorithm 4.2) is
presented, which proves to be at least locally convergent. Finally, in Section 4.2, our second
algorithm is applied to a Gilbert-Elliott channel where the concavity of the channel mutual
information rate in the natural parametrization is not known, and yet fast convergence
behavior is observed.

In the remainder of this paper, the base of the logarithm is assumed to be e.

2 Channel Model and Problem Formulation

In this section, we introduce the channel model considered in this paper, which is essentially
the same as that in [12, 24].

As mentioned before, we are concerned with a discrete-time finite-state channel with a
Markovian channel input. Let X = {Xn : n = 1, 2, . . . } denote the channel input process,
which is often assumed to be a first-order stationary Markov chain 1 over a finite alphabet
X , and let Y = {Yn : n = 1, 2, . . . } and S = {Sn : n = 0, 1, . . . } denote the channel output
and state processes over finite alphabets Y and S, respectively.

1The assumption that X is a first-order Markov chain is for notational convenience only: through a usual
“reblocking” technique, the higher-order Markov case can be boiled down to the first-order case.
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Let Π be the set of all the stochastic matrices of dimension |X | × |X |. For any finite set
F ⊆ X 2 and any δ > 0, define

ΠF,δ , {A ∈ Π : Aij = 0, for (i, j) ∈ F and Aij ≥ δ otherwise}.

It can be easily verified that if one of the matrices from ΠF,δ is primitive, then all matrices
from ΠF,δ will be primitive, in which case, as elaborated on in [12], F gives rise to a so-called
mixing finite-type constraint. Such a constraint has been widely used in data storage and
magnetic recoding [20], the best known example being the so-called (d, k)-run length limited
(RLL) constraint over the alphabet {0, 1}, which forbids any sequence with fewer than d or
more than k consecutive zeros in between two successive 1’s.

The following conditions will be imposed on the finite-state channel described above:

(2.a) There exist F ⊆ X 2 and δ > 0 such that the transition probability matrix of X belongs
to ΠF,δ, each element of which is a primitive matrix.

(2.b) (X,S) is a first-order stationary Markov chain whose transition probabilities satisfy

p(xn, sn|xn−1, sn−1) = p(xn|xn−1)p(sn|xn, sn−1), n = 1, 2, . . . ,

where p(sn|xn, sn−1) > 0 for any sn−1, sn, xn.

(2.c) The channel is stationary and characterized by

p(yn|yn−1
1 , xn1 , s

n−1
1 ) = p(yn|xn, sn−1) > 0, n = 1, 2, . . . ,

that is, conditioned on the pair (xn, sn−1), the output Yn is statistically independent
of all inputs, outputs and states prior to Xn, Yn and Sn−1, respectively.

As elaborated on in Remark 4.1 of [12], a finite-state channel specified as above is indecom-
posable. Therefore, assuming that the input X (or, more precisely, the transition probability
matrix of X) is analytically parameterized by a finite-dimensional parameter θ in the interior
of a compact convex subset Θ of some Euclidean space, the parametrization being continuous
at the boundary (such a parameterization exists thanks to the stationarity of X, and we will
simply say that X is analytically parametrized by θ, for convenience), we can express the
capacity of the above channel as

C = max
θ∈Θ

I(X(θ);Y (θ)) = max
θ∈Θ

lim
k→∞

Ik(X(θ);Y (θ)), (1)

where

Ik(X(θ);Y (θ)) ,
H(Xk

1 (θ)) +H(Y k
1 (θ))−H(Xk

1 (θ), Y k
1 (θ))

k
. (2)

Moreover, it has also been shown in [12] that Ik(X(θ);Y (θ)) (resp., its derivatives) converges
to I(X(θ);Y (θ)) (resp., the corresponding derivatives) exponentially fast in k under Assump-
tions (2.a), (2.b) and (2.c). Hence, although the value of the target function I(X(θ);Y (θ))
cannot be exactly computed, it can be approximated by the function Ik(X(θ);Y (θ)), which
has an explicit expression, within an error exponentially decreasing in k.

4



Instead of merely solving (1), we will deal with the following slightly more general problem

max f(θ) , lim
k→∞

fk(θ)

subject to θ ∈ Θ, (3)

under the following assumptions:

A.1. Θ is a compact convex subset of Rd for some d ∈ N with nonempty interior Θ◦ and
boundary ∂Θ;

A.2. f(θ) and all fk(θ), k ≥ 0, are continuous on Θ and twice continuously differentiable in
Θ◦;

A.3. there exist M0 > 0, N > 0 and 0 < ρ < 1 such that for all k ≥ 1, θ ∈ Θ◦ and ` = 0, 1, 2,
it holds true that ||f (`)

0 (θ)||2 ≤M0 and

||f (`)
k (θ)− f (`)

k−1(θ)||2 ≤ Nρk, ||f (`)
k (θ)− f (`)(θ)||2 ≤ Nρk, (4)

where the superscript (`) denotes the `-th order derivative and || · ||2 denotes the Frobe-
nius norm of a vector/matrix.

Obviously, if we set fk(θ) = Ik(X(θ);Y (θ)) and assume that X(θ) analytically parameterized
by some θ ∈ Θ, then (3) boils down to (1).

When the target function f(θ) has an explicit expression and Θ is specified by finitely
many inequalities with twice differentiable terms, the optimization problem (3) can be effec-
tively dealt with via, for example, the classical gradient ascent method [5] or the Frank-Wolfe
method [3] or their numerous variants. However, feasible implementations and executions of
these algorithms usually hinge on explicit descriptions of Θ and ∇f , both of which can be
rather intricate in our setting.

Before moving to the next two sections to present our algorithms, we make some observa-
tions about the sequence {fk(θ)}∞k=0. It immediately follows from the uniform boundedness

of ||f (`)
0 (θ)||2 and the inequality (4) that there exists M > 0 such that for all k ≥ 0, ` = 0, 1, 2

and θ ∈ Θ◦,
||f (`)

k (θ)||2 ≤M. (5)

In particular, for any θ ∈ Θ◦, when ` = 2, f
(`)
k (θ) = ∇2fk(θ) is a symmetric matrix whose

spectral norm is given by

|||∇2fk(θ)|||2 , sup
x 6=0

||∇2fk(θ) · x||2
||x||2

= |λ1(θ)|,

where λ1 denotes the largest (in modulus) eigenvalue of ∇2fk(θ). Hence, the inequality (5)
and the easily verifiable fact that |||∇2fk(θ)|||2 ≤ ||∇2fk(θ)||2 imply

−MId � ∇2fk(θ) �MId (6)

for any k and any θ ∈ Θ◦, where Id denotes the d× d identity matrix, and for two matrices
A,B of the same dimension, by A � B, we mean that B−A is a positive semidefinite matrix.
The existence of the constant M in (6) will be crucial for implementing our algorithms.
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3 The First Algorithm: with Concavity

Throughout this section, we assume that f(θ) is strongly concave, i.e., there exists m > 0
such that for all θ ∈ Θ◦,

∇2f(θ) � −mId, (7)

and moreover
f achieves its unique maximum in Θ◦. (8)

We will present our first algorithm to solve the optimization problem (3). As mentioned
before, the algorithm is in fact a modified version of the classical gradient ascent algorithm,
whereas its convergence analysis is more intricate than the classical one. To overcome the
issue that the target function f(θ) may not have an explicit expression we capitalize on the
fact that it can be well approximated by {fk(θ)}∞k=0, which will be used instead to compute
the estimates in each iteration.

Before presenting our algorithm, we need the following lemma, which, as evidenced later,
is important in initializing and analyzing our first algorithm.

Lemma 3.1. There exists a non-negative integer k0 such that

(a)
(N +M)Mρk0+1 + 2Nρk0+1

1− ρ
≤ δ

8
and Nρk0 ≤ δ

8
, where δ , max

θ∈Θ
f(θ)−max

θ∈∂Θ
f(θ) > 0.

(b) For any k ≥ k0, fk(θ) is strongly concave and has a unique maximum in Θ◦; and
moreover, we have

sup
k≥k0
||θ∗k − θ∗||2 +

d1/2ρk0

1− ρ
< dist(θ∗, ∂Θ), (9)

where θ∗ denotes the unique maximum point of f and θ∗k denotes the unique maximum
point of fk.

(c) There exists y0 ∈ R such that for all k ≥ k0,

∅ ( Bk ⊆ Ck ⊆ Θ◦ and dist(Ck, ∂Θ) > 0,

where

Bk , {x ∈ Θ : fk(x) ≥ y0} and Ck ,

{
x ∈ Θ : fk(x) ≥ y0 −

δ

8

}
.

Proof. Since (a) trivially holds for sufficiently large k0, we will omit its proof and proceed
to prove (b). Towards this end, note that according to (4) and (7), it holds true that for
sufficiently large k, each fk is strongly concave. Noting that f(θ∗) −maxθ∈∂Θ f(θ) = δ, we
deduce from (a) and (4) that for k large enough,

max
θ∈Θ

fk(θ)−max
θ∈∂Θ

fk(θ) ≥ fk(θ
∗)−max

θ∈∂Θ
f(θ)− δ

8
≥ f(θ∗)−max

θ∈∂Θ
f(θ)− δ

4
=

3δ

4
> 0. (10)
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Hence, for k sufficiently large, fk achieves its unique maximum at θ∗k ∈ Θ◦.
We now prove that θ∗k → θ∗ as k →∞. To see this, observe that (4) implies the uniform

convergence of fk to f , i.e., for any ε > 0, there exists K > 0 such that for any k > K and
any θ ∈ Θ, f(θ)− ε ≤ fk(θ) ≤ f(θ) + ε. In particular, for k > K, we have

f(θ∗)− ε ≤ fk(θ
∗) ≤ fk(θ

∗
k) ≤ f(θ∗k) + ε ≤ f(θ∗) + ε,

which further implies that fk(θ
∗
k) → f(θ∗) as k → ∞. It then follows from the triangle

inequality that
f(θ∗k)→ f(θ∗), as k →∞. (11)

Now, by the Taylor series expansion, there exists some θ̃ ∈ Θ◦ such that

f(θ∗k)− f(θ∗) = ∇f(θ∗)T (θ∗k − θ∗) + (θ∗k − θ∗)T∇2f(θ̃)(θ∗k − θ∗). (12)

Since ∇f(θ∗) = 0 and ∇2f(θ̃) � −mId according to (7), it follows from (11) and (12) that
θ∗k → θ∗ as k →∞, as desired.

It then immediately follows that ||θ∗k − θ∗||2 + d1/2ρk/(1− ρ)→ 0 as k →∞. Observing
that dist(θ∗, ∂Θ) > 0 (since θ∗ ∈ Θ◦), we infer that (9) holds for sufficiently large k. Hence,
(b) will be satisfied as long as k0 is sufficiently large.

We now show that (c) also holds for sufficiently large k0. From the definition of δ, there
exists y0 such that maxθ∈∂Θ f(θ)+ δ

4
< y0 < maxθ∈Θ f(θ)− δ

4
. From (4), using the same logic

as that used to derive (10), we infer that for sufficiently large k,

max
θ∈∂Θ

fk(θ) < y0 −
δ

8
< y0 < max

θ∈Θ
fk(θ). (13)

According to (b) and the fact that θ∗k ∈ Θ◦, which follows from (13), we deduce that ∅ (
Bk ⊆ Ck ⊆ Θo and dist(Ck, ∂Θ) > 0 with

Ck ,

{
x : fk(x) ≥ y0 −

δ

8

}
and Bk , {x : fk(x) ≥ y0}.

Therefore, (c) is valid as long as k0 is sufficiently large. Finally, choosing a larger k0 if
necessary, we conclude that there exists k0 such that (a), (b) and (c) are all satisfied.

Remark 3.2. We remark that, for any k ≥ k0, each Bk specified as above has a non-empty
interior, which is due to the rightmost strict inequality in (13) and the continuity of fk.

We are now ready to present our first algorithm, which modifies the classical gradient
ascent method in the following manner: Instead of using ∇f to find a feasible direction,
we use ∇fk as the ascent direction in the k-th iteration and then pose additional check
conditions for a careful choice of the step size. Note that such modifications make the
convergence analysis more difficult compared to the classical case, as elaborated on in the
next subsection.
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Algorithm 3.3. (The first modified gradient ascent algorithm)
Step 0. Choose k0 such that Lemma 3.1 (a)-(c) hold. Set k = 0, g0 = fk0 and choose

α ∈ (0, 0.5), β ∈ (0, 1) and θ0 ∈ Θ◦ such that θ0 ∈ Bk0 and ∇g0(θ0) 6= 0.
Step 1. Increase k by 1, and set t = 1, gk = fk0+k.
Step 2. If ∇gk−1(θk−1) = 0, set

τ = θk−1 + t∇gk−1(θk−1 + ρk+k01),

where 1 denotes the all-one vector in Rd; otherwise, set

τ = θk−1 + t∇gk−1(θk−1).

If τ 6∈ Θ or
gk(τ) < gk(θk−1) + αt||∇gk−1(θk−1)||22 − (N +M)Mtρk+k0 ,

set t = βt and go to Step 2, otherwise set θk = τ and go to Step 1.

Remark 3.4. It is obvious from the definition of gk that as k tends to infinity, gk (resp., its
first and second order derivatives) converges to f (resp., its first and second order derivatives)
exponentially fast with the same constants N and ρ as in (4).

Remark 3.5. According to Lemma 3.1, the choice of k0 depends on practical evaluations of
constants N, ρ,M , and is different from case to case. Moreover, the existence of θ0 can also
be justified by Lemma 3.1 (c).

Remark 3.6. We point out that in Step 2 of Algorithm 3.3, for any k ≥ 1, when∇gk−1(θk−1) =
0, the point θk−1 +ρk+k01 will always lie in Θ◦. To see this, note that if θk−1 is the maximum
point of gk−1 = fk+k0−1, then θk−1 = θ∗k+k0−1. However, by Lemma 3.1 (b), θ∗k+k0−1 satisfies
(9), which immediately implies that θk−1 + ρk+k01 ∈ Θ◦ when ∇gk−1(θk−1) = 0, for any
k ≥ 1.

Remark 3.7. For technical reasons that will be made clear in the next section, α is chosen
within (0, 0.5) to ensure the convergence of the algorithm. In Step 2 of Algorithm 3.3, the
case that ∇gk−1(θk−1) = 0 is singled out for special treatment to prevent the algorithm from
getting trapped at the maximum point of fk−1 for a fixed k, which may be still far away
from the maximum point of f .

3.1 Convergence Analysis

As mentioned earlier, compared to the classical gradient ascent method, Algorithm 3.3 poses
additional challenges for convergence analysis. The main difficulties come from the two check
conditions in Step 2: the “perturbed” Armijo condition (see, e.g., Chapter 2 of [3] for more
details)

gk(τ) ≥ gk(θk−1) + αt||∇gk−1(θk−1)||22 − (N +M)Mtρk+k0

may break the monotonicity of the sequence {gk(θk)}∞k=0 which would have been used to
simplify the convergence analysis in the classical case; and the extra check condition τ ∈ Θ
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(τ depends on k) forces us to seek uniform control (over all k) of the time used to ensure
the validity of this condition in each iteration. In the remainder of this section, we deal
with these problems and examine the convergence behavior of Algorithm 3.3. In a nutshell,
we will prove that our algorithm converges exponentially fast under some strong concavity
assumptions.

Note that the variable k as in Algorithm 3.3 actually records the number of times that
Step 1 has been executed at the present moment. To facilitate the analysis of our algorithm,
we will put it into an equivalent form, where an additional variable n is used to record the
number of times that Step 2 has been executed.

Below is Algorithm 3.3 rewritten with the additional variable n.

Algorithm 3.8. (An equivalent form of Algorithm 3.3)
Step 0. Choose k0 such that Lemma 3.1 (a)-(c) hold. Set n = 0, k = 0, ĝ0 = g0 = fk0,

and choose α ∈ (0, 0.5), β ∈ (0, 1) and θ̂0 ∈ Θ◦ such that θ̂0 ∈ Bk0 and ∇ĝ0(θ̂0) 6= 0.
Step 1. Increase k by 1, and set t = 1, gk = fk0+k.
Step 2. Increase n by 1. If ∇ĝn−1(θ̂n−1) = 0, set

τ = θ̂n−1 + t∇ĝn−1(θ̂n−1 + ρk+k01); (14)

otherwise, set
τ = θ̂n−1 + t∇ĝn−1(θ̂n−1). (15)

If τ 6∈ Θ◦ or

gk(τ) < gk(θ̂n−1) + αt||∇ĝn−1(θ̂n−1)||22 − (N +M)Mtρk+k0 , (16)

then set θ̂n = θ̂n−1, ĝn = ĝn−1, t = βt and go to Step 2; otherwise, set θ̂n = τ, ĝn = gk and go
to Step 1.

Remark 3.9. Let n0 = 0, and for any k ≥ 1, recursively define

nk , inf{n > nk−1 : θ̂n 6= θ̂n−1}.

Then, one verifies that for any k ≥ 0, it holds true that θ̂nk
= θk, ĝnk

= gk = fk+k0 and

moreover, θ̂l = θ̂l+1, ĝl = ĝl+1 for any l with nk−1 ≤ l ≤ nk− 1, which justify the equivalence
between Algorithm 3.3 and Algorithm 3.8.

The following theorem establishes the exponential convergence of Algorithm 3.8 with
respect to n.

Theorem 3.10. Suppose, as in (7) and (8), that the strongly concave function f achieves
its unique maximum in Θ◦. Then there exist M̂ > 0 and 0 < ξ̂ < 1 such that for all n ≥ 0,

|ĝn(θ̂n)− f(θ∗)| ≤ M̂ ξ̂n, (17)

where ĝn(θ̂n) is obtained by executing Algorithm 3.8.
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Proof. For simplicity, we only deal with the case ∇ĝn−1(θ̂n−1) 6= 0 in Step 2 of Algorithm 3.8
(and therefore (15) is actually executed), since the opposite case follows from a similar
argument by replacing θ̂n−1 with θ̂n−1 + ρk+k01.

Let T1(k) denote the smallest non-negative integer p such that

θ̂nk−1
+ βp∇ĝnk−1

(θ̂nk−1
) ∈ Θ◦, (18)

T (k) denote the smallest non-negative integer q such that q ≥ T1(k) and

gk(θ̂nk−1
+ βq∇ĝnk−1

(θ̂nk−1
)) ≥ gk(θ̂nk−1

) + αβq||∇ĝnk−1
(θ̂nk−1

)||22 − (N +M)Mβqρk+k0 .

Note that the well-definedness of T1(k) and T (k) follows from the observation that if (18)
holds for some non-negative integer p, then it also holds for any integer p′ > p. Adopting
these definitions, we can immediately verify that

T (k) = nk − nk−1,

which corresponds to the number of times Step 2 (of Algorithm 3.3) has been executed to
obtain θ̂nk

from θ̂nk−1
.

The remainder of the proof consists of the following three steps.
Step 1: Uniform boundedness of T (k). In this step, we show that there exists A ≥ 0

such that, for all k, T (k) ≤ A.
Since Θ◦ is open and θ̂0 ∈ Θ◦, we have T1(k) < ∞ for any k ≥ 0. Note that we haven’t

show that T1(k) is uniformly bounded as this stage.
For any q ≥ T1(k), letting

τ = θ̂nk−1
+ βq∇ĝnk−1

(θ̂nk−1
),

we have τ ∈ Θ◦ and so both fk(τ) and f(τ) are well-defined. Recalling from (6) that

∇2gk(θ) = ∇2fk+k0(θ) � −MId

for any k ≥ 0 and any θ ∈ Θ◦, we derive from the Taylor series expansion that

gk(τ) = gk(θ̂nk−1
) + βq∇gk(θ̂nk−1

)T∇ĝnk−1
(θ̂nk−1

) +
β2q

2
∇ĝnk−1

(θ̂nk−1
)T∇2gk(θ̃k)∇ĝnk−1

(θ̂nk−1
)

≥ gk(θ̂nk−1
) + βq∇gk(θ̂nk−1

)T∇ĝnk−1
(θ̂nk−1

)− Mβ2q

2
||∇ĝnk−1

(θ̂nk−1
)||22, (19)

where θ̃k ∈ Θ◦. According to (4), we have

∇gk(θ̂nk−1
)T∇ĝnk−1

(θ̂nk−1
)

= ∇ĝnk−1
(θ̂nk−1

)T∇ĝnk−1
(θ̂nk−1

) + (∇gk(θ̂nk−1
)T∇ĝnk−1

(θ̂nk−1
)−∇ĝnk−1

(θ̂nk−1
)T∇ĝnk−1

(θ̂nk−1
))

≥ ||∇ĝnk−1
(θ̂nk−1

)||22 −Nρk+k0 ||∇ĝnk−1
(θ̂nk−1

)||2.

This, together with (19), implies

gk(τ) ≥gk(θ̂nk−1
) + βq||∇ĝnk−1

(θ̂nk−1
)||22 −

Mβ2q

2
||∇ĝnk−1

(θ̂nk−1
)||22 −Nβqρk+k0 ||∇ĝnk−1

(θ̂nk−1
)||2

≥gk(θ̂nk−1
) + βq||∇ĝnk−1

(θ̂nk−1
)||22 −

Mβ2q

2
||∇ĝnk−1

(θ̂nk−1
)||22 −NMβqρk+k0 ,
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where the last inequality follows from (5). Note that for any non-negative integer q ≥
− logM/ log β, we have

βq − Mβ2q

2
≥ 1

2
βq > αβq,

which immediately implies that (16) fails; in other words, for any non-negative integer q ≥
T1(k), we have

gk(θ̂nk−1
+ βq∇ĝnk−1

(θ̂nk−1
)) ≥ gk(θ̂nk−1

) + αβq||∇ĝnk−1
(θ̂nk−1

)||22 − (N +M)Mβqρk+k0

as long as q ≥ − logM/ log β. It then follows that for any integer k ≥ 1, T (k) can be
bounded as

T (k) ≤

{
A2 if T1(k) ≤ A2

T1(k) if T1(k) > A2,
(20)

where A2 , max{0,− logM/ log β + 1} is a constant independent of k. Now, to prove the
uniform boundedness of T (k), what remains is to show that there exists A1 ≥ 0 such that
for all k, T1(k) ≤ A1.

From the definition of T (k), we have

gk(θ̂nk
) ≥ gk(θ̂nk−1

) + αβT (k)||∇ĝnk−1
(θ̂nk−1

)||22 − (N +M)MβT (k)ρk+k0 . (21)

Note that (4) and (21) together imply that

gk(θ̂nk
) ≥ gk−1(θ̂nk−1

)− (N +M)Mρk+k0 −Nρk+k0 .

By summation, we obtain that

gk(θ̂nk
) ≥ g0(θ̂0)−

k−1∑
i=0

[
(N +M)Mρi+k0+1 +Nρi+k0+1

]
≥ g0(θ̂0)−

[
(N +M)Mρk0+1

1− ρ
+
Nρk0+1

1− ρ

]
.

It then follows from (4) that for all k ≥ 0 we have

g0(θ̂nk
) ≥ g0(θ̂0)−

[
(N +M)Mρk0+1

1− ρ
+
Nρk0+1

1− ρ

]
−

k∑
i=1

Nρi+k0

≥ g0(θ̂0)−
[

(N +M)Mρk0+1

1− ρ
+

2Nρk0+1

1− ρ

]
≥ g0(θ̂0)− δ

8
, (22)

where the last inequality follows from Lemma 3.1 (a). Now, letting y0, Bk0 and Ck0 be defined
as in Lemma 3.1, we infer from (22) and Lemma 3.1 (c) that {θ̂nk

}∞k=0 ⊆ Ck0 ⊆ Θ◦. Hence, for

11



any non-negative integer p ≥ log(dist(Ck0 , ∂Θ)/M)/ log β, we have θ̂nk−1
+βp∇ĝnk−1

(θ̂nk−1
) ∈ Θ◦

and it then follows that T1(k) ≤ A1, where A1 is defined as

A1 , max

{
0,

log(dist(Ck0 , ∂Θ)/M)

log β
+ 1

}
. (23)

Finally, it follows from (20) and (23) that

T (k) ≤ A , max{A1, A2}, (24)

as desired.
Step 2: Exponential convergence of {f(θ̂nk

)}. From (21), using (4), (5) and the
definition of {ĝnk

}∞k=0, we deduce that

f(θ̂nk
) ≥ f(θ̂nk−1

) + αβT (k)||∇f(θ̂nk−1
)||22 − [(N +M)MβT (k) + 2N + 2NMρ]ρk+k0 .

According to (7), we have

f(θ∗) ≤ f(θ̂nk−1
) +∇f(θ̂nk−1

)T (θ∗ − θ̂nk−1
)− m

2
||θ∗ − θ̂nk−1

||22,

which, coupled with some straightforward estimates, yields

2m(f(θ∗)− f(θ̂nk−1
)) ≤ ||∇f(θ̂nk−1

)||22.

It then follows that

f(θ∗)− f(θ̂nk
)

≤ f(θ∗)− f(θ̂nk−1
)− αβT (k)||∇f(θ̂nk−1

)||22 + [(N +M)MβT (k) + 2N + 2NMρ]ρk+k0

≤ (1− 2mαβT (k))(f(θ∗)− f(θ̂nk−1
)) + [(N +M)M + 2N + 2NMρ]ρk+k0

(d)

≤
(
1−min

{
2mαβA1 , 2mαβA2

})
(f(θ∗)− f(θ̂nk−1

)) +

(
NM +M2 + 2N

ρ
+ 2NM

)
ρk+k0+1

= η(f(θ∗)− f(θ̂nk−1
)) + γk, (25)

where

η = 1−min

{
2mα,

dist(Ck0 , ∂Θ)

M
2mαβ,

2mαβ

M

}
, γk =

(
NM +M2 + 2N

ρ
+ 2NM

)
ρk+k0+1

and (d) follows from (24). Recursively applying inequality (25) and noting that 0 < η < 1,
we infer that there exist 0 < ξ < 1 and M ′ > 0 such that

f(θ∗)− f(θ̂nk
) ≤M ′ξk. (26)

Step 3: Exponential convergence of {ĝn(θ̂n)}. In this step, we establish (17) and
thereby finish the proof.

First, note that for any positive integer n ≥ 0, there exists an integer k′ ≥ 0 such that

nk′ ≤ n ≤ nk′+1, n ≤ (k′ + 1)A, θ̂n = θ̂nk′
, ĝn(θ̂n) = ĝnk′

(θ̂nk′
),
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where A is defined in (24). These four inequalities, together with (4) and (26), imply the
existence of M̂ > 0 and 0 < ξ̂ < 1 such that for any n ≥ 0,

|ĝn(θ̂n)− f(θ∗)| ≤ |ĝnk′
(θ̂nk′

)− f(θ̂nk′
)|+ |f(θ̂nk′

)− f(θ∗)|
≤ Nρk

′+k0 +M ′ξk
′

≤ Nρk0ρbn/Ac−1 +M ′ξbn/Ac−1

≤ M̂ ξ̂n,

which completes the proof of the theorem.

Theorem 3.10, together with the uniform boundedness of T (k) established in its proof,
immediately implies that Algorithm 3.3 converges exponentially in k. More precisely, we
have the following theorem.

Theorem 3.11. For a strongly concave function f whose unique maximum is achieved in
Θ◦, given in terms of the approximating sequence of functions {fk}∞k=0 as in (3), satisfying
assumptions A.1, A.2 and A.3 in Section 2, there exist M̃ > 0 and 0 < ξ̃ < 1 depending on
m,M,N and ρ such that for all k,

|gk(θk)− f(θ∗)| ≤ M̃ ξ̃k, (27)

where gk(θk) is defined as in Algorithm 3.3.

3.2 Applications of Algorithm 3.3

In this section, we discuss some applications of Algorithm 3.3 in information theory.
Consider a finite-state channel satisfying (2.a)-(2.c) and assume that all the matrices in

ΠF,δ are analytically parameterized by θ ∈ Θ◦, where Θ is a compact convex subset of Rd,
d ∈ N. Setting

f(θ) = I(X(θ);Y (θ))

and

fk(θ) = H(X2(θ)|X1(θ)) +H(Yk+1(θ)|Y k
1 (θ))−H(Xk+1(θ), Yk+1(θ)|Xk

1 (θ), Y k
1 (θ)),

we derive from [11] that (4) holds. So, when f(θ) is strongly concave with respect to θ
(this may hold true for some special channels, see, for example, [14] and [16]) as in (7),
our algorithm applied to {fk(θ)}∞k=0 converges exponentially fast in the number of steps to
the maximum value of f(θ). This, and the easily verifiable fact that the computational
complexity of fk(θ) is at most exponential in k, leads to the conclusion that Algorithm 3.3,
when applied to {fk(θ)}∞k=0 as above, achieves exponential accuracy in exponential time. We
now trade exponential time for polynomial time at the expense of accuracy. For any fixed
r ∈ R+ and any k ≥ dr log 2e, choose the largest l ∈ N such that k = dr log le. Substituting
this into (27), we have

|gdr log le(θdr log le)− f(θ∗)| ≤ M̃lr log ξ̃.

In other words, as summarized in the following theorem, we have shown that Algorithm 3.3,
when used to compute the channel capacity as above, achieves polynomial accuracy in poly-
nomial time.

13



Theorem 3.12. For a general finite-state channel satisfying (2.a)-(2.c) and parameterized
as above, if I(X(θ);Y (θ)) is strongly concave with respect to θ ∈ Θ and achieves its unique
maximum in Θ◦, then there exists an algorithm computing its fixed order Markov capacity
that achieves polynomial accuracy in polynomial time.

In the following, we show that for certain special families of finite-state channels, we get
a stronger convergence result than that in Theorem 3.12. In particular, for the following two
examples, Algorithm 3.3 can be used to compute the channel capacity, achieving exponential
accuracy in polynomial time.

3.2.1 A noisy channel with one state

In this section, we consider the Markov capacity of a binary erasure channel (BEC) under
the (1,∞)-RLL constraint. This channel can be mathematically characterized by the input-
output equation

Yn = Xn · En, (28)

where {Xn}∞n=1 is the input stationary Markov chain taking values in {1, 2} such that {22}
is a forbidden set (see, e.g., [19]), and {En}∞n=1 is an i.i.d. process taking values in {0, 1}
with

P (En = 0) = ε, P (En = 1) = 1− ε

for 0 < ε < 1. Here we note that the BEC given above can be viewed as a degenerate finite-
state channel with only one state. In the following, we will compare the channel capacity
when {Xn}∞n=1 is a first-order stationary Markov chain with the capacity when {Xn}∞n=1 is a
second-order stationary Markov chain. In particular, Algorithm 3.3 will be used to evaluate
the first-order Markov capacity, which, compared to a lower bound for the second-order
Markov capacity, will lead to the conclusion that higher order memory in the channel input
may increase the Markov capacity.

For the first case, suppose that {Xn}∞n=1 is a first-order stationary Markov chain with the
transition probability matrix (indexed by 1, 2)

Π =

[
1− θ θ

1 0

]
for 0 < θ < 1. It has been established in [17] that the mutual information rate I(X(θ);Y (θ))
of the BEC channel (28) can be computed as

I(X(θ);Y (θ)) = (1− ε)2

∞∑
l=0

H(Xl+2(θ)|X1(θ))εl,

which is strictly concave with respect to θ. Now, setting f(θ) = I(X(θ);Y (θ)), one verifies,
through straightforward computation, that

f(θ) = lim
k→∞

fk(θ),
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where

f0(θ) =f1(θ) , (1− ε)2−θ log θ − (1− θ) log(1− θ)
1 + θ

,

fk(θ) ,(1− ε)2−θ log θ − (1− θ) log(1− θ)
1 + θ

+ (1− ε)2
k∑
l=2

{
1

1 + θ
H

(
1− (−θ)l+1

1 + θ

)}
εl−1 + (1− ε)2

k∑
l=2

{
θ

1 + θ
H

(
1− (−θ)l

1 + θ

)}
εl−1

for k ≥ 2 and H(p) , −p log p − (1 − p) log(1 − p) is the binary entropy function. In what
follows, assuming ε = 0.1, we will show that Algorithm 3.3 can be applied to compute the
first-order Markov capacity of the channel (28), i.e., the maximum of f(θ) over all θ ∈ [0, 1].

First of all, we claim that f(θ) achieves its unique maximum within the interval [0.25, 0.55]
and therefore in the interior of Θ , [0.2, 0.6]. To see this, noting that fk(θ) ≤ f(θ) for any
θ and through evaluating the elementary function f100(θ), we have

0.442239 < max
θ∈[0.25,0.55]

f100(θ) < 0.442240

and therefore
max

θ∈[0.25,0.55]
f(θ) ≥ 0.442239, (29)

where (29) follows from the fact that fk(θ) is monotonically increasing in k. On the other
hand, using the stationarity of {Yn}∞n=1 and the fact that conditioning reduces entropy, we
have

f(θ) = I(X(θ);Y (θ)) = H(Y )−H(ε) ≤ H(Y3(θ)|Y1(θ), Y2(θ))−H(ε),

where H(Y ) is the entropy rate of {Yn}∞n=1. Then, by straightforward computation, we
deduce that

max
θ∈[0,0.25]∪[0.55,1]

f(θ) ≤ max
θ∈[0,0.25]∪[0.55,1]

H(Y3(θ)|Y1(θ), Y2(θ))−H(ε) < 0.414483,

which, together with (29), yields

max
θ∈[0,0.25]∪[0.55,1]

f(θ) < max
θ∈[0.25,0.55]

f(θ),

as desired.
Next, we will verify that (4), (5) and (7) are satisfied for all θ ∈ [0.2, 0.6]. Note that for

k ≥ 2 we have

fk(θ)− fk−1(θ) = (1− ε)2

[
1

1 + θ
H

(
1− (−θ)k+1

1 + θ

)
+

θ

1 + θ
H

(
1− (−θ)k

1 + θ

)]
εk−1.

This implies that for any k ≥ 5 and any θ ∈ [0.2, 0.6],

|fk(θ)− fk−1(θ)| ≤ (1− ε)2εk−1 = 8.1× 0.1k.
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This, together with the easily verifiable fact that 0.378 ≤ f5(θ) ≤ 0.443 for θ ∈ [0.2, 0.6],
further implies that

|fk(θ)− f(θ)| ≤ 0.9× 0.1k and 0.37 ≤ fk(θ) ≤ 0.45

for all k ≥ 5 and θ ∈ [0.2, 0.6].
Going through similar arguments, we obtain that, for any k ≥ 13 and any θ ∈ [0.2, 0.6],

|f ′k(θ)− f ′k−1(θ)| ≤ 72.9× 0.1k, |f ′k(θ)− f ′(θ)| ≤ 8.1× 0.1k,

and
−0.44 ≤ f ′k(θ) ≤ 0.76,

and, for any k ≥ 18 and any θ ∈ [0.2, 0.6],

|f ′′k (θ)− f ′′k−1(θ)| ≤ 370.575× 0.1k, |f ′′k (θ)− f ′′(θ)| ≤ 41.175× 0.1k,

and
−5.81 ≤ f ′′k (θ) ≤ −1.88.

To sum up, we have shown that (4) is satisfied with N = 371 and ρ = 0.1, (5) is satisfied
with M = 5.81 and (7) is satisfied with m = 1.88. Under these choices of the constants,
direct calculation shows that k0 = 18 is sufficient for Lemma 3.1. As a result, Algorithm 3.3
is applicable to the channel (28). Observing that, by its definition, the computational com-
plexity of fk(θ) is polynomial in k, we conclude that Algorithm 3.3 achieves exponential
accuracy in polynomial time.

Now, applying Algorithm 3.3 to the sequence {fk(θ) : k ≥ 18} over Θ = [0.2, 0.6] with
α = 0.4, β = 0.9 and the initial point θ0 = 0.5, we obtain that

θ110 ≈ 0.395485, f110(θ110) ≈ 0.442239.

Furthermore, under the settings given above, ξ and η can be chosen such that ξ = η < 0.767.
It now follows from (4), (26) and θ̂nk

= θk (see Remark 3.9) that

|f110(θ110)− f(θ∗)| ≤ |f110(θ110)− f(θ110)|+ |f(θ110)− f(θ∗)| ≤ 2.621× 10−7,

which further implies that when the input is a first-order Markov chain, the capacity of the
BEC channel (28) can be bounded as

0.4422382 ≤ f(θ∗) ≤ 0.4422398. (30)

We now consider the case when the input is a second-order stationary Markov chain,
whose transition probability matrix (indexed by 11, 12 and 21 only since 22 is prohibited by
the (1,∞)-RLL constraint) is given by p 1− p 0

0 0 1
q 1− q 0

 ,
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where 0 < p, q < 1. For this case, from the Birch lower bound (see, e.g., Lemma 4.5.1 of [7]),
we have

H(Y6|Y5, Y4, Y3, X2, X1)−H(ε) ≤ H(Y )−H(ε) = I(X;Y ).

It can then be verified by direct computation that, when p ≈ 0.597275 and q ≈ 0.614746,

H(Y6|Y5, Y4, Y3, X2, X1)−H(ε) ≈ 0.442329,

which is a lower bound on the second-order Markov capacity yet strictly larger than the
upper bound on the first-order Markov capacity given in (30). Hence we can draw the
conclusion that for the BEC channel with Markovian inputs under the (1,∞)-RLL constraint,
an increase of the Markov order of the input process from 1 to 2 does increase the channel
capacity.

3.2.2 A noiseless channel with two states

In this section, we consider a noiseless finite-state channel with two channel states, for which
we show that Algorithm 3.3 can be applied to show that higher order memory can yield
larger Markov capacity.

More precisely, the channel input {Xn}∞n=1 is a first-order stationary Markov chain taking
values from the alphabet A = {0, 1} and, except at time 0, the channel state {Sn}∞n=1 is
determined by the channel input, that is, Sn = Xn, n = 1, 2, . . . . The channel is characterized
by the following input-output equation:

Yn = φ(Sn−1, Xn), n = 1, 2, . . . , (31)

where φ is a deterministic function with φ(0, 0) = 1, φ(0, 1) = 0, φ(1, 0) = 0 and φ(1, 1) = 0.
Note that φ naturally induces a sliding block code that maps the full A-shift S to the shift
of finite type SF , where the forbidden set F is {101}. It can be readily verified that the
Shannon capacity of (31) is equal to its stationary capacity [10], which can be computed
as the largest eigenvalue of the adjacency matrix of the 3rd higher block shift of SF and is
approximately equal to 0.562399 (see Chapter 4 and 13 of [19] for more details). In what
follows, we will focus on the Markov capacity of (31); more specifically, we will compute the
Markov capacity when the input {Xn}∞n=1 is an i.i.d. process and a first-order stationary
Markov chain, which will be compared with the Shannon capacity.

It can be easily verified that the mutual information rate of (31) can be computed as

I(X;Y ) = lim
k→∞

H(Yk+1|Y k
1 )− 1

k
H(Y k

1 |Xk
1 ) = lim

k→∞
H(Yk+1|Y k

1 ) = H(Y ).

When {Xn}∞n=1 is a stationary Markov chain, the output {Yn}∞n=1 is a hidden Markov chain
with an unambiguous symbol whose entropy rate can be computed by the following formula
[13]:

H(Y ) =
∞∑
n=1

P (Y n
1 = (1, 0, . . . , 0︸ ︷︷ ︸

n−1

))H(Yn+1|Y n
1 = (1, 0, . . . , 0︸ ︷︷ ︸

n−1

)). (32)

This formula will play a key role in our analysis detailed below.
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We first consider the degenerate case that {Xn}∞n=1 is an i.i.d. process. Letting θ denote
P (X1 = 0), we note that the Markov chain {(Xn−1, Xn)}∞n=2 has the following transition
probability matrix (indexed by 00, 01, 10, 11)

θ 1− θ 0 0
0 0 θ 1− θ
θ 1− θ 0 0
0 0 θ 1− θ

 ,
whose left eigenvector corresponding to the largest eigenvalue is

(π1(θ), π2(θ), π3(θ), π4(θ)) = (θ2, θ(1− θ), θ(1− θ), (1− θ)2).

Using (32), we have

H(Y ) = −
∞∑
l=0

π1(θ)r(Bθ)
l1 log

r(Bθ)
l1

r(Bθ)l−11
−
∞∑
l=0

π1(θ)r(Bθ)
l−1c log

r(Bθ)
l−1c

r(Bθ)l−11
,

where r = (1− θ, 0, 0), c = (0, θ, 0)T , 1 = (1, 1, 1)T ,

Bθ =

 0 θ 1− θ
1− θ 0 0

0 θ 1− θ

 ,
and both r(Bθ)

−11, r(Bθ)
−1c should be interpreted as 1.

Setting f(θ) , H(Y ), we note that

f(θ) = lim
k→∞

fk(θ),

where

fk(θ) , −
k∑
l=0

π1(θ)r(Bθ)
l1 log

r(Bθ)
l1

r(Bθ)l−11
−

k∑
l=0

π1(θ)r(Bθ)
l−1c log

r(Bθ)
l−1c

r(Bθ)l−11
, k ≥ 0.

Similarly as in the previous example, we can show that

max
θ∈[0,0.41]∪[0.89,1]

f(θ) < max
θ∈[0.41,0.89]

f(θ),

which means that f(θ) will achieve its maximum within the interior of [0.4, 0.9]. Moreover,
through tedious but similar evaluations as in the previous example, we can choose (below,
rather than a constant, N is a polynomial in k, but the proof of Theorem 3.10 carries over
almost verbatim)

k0 = 120, N = (374.945k2 + 6207.73k + 46587.2), ρ = 0.875, m = 1.2, M = 10.37.

Though the function f(θ) is not concave near θ = 0, tedious yet straightforward computation
indicates that f ′′(θ) ≤ f ′′120(θ) + Nρ120 < 0 for any θ ∈ [0.4, 0.9], which immediately implies
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that f(θ) is strongly concave within the interior of the interval [0.4, 0.9]. Then, similarly
as in Section 3.2.1, one verifies that, when applied to the channel in (31), Algorithm 3.3
achieves exponential accuracy in polynomial time.

Letting α = 0.4, β = 0.9, we apply our algorithm to the sequence {fk(θ) : k ≥ 120} with
Θ , [0.4, 0.9], θ0 = 0.5, η = ξ = 0.901061, and we obtain that

θ450 ≈ 0.6257911, f450(θ450) ≈ 0.4292892.

Now from (4), (26) and the fact that θ̂nk
= θk, we conclude

|f450(θ450)− f(θ∗)| ≤ |f450(θ450)− f(θ450)|+ |f(θ450)− f(θ∗)| ≤ 0.0001745,

which further implies
0.4291146 ≤ f(θ∗) ≤ 0.4294638 (33)

for the i.i.d. case.
Now, we consider the case that {Xn}∞n=1 is a genuine first-order stationary Markov pro-

cess, and assume the Markov chain {(Xn−1, Xn)}∞n=2 has the following transition probability
matrix (indexed by 00, 01, 10, 11) 

p 1− p 0 0
0 0 q 1− q
p 1− p 0 0
0 0 q 1− q

 ,

where 0 < p, q < 1. Again, straightforward computation shows that for p ≈ 0.674521, q ≈
0.595176, H(Y4|Y3, X2, X1) is approximately 0.513259, which gives a lower bound on H(Y ).
Comparing this lower bound with the upper bound in (33), we conclude that the capacity is
increased when increasing the Markov order of the input from 0 to 1. Finally, we also point
out that direct evaluation of a trivial upper bound (for the first order Markov capacity of
(31)) gives

max
p,q

H(Y6|Y5, Y4, Y3, Y2, Y1) ≈ 0.548481 for p ≈ 0.629902, q ≈ 0.734121.

Comparing this upper bound with 0.562399, the Shannon capacity given at the beginning of
this section, we also conclude that the Shannon capacity of (31) cannot be achieved by any
first-order Markov input.

4 The Second Algorithm: without Concavity

In this section, we consider the optimization problem (3) for the case when f may not be
concave.

For a non-convex optimization problem with a continuously differentiable target function
f and a bounded domain, conventionally there are two major methods for finding its solution:
the Frank-Wolfe method [3] and the method through the  Lojasiewicz inequality (see, e.g.,
[1]). However, both of these methods in general tend to fail in our setting: for the Frank-
Wolfe method, the computation for finding the feasible ascent direction and the verification
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of the relevant gradient condition (which is necessary for the convergence of this method)
both depend on the existence of an exact formula for ∇f and a tractable description of
Θ, which is however not available in our case; on the other hand, due to the fact that our
target function is the limit of a sequence of approximating functions, the method through
the  Lojasiewicz inequality necessitates a “uniform” version of the  Lojasiewicz inequality over
all sequences of approximating functions, which does not seem to hold true in our setting.

Motivated by Algorithm 3.3, we propose in the following our second algorithm to effi-
ciently solve the optimization problem (3) whose target function may not be concave. Except
for using the sequence {∇fk}∞k=0 as the ascent direction in each iteration, an additional check
condition is proposed for the choice of the step size. This check condition is chosen carefully
to ensure an appropriate pace for the decay of ∇fk, which turns out to be crucial for the
convergence of this algorithm.

Similarly as in Section 3, we need the following lemma before presenting our second
algorithm.

Lemma 4.1. Assume the function f has s stationary points {θ∗i }si=1 which are all contained
in Θ◦, and that f achieves its maximum in Θ◦. If, for each k, fk also has finitely many
stationary points which are all contained in Θ◦, then there exists a non-negative integer k0

such that

(a) ρ1/3 + ρ2k0/3 < 1 and
2Nρk0

1− ρ
≤ δ

8
, where δ , max

θ∗i :1≤i≤s
f(θ∗i )−max

θ∈∂Θ
f(θ) > 0;

(b) There exists y0 ∈ R such that for any fixed b with 0 < b < 1, we have

∅ ( Bk0 ⊆ Ck0 ⊆ Θ◦, Ak0 ∩Bk0 6= ∅ and dist(Ck0 , ∂Θ) > 0,

where

Ak0 ,

{
x ∈ Θ◦ : ||∇fk0(x)||2 ≥

2Nρk0/3

1− b

}
,

Bk0 , {x ∈ Θ : fk0(x) ≥ y0},

Ck0 ,

{
x ∈ Θ : fk0(x) ≥ y0 −

δ

8

}
.

Note that Ak0 depends on b, whereas Bk0 and Ck0 do not.

Proof. By replacing what was assumed to be the unique maximum of f with maxθ∗i :1≤i≤s f(θ∗i ),

a similar argument as in the proof of Lemma 3.1(a) yields that there exists y0 < y∗− δ
4

such
that for all sufficiently large k, ∅ ( Bk ⊆ Ck ⊆ Θ◦ and dist(Ck,Θ

c) > 0, where

y∗ = max
θ∗i :1≤i≤s

f(θ∗i ), Bk , {x ∈ Θ : fk(x) ≥ y0} and Ck ,

{
x ∈ Θ : fk(x) ≥ y0 −

δ

8

}
.

Now, for any k and any fixed 0 < b < 1, let

Ak ,

{
x ∈ Θ◦ : ||∇fk(x)||2 ≥

2Nρk/3

1− b

}
.
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We claim that for all large enough k, Ak ∩Bk 6= ∅. To see this, define

Dk ,

{
x ∈ Θ◦ : ||∇f(x)||2 ≥

2Nρk/3

1− b
+Nρk

}
and B′ ,

{
x ∈ Θ : f(x) ≥ y0 +

δ

8

}
.

It then follows from (4), the continuity of f and the fact y0+δ/8 < y∗ that Dk ⊆ Ak, B
′ ⊆ Bk

for all large enough k and B′ has a non-empty interior. Observing that Dc
k converges to the

finite set consisting of all stationary points of f , we deduce that Dk ∩ B′ 6= ∅ and therefore
Ak ∩Bk 6= ∅ for sufficiently large k and therefore establish the claim. Finally, it immediately
follows from this claim and the observation that (a) trivially holds for k0 sufficiently large
that there exists k0 such that (a) and (b) are both satisfied.

Recalling that f and each fk are assumed to have finitely many stationary points in Θ◦,
we now present our second algorithm.

Algorithm 4.2. (The second modified gradient ascent algorithm)
Step 0. Choose k0, y0 and 0 < b < 1 such that the conditions in Lemma 4.1 are satisfied.

Set k = 0, g0 = fk0 and choose α ∈ (0, 0.5), β ∈ (0, 1), θ0 ∈ Ak0 ∩ Bk0 where Ak0 and Bk0

are defined as in Lemma 4.1.
Step 1. Increase k by 1. Set t = 1 and gk = fk+k0.
Step 2. Set

τ = θk−1 + t∇gk−1(θk−1).

If τ 6∈ Θ◦ or

||∇gk(τ)||2 <
2Nρk/3

1− b
or

gk(τ) < gk(θk−1) + αt||∇gk−1(θk−1)||22,

set t = βt and go to Step 2, otherwise set θk = τ and go to Step 1.

Remark 4.3. The constants in Step 0 are chosen to ensure the convergence of the algorithm.
And the existence of θ0 follows from Lemma 4.1 (b).

Remark 4.4. In Step 2, for any feasible k, one of the necessary conditions for updating the
value of θk is

‖∇gk(τ)‖2 ≥
2Nρk/3

1− b
.

This is a key condition imposed to make sure that ‖∇gk(τ)‖ is not too small and thereby
the algorithm will not prematurely converge to a non-stationary point.

4.1 Convergence Analysis

To conduct the convergence analysis of Algorithm 4.2, we need to reformulate the algorithm
via possible relabelling of the functions {gk}∞k=0 and iterates {θk}∞k=0 similarly as in Sec-
tion 3.1. For ease of presentation only, we assume in the remainder of this section that such
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a relabelling is not needed and thereby k actually records the number of times that Step 2
has been executed.

The following theorem asserts the convergence of Algorithm 4.2 under some regularity
conditions.

Theorem 4.5. Under the same assumptions as in Lemma 4.1,

lim
k→∞

gk(θk) exists and ‖∇gk(θk)‖2 → 0,

where gk(θk) is defined in Algorithm 4.2.

Proof. Similarly as in Section 3.1, define

T1(k) , inf{p ∈ Z : θk−1 + βp∇gk−1(θk−1) ∈ Θ◦},

T̂ (k) , inf

{
q ∈ Z : q ≥ T1(k), ||∇gk(θk−1 + βq∇gk−1(θk−1))||2 ≥

2Nρ(k+k0)/3

1− b

}
,

T (k) , inf{r ∈ Z : r ≥ T̂ (k), gk(θk−1 + βr∇gk−1(θk−1)) ≥ gk(θk−1) + αβr||∇gk−1(θk−1)||22},

and
T2(k) , T̂ (k)− T1(k), T3(k) , T (k)− T̂ (k).

In other words, for each k, T1(k) can be regarded as the number of times that Step 2 of
Algorithm 4.2 has been executed before the condition τ ∈ Θ◦ is met; T2(k) can be regarded
as the number of additional times that Step 2 of Algorithm 4.2 has been executed before the
condition

||∇gk(θk−1 + βq∇gk−1(θk−1))||2 ≥
2Nρ(k+k0)/3

1− b
is also met while T3(k) can be regarded as the number of additional times that Step 2 of
Algorithm 4.2 has been executed before the Armijo condition

gk(θk−1 + βr∇gk−1(θk−1)) ≥ gk(θk−1) + αβr||∇gk−1(θk−1)||22

is also met. The well-definedness of T̂ (k) is based on the fact that if θk−1+βp∇gk−1(θk−1) ∈ Θ◦

for some non-negative integer p, then the same inequality also holds for any integer p′ > p;
and the well-definedness of T (k) will be postponed to Step 2 of this proof detailed below.

The remainder of the proof consists of 5 steps, with the first three devoted to establishing
the uniform boundedness of T1(k), T2(k) and T3(k) and thus that of T (k).

Step 1: Uniform boundedness of T2(k). As in the proof of Theorem 3.10, it can be
readily verified that T1(k) < ∞ for all k ≥ 0. Hence, when considering T2(k), we assume
that τ = θk−1 + βq∇gk−1(θk−1) is already in Θ◦.

In order to prove the uniform boundedness of T2(k), we proceed by way of induction.
First of all, by the definition of g0 and the choice of θ0, we have ||∇g0(θ0)||2 ≥ 2Nρk0/3/(1− b).
Now, assuming that for some k = 1, 2, . . . ,

||∇gk−1(θk−1)||2 ≥
2Nρ(k0+k−1)/3

1− b
, (34)
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we will derive a sufficient condition on βq such that ||∇gk(τ)||2 ≥ 2Nρ(k0+k)/3/(1− b), where
we recall that τ is defined as

τ = θk−1 + βq∇gk−1(θk−1). (35)

To this end, we first note that by the Taylor series expansion, there exist ξ and ξ̂ in Θ◦ such
that

gk(τ)− gk(θk−1) = ∇gk(τ)T (τ − θk−1)− (θk−1 − τ)T
∇2gk(ξ)

2
(θk−1 − τ)

and

gk(τ)− gk(θk−1) = ∇gk(θk−1)T (τ − θk−1) + (τ − θk−1)T
∇2gk(ξ̂)

2
(τ − θk−1),

which immediately imply that

∇gk(τ)T (τ − θk−1)− (θk−1 − τ)T
∇2gk(ξ)

2
(θk−1 − τ)

= ∇gk(θk−1)T (τ − θk−1) + (τ − θk−1)T
∇2gk(ξ̂)

2
(τ − θk−1). (36)

Noting that ||∇2gk(ξ)||2 ≤M for all ξ ∈ Θ◦ and

||∇gk(θ)−∇gk−1(θ)||2 = ||∇fk+k0(θ)−∇fk+k0−1(θ)||2 ≤ Nρk+k0 (37)

for all θ ∈ Θ◦, we deduce from (36) that

||∇gk(τ)||2 · ||τ − θk−1||2 ≥ ∇gk(θk−1)T (τ − θk−1)−M ||τ − θk−1||22
≥ ∇gk−1(θk−1)T (τ − θk−1)−Nρk+k0 ||τ − θk−1||2 −M ||τ − θk−1||22. (38)

Clearly, it follows from (35) that the vectors∇gk−1(θk−1) and τ−θk−1 have the same direction,
which means that (38) can be rewritten as

||∇gk(τ)||2 · ||τ − θk−1||2 ≥ ||∇gk−1(θk−1)||2 · ||τ − θk−1||2 −Nρk+k0 ||τ − θk−1||2 −M ||τ − θk−1||22.

Simplifying this inequality, we have

||∇gk(τ)||2 ≥ (1−Mβq)||∇gk−1(θk−1)||2 −Nρk+k0

≥ (1−Mβq)
2Nρ(k0+k−1)/3

1− b
−Nρk+k0 . (39)

Now, using the fact 1 − ρ1/3 − ρ2k0/3 > 0 (see Lemma 4.1 (a)), (34) and (39), we conclude
that the condition

βq ≤ 1− ρ1/3 − ρ2k0/3

M
(40)

is sufficient for ||∇gk(τ)||2 ≥ 2Nρ(k+k0)/3/(1 − b). In other words, the induction argument
successfully proceeds as long as (40) holds, and therefore T2(k) can be uniformly bounded
as below:

T2(k) ≤ max

0,
log
((

1− ρ1/3 − ρ2k0/3
)/

M
)

log β
+ 1

 . (41)
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Step 2: Uniform boundedness of T3(k). First note that from (40), if the inequality

||∇gk(θk−1 + βq∇gk−1(θk−1))||2 ≥
2Nρ(k+k0)/3

1− b

holds for some non-negative integer q, then it remains true for all integers q′ > q. This
observation justifies the well-definedness of T3(k). Moreover, due to the boundedness of
T2(k) for each k (in fact, it is uniformly bounded), we can assume without loss of generality
that ||∇gk(τ)||2 ≥ 2Nρ(k+k0)/3/(1− b) is already satisfied, where τ = θk−1 + βr∇gk−1(θk−1),
before we proceed to establish the uniform boundedness of T3(k).

By the Taylor series expansion formula and (37), we have

gk(τ) ≥ gk(θk−1) + βr∇gk(θk−1)T∇gk−1(θk−1)− Mβ2r

2
||∇gk−1(θk−1)||22

≥ gk(θk−1) + βr||∇gk−1(θk−1)||22 −
Mβ2r

2
||∇gk−1(θk−1)||22 −Nρk+k0βr||∇gk−1(θk−1)||2,

where τ = θk−1 + βr∇gk−1(θk−1). It then follows that the condition

βr ≤ 1

M
− 2Nρk+k0−1

M ||∇gk−1(θk−1)||2

is sufficient to ensure that

gk(τ) ≥ gk(θk−1) + αβr||∇gk−1(θk−1)||22. (42)

Recalling that

||∇gk−1(θk−1)||2 ≥
2Nρ(k+k0−1)/3

1− b
≥ 2Nρk+k0−1

1− b
with 0 < b < 1, we deduce that the condition βr ≤ b/M is sufficient for (42). In other words,
we have

T3(k) ≤ max

{
0,

log b− logM

log β
+ 1

}
. (43)

Step 3: Uniform boundedness of T1(k) and T (k). In this step, we will show that
T1(k) is uniformly bounded over all k. This, together with the established fact that T2(k)
and T3(k) are both uniformly bounded, immediately implies the uniform boundedness of
T (k) over all k.

From Algorithm 4.2, gk(θk) ≥ gk(θk−1) + αt||∇gk−1(θk−1)||22 for all k ≥ 0, where θk =
θk−1 + βT (k)∇gk−1(θk−1). Using (4), we have

g0(θk) ≥ gk(θk)−
Nρk0+1

1− ρ
≥ gk(θk−1)− Nρk0+1

1− ρ
≥ gk−1(θk−1)−Nρk+k0 − Nρk0+1

1− ρ
,

from which we arrive at

g0(θk) ≥ g0(θ0)−
∞∑
k=1

Nρk+k0 − Nρk0+1

1− ρ
≥ g0(θ0)− 2Nρk0

1− ρ
, (44)
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for all k ≥ 0. Recalling from Lemma 4.1 and Step 0 of Algorithm 4.2 that

θ0 ∈ Bk0 = {x ∈ Θ : fk0(x) ≥ y0} = {x ∈ Θ : g0(x) ≥ y0},

we deduce from (44) and Lemma 4.1 that for all k ≥ 0,

θk ∈
{
x : g0(x) ≥ y0 −

2Nρk0

1− ρ

}
⊆ Ck0 ⊆ Θ◦,

where Ck0 is defined in Lemma 4.1 (b) and dist(Ck0 , ∂Θ) > 0. Hence, for any non-negative
integer p such that p ≥ log(dist(Ck0 , ∂Θ)/M)/ log β, we have θk−1 + βp∇gk(θk−1) ∈ Θ◦,
establishing the following uniform bound

T1(k) ≤ max

{
0,

log(dist(Ck0 ,Θ
c)/M)

log β
+ 1

}
. (45)

Finally, it is clear from (41), (43), (45) and the definition of T (k) that there exists a
non-negative integer B such that, for all k,

T (k) ≤ B. (46)

Step 4: Convergence of gk(θk).
It follows from (4), (46) and the fact ||∇gk−1(θk−1)||2 ≥ 2Nρ(k+k0−1)/3/(1− b) that

gk(θk) ≥ gk(θk−1) + αβB+1||∇gk−1(θk−1)||22
≥ gk−1(θk−1) + αβB+1||∇gk−1(θk−1)||22 −Nρk+k0

≥ gk−1(θk−1) +
4αβB+1N2ρ2(k+k0−1)/3

(1− b)2
−Nρk+k0 .

Observing that if k is large enough,

4αβB+1N2ρ2(k+k0−1)/3

(1− b)2
≥ Nρk+k0 ,

we deduce that gk(θk) ≥ gk−1(θk−1) for sufficiently large k. Noting that (4) and the definition
of gk imply that there exists C > 0 such that gk(θk) ≤ C for all k, we conclude that
limk→∞ gk(θk) exists.

Step 5: ‖∇gk(θk)‖2 → 0.
Since gk(θk) ≥ gk−1(θk−1) + αβB+1||∇gk−1(θk−1)||22 −Nρk+k0 , we have

n−1∑
k=1

αβB+1||∇gk−1(θk−1)||22 ≤ gn(θn)− g0(θ0) +
n−1∑
k=1

Nρk+k0 ,

which, together with the uniform boundedness of {gk(θk)}∞k=0, yields

∞∑
k=1

αβB+1||∇gk−1(θk−1)||22 <∞.

Hence, limn→∞ ||∇gk−1(θk−1)||2 = 0. The proof of the theorem is thus complete.
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4.2 A noisy channel with two states: Gilbert-Elliott Channel

In this section, we consider a Gilbert-Elliott channel with a first-order Markovian input
under the (1,∞)-RLL constraint. To be more specific, let ⊕ denote binary addition and
{Sn}∞n=0 be the state process which is a binary stationary Markov chain with the transition
probability matrix [

0.7 0.3
0.3 0.7

]
.

We focus on the Gilbert-Elliott channel characterized by the input-output equation

Yn = Xn ⊕ En, (47)

where {Xn}∞n=1 is a binary first-order stationary Markov chain independent of {Sn}∞n=1 with
the transition probability matrix [

1− θ θ
1 0

]
,

and {En}∞n=1 is the noise process given by

En =

{
0, with probability 0.99,

1, with probability 0.01,

when Sn−1 = 0 and

En =

{
0, with probability 0.9,

1, with probability 0.1,

when Sn−1 = 1. In other words, at time n, if the channel state takes the value 0, the channel
is a binary symmetric channel (BSC) with crossover probability 0.01, and if the channel state
takes the value 1, it is a BSC with crossover probability 0.1. It is worth noting that En and
En−1 are not statistically independent for this channel.

It can be readily checked that the aforementioned channel is a finite-state channel char-
acterized by

p(yn, sn|xn, sn−1) = p(yn|xn, sn−1)p(sn|sn−1)

and the mutual information rate can be computed as

I(X(θ);Y (θ)) = lim
k→∞

H(Yk(θ)|Y k−1
1 (θ))−H(Ek(θ)|Ek−1

1 (θ)).

The concavity of I(X(θ);Y (θ)) with respect to θ is not known to the best of our knowledge,
yet Algorithm 4.2 can be applied to effectively maximize it. More specifically, setting

fk(θ) = H(Yk(θ)|Y k−1
1 (θ))−H(Ek(θ)|Ek−1

1 (θ)),

we have applied Algorithm 4.2 with the initial point θ0 = 0.2 and we have obtained the
following simulation results, from which one can observe fast convergence of the algorithm:
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k θk ∇fk(θk) fk(θk)
7 0.28824 0.360645 0.327527
8 0.378401 0.104901 0.347958
9 0.404626 0.0427187 0.349884
10 0.415306 0.0186297 0.350211
11 0.417635 0.0134652 0.350248
12 0.421001 0.00605356 0.350281
13 0.422514 0.00274205 0.350288
14 0.4232 0.0012462 0.350289
15 0.423511 0.000567221 0.350289
16 0.423653 0.000258353 0.350289

8 10 12 14 16

0.345

0.346

0.347

0.348

0.349

0.350

Figure 1: fk(θk)
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[15] A. Kavčić. On the capacity of Markov sources over noisy channels. In Proc. IEEE
Global Telecom. Conf., pp. 2997-3001, San Antonio, Texas, USA, Nov. 2001.

[16] Y. Li and G. Han. Concavity of mutual information rate of finite-state channels. IEEE
ISIT, pp. 2114-2118, 2013.

[17] Y. Li and G. Han. Asymptotics of input-constrained erasure channel capacity. IEEE
Trans. Info. Theory, vol. 64, no. 1, pp. 148-162, 2018.

[18] Y. Li, G. Han and P. H. Siegel. On NAND flash memory channels with intercell inter-
ference. Work in progress.

[19] D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding, Cambridge
University Press, 1995.

[20] B. Marcus, R. Roth and P. H. Siegel. Constrained systems and coding for recording
channels. Handbook of Coding Theory, Elsevier Science, 1998.

[21] M. Mushkin and I. Bar-David. Capacity and coding for the Gilbert-Elliott channel.
IEEE Trans. Info. Theory, vol. 5, no. 6, pp. 1277-1290, 1989.

[22] J. Proakis. Digital Communications, 4th ed., McGraw-Hill, New York, 2000.

28



[23] H. Thapar and A. Patel. A class of partial response systems for increasing storage
density in magnetic recording. IEEE Trans. Magn., vol. 23, no. 5, pp. 3666-3668, 1987.

[24] P. O. Vontobel, A. Kavcic, D. Arnold and H.-A. Loeliger. A generalization of the Blahut-
Arimoto algorithm to finite-state channels. IEEE Trans. Info. Theory, vol. 54, no. 5, pp.
1887-1918, 2008.

[25] C. Wu, G. Han and B. Marcus. A Deterministic Algorithm for the Capacity of Finite-
State Channels, the 2019 IEEE International Symposium on Information Theory (ISIT),
Paris, France, 2019.07.07-07.12

29


	Introduction
	Channel Model and Problem Formulation
	The First Algorithm: with Concavity
	Convergence Analysis
	Applications of Algorithm 3.3
	A noisy channel with one state
	A noiseless channel with two states


	The Second Algorithm: without Concavity
	Convergence Analysis
	A noisy channel with two states: Gilbert-Elliott Channel


