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Abstract
Inspired by ideas from the field of stochastic approximation, we propose a ran-
domized algorithm to compute the capacity of a finite-state channel with a Markovian
input. When the mutual information rate of the channel is concave with respect to the
chosen parameterization, the proposed algorithm proves to be convergent to the ca-
pacity of the channel almost surely with the derived convergence rate. We also discuss
the convergence behavior of the algorithm without the concavity assumption.

1 Introduction

Discrete-time finite-state channels are a broad class of channels which have attracted plenty of
interest in information theory; prominent examples of such channels include partial response
channels [51l, 56], Gilbert-Elliott channels [43, 21] and noisy input-restricted channels [62],
which are widely used in a variety of real-life applications, such as magnetic and optical
recording [42], and communications over channels with inter-symbol interference [19]. The
computation of the capacity of a finite-state channel is notoriously difficult and has been
open for decades. For a discrete memoryless channel with a discrete memoryless source
at its input, the classical Blahut-Arimoto algorithm (BAA) [3, 14] can effectively compute
the channel capacity, however, for almost all nontrivial finite-state channels, little is known
about the channel capacity other than some bounds (see, e.g., [62], [52], [6] and references
therein), which are numerically computed using Monte Carlo approaches. The methods in
these work are believed to produce fairly precise numerical approximations of the capacity
of certain classes of finite-state channels, however there are no general proofs to justify such
beliefs.

Recently, Vontobel et al. have proposed a generalized Blahut-Arimoto algorithm (GBAA)
[59] to maximize the mutual information rate of a finite-state machine channel with a finite-
state machine source at its input. This interesting algorithm has attracted a great deal of
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attention due to the observations that it fairly precisely approximates the channel capacity
for a number of practical channels. (Notably, some results that were derived in the context
of the GBAA have proven to be useful for analyzing the Bethe entropy function of some
graphical models that appear in the context of low-density parity-check codes [57] and for
approximately computing the permanent of a non-negative matrix [58].) For a finite-state
channel, let X denote the input Markov process and Y its corresponding output process,
which, by definition, is a hidden Markov process [15]. In contrast to the BAA, the proof of the
convergence of the GBAA depends on the extra assumption that I(X;Y) and H(X|Y) are
both concave with respect to a chosen parameterization, which has been posed as Conjecture
74 in [59]. Example however, shows that the concavity conjecture is not true in general,;
for other examples showing I(X;Y) and H(X|Y) fail to be concave, see [36]. Here, we
remark that the validity of Conjecture 74 is only sufficient to prove the convergence of the
GBAA, which, however, may also converge even if the conjecture does not hold.

One of the hurdles encountered in computing the finite-state channel capacity is the
problem of optimizing I(X;Y") for a given parameterization, which requires in-depth under-
standing of the behavior of H(Y') as a function of the given parameters. More specifically,
there has long been a lack of understanding on the following two issues:

(I) How to effectively compute the entropy rate of hidden Markov processes?

(IT) How does the entropy rate of hidden Markov processes vary as the underlying Markov
processes and the channels vary?

As elaborated below, recently, these two issues have been partially addressed by the
information theory community.

Related work on (I). It is well known that H(X) has a simple analytic formula; in
stark contrast, there is no simple and explicit formula of H(Y') for most non-degenerate
channels ever since hidden Markov processes (or, more precisely, hidden Markov models)
were formulated more than half a century ago. Here, we remark that Blackwell [12] showed
that H(Y') can be written as an integral of an explicit function on a simplex with respect to
the Blackwell Measure. However, the Blackwell measure seems to be rather complicated for
effective computation of H(Y"). Since 2000, there has been a rebirth of interest in computing
and estimating H(Y) in a variety of scenarios: the Blackwell measure has been used to
bound H(Y') [45], a variation on the classical Birch bounds [I1] can be found in [I8] and a
new numerical approximation of H(Y') has been proposed in [4I]. Generalizing Blackwell’s
idea, an integral formula for the derivatives of H(Y") has been derived in [50].

The celebrated Shannon-McMillan-Breiman theorem states that the n-th order sample
entropy — log p(Y]") /n converges to H(Y') almost surely. Based on this, efficient Monte Carlo
methods for approximating H(Y') were proposed independently by Arnold and Loeliger [5],
Pfister, Soriaga and Siegel [48], Sharma and Singh [53]. However, more quantitative de-
scriptions of the convergence behavior of the proposed methods, such as rate of convergence,
asymptotic normality and so on, are lacking in these work. Recently, a central limit theorem
(CLT) [49] for the sample entropy has been derived as a corollary of a CLT for the top
Lyapunov exponent of a product of random matrices; a functional CLT has also been estab-
lished in [32]. To some extent, these two CLT's suggested that the Monte Carlo methods are
“accurate” for the purpose of approximating H(Y') in the sense that, roughly speaking, the
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methods are more likely to yield values concentrated around H(Y). There are also other
related work in different contexts, such as [34], 31}, [30].

Recently, we have obtained [23] a number of limit theorems for the sample entropy of
Y. These limit theorems can be viewed as further refinements of the Shannon-McMillian-
Breiman theorem, which is the backbone of information theory. More specifically, Theorem
1.2 in [23] is a CLT with an error-estimate, which can be used to characterize the rate of
convergence of the Monte Carlo methods in [5], 48, 53], and Theorem 1.5 in [23] is a large
deviation result, which gives a sub-exponential decaying upper bound on the probability of
the sample entropy — logp(Y]")/n deviating from H(Y). Among many other applications,
such as deriving non-asymptotic coding theorems [61], these theorems positively confirmed
the effectiveness of using the Shannon-McMillan-Breiman theorem to approximate H(Y').

Related work on (II). The behavior of H(Y) (as a function of the underlying Markov
chain and the channel) is of significance in a number of scientific disciplines; particularly
in information theory, it is of great importance for computing/estimating the capacity of
finite-state channels. However, some of the basic problems, such as smoothness (or even
differentiability) of H(Y'), have long remained unknown. Recently, asymptotical behavior
of H(Y') has been studied in [4], 33], 45], 46], 63, 64, 44, 47, [50]. Particularly in [63], for a
special type of hidden Markov chain Y, the Taylor series expansion of H(Y') is given under
the assumption that H(Y) is analytic. Under mild assumptions, analyticity of H(Y") has
been established in [24]; see also related work in [15] [63], [64] 2 411, [50] and references therein.
The framework in [24] has been generalized to continuous-state settings and further provides
useful tools and techniques for our subsequent work, such as derivatives [25], asymptotics [26],
and concavity [27] of H(Y).

Equipped with ideas and techniques from the above-mentioned work on (I) and (II),
we are more prepared to make further progress towards the computation of the channel
capacity. In particular, the ideas and techniques in [23] and [24] are vital to this paper.
Roughly speaking, [24] proves that the entropy rate of hidden Markov chains is a “nicely
behaved” function; and [23] confirms that it can be “well-approximated” using Monte Carlo
simulations. The simulator of the derivative of I(X;Y) as specified in Section [i] which is
crucial to this work, is an “offspring” of the two schools of thoughts in [24] and [23].

Stochastic approximation methods refer to a family of recursive stochastic algorithms,
aiming to find zeroes or extrema of functions whose values can only be estimated via noisy
observations. The extensive literature on stochastic approximation has grown up around two
prototyipcal algorithms, the Robbins-Monro algorithm and the Kiefer-Wolfowitz algorithm,
mainly concerning the convergence analysis on these two algorithms and their variants; we
refer the reader to [35] for an exposition to the vast literature on stochastic approximation.

Inspired by ideas in stochastic approximation, we propose a randomized algorithm to com-
pute the capacity of a class of finite-state channels with input Markov processes supported
on some mixing finite-type mixing constraint. Bearing the same spirit as the Robbins-Monro
algorithm and the Kiefer-Wolfowitz algorithm, the proposed algorithm, in many subtle re-
spects, differs from both of them. The main task of this paper is to conduct a convergence
analysis of the proposed algorithm, which employs some established ideas and techniques
from the field of stochastic approximation. In particular, the proofs in Section |8 are largely
inspired by [55], which has credited origins of some of its techniques to earlier work, such
as [8, 35, 38]. However, neither the results nor the proofs in [55] or any of previous work



imply our results; as a matter of fact, considerable amount of simplification and adaptation
of the techniques in [55] have been incorporated into this work.

Although described in different languages, our settings are essentially the same as in [59].
On the other hand, as opposed to the GBAA, the concavity of I(X;Y) alone is already
sufficient to guarantee the convergence of our algorithm. Here, let us note that that for
certain classes of channels (see Example , I(X;Y) is indeed concave with respect to
certain parameterization, whereas H(X|Y') fails to be concave with respect to the same
parameterization.

Characterizing the maximal rate at which the information can be transmitted through
a given channel, the capacity is the most fundamental notion in information theory. The
capacity-achieving (input) distribution will further provide us insightful guidance towards
designing coding schemes that actually achieve the promised capacity. Apparently, our pro-
posed algorithm would be of fundamental significance to both information theoretic research
and practical applications to tele-communications and data storage.

The organization of the paper is as follows. We first describe our channel model in
greater detail in Section [2] and we then present our algorithm in Section [3] In Section [4] we
propose a simulator for the derivative of I(X;Y") and discuss its convergence behavior. The
convergence of the algorithm is established in Section [5, while the rate of convergence of the
algorithm with and without concavity conditions are derived in Sections[7]and [§] respectively.
In Section [9] we discuss the capacity-achieving distribution of a special class of finite-state
channels. Our proposed algorithm has been implemented for a variety of input-constrained
finite-state channels, and the results of extensive numerical simulations for these channels
will be presented in Section [10]

2 Channel Model

In this section, we specify the channel model considered in this paper in greater detail, which
is essentially the same as the one considered in [59].
Let X be a finite alphabet and let

X% ={(i,j):4,j € X}.

Let II denote the set of all stationary irreducible first-order Markov chains over the alphabet
X. For a given subset F' C X2, define

HF:{XEHZXL]':O, (Z,j)EF},

where we have identified an irreducible first-order Markov chain with its transition prob-
ability matrix (so, X;; represents the probability of X transiting from state ¢ to state j).
Furthermore, for any € > 0, define

Hpe={Xellp: X;; >¢€ (i,5) ¢ F}.

Obviously, if some X € Ilp, is primitive (namely, irreducible and aperiodic), then any
X' € Ilp, is primitive; in this case, we say F' is a mizing finite-type constraint. Here, let



us note that a mixing finite-type constraint can be defined in a much more general context;
see [39].

The motivation for considering finite-type constraints mainly comes from magnetic record-
ing, where input sequences are required to satisfy certain mixing finite-type constraints in
order to eliminate the most damaging error events [42]. The best known example is the
so-called (d, k)-RLL constraint over the alphabet {0,1}, which forbids any sequence with
fewer than d or more than k consecutive zeros in between two successive 1’s.

In this paper, we are concerned with a discrete-time finite-state channel with some input
constraint. Let X,Y,S denote the channel input, output and state processes over finite
alphabets X', ) and S, respectively. Assume that

([Pla) For some mixing finite-type constraint /' C X? and some € > 0, X € Ilp,.
[@b) (X,S) is a first-order stationary Markov chain whose transition probabilities satisfy
P(Tn, SnlTn—1, 8n-1) = P(@n|Tn—1)p(8n|Tn, Sn-1),
where p(s,|zn, Sn—1) > 0 for any s,_1, Sp, Tp-
.c) the channel is stationary, which is characterized by
P(yalyr ™ 21, s771) = p(Yal2ns s0-1) > 0,

that is, conditioned on the pair z,, s,_1, the output vy, is statistically independent of
all outputs, inputs and states prior to y,,x, and s,_i, respectively.

It will be clear later (see Remark that the channel specified as above is indecompos-
able [20], and its capacity can be computed as

Cp=supl(X;Y)=sup lim I,(X;Y),
n—oo

where the supremum is over all X satisfying Assupmptions (2.a) and

n
The fact that Y and (X,Y) are both hidden Markov processes makes it apparent that
solutions to (I) and (II) are essential for computing CF.

Assume that [, is analytically parameterized by § € © C R%, d > 1, where © denote
the entire parameter space. Then, naturally, X = X(f) and Y = Y(#) are also analyti-
cally parameterized by 6. Under this parameterization, we would like to find 68* € © that
maximizes I(X(0);Y(9)).

Remark 2.1. The assumption that X is a first-order Markov chain is for notional conve-
nience only: through a usual “reblocking” technique, the case for a Markov chain of any
order can be boiled down to the first-order case.

Remark 2.2. One natural goal is to find X € Il that maximizes I(X;Y). However, in
this paper, we will restrict our attention to Il for a given € > 0; such restriction will be
justified in Section 9



3 The Algorithm

For a given 1/2 < a < 1, choose the so-called step sizes

N = —1,2,...; P
a - n (2)

apparently, {a,} satisfies

o0 oo

Zan = 00, Zai < 00,

n=0 n=0
which are the typical conditions imposed on step sizes in a generic stochastic approximation
method. Letting A, denote the event “6, + a,g,:(0,) ¢ ©”, we propose to find 0* through
the following recursive procedure:

f,, if A, occurs,
9n+1 = { (3)

0, + angp(0,), otherwise;

here b > 0, the initial 0y is randomly selected from ©, and g,,»(6) is a to-be-specified simulator
(see Section [4) for I'(X(0);Y(0)), where ' means the derivative taken with respect to 6.
Throughout the paper, we assume that

0<pf<a<l/3, 2a+b-—3b5>1; (4)

here, «, § are some “hidden” parameters involved in the definition of g,(#), which will be
defined in Section [l

Remark 3.1. The idea of the algorithm is very simple and can be roughly explained as
follows: at time n, the derivative I'(X(6,);Y (0,)), which can be “well-approximated” by
gnv(0,,), indicates whether the function (X (0),Y (6)) is monotone increasing or not at 6,,.
Accordingly, while ensuring all 6, stay within the region ©, 6, will be updated to 6,,,1, most
likely giving rise to a larger value of I(X(0,41),Y (6,41)). The subtlety is that one has to
appropriately choose step sizes {a, }: too small step sizes will cause a premature convergence
of {6,}, while too large step sizes will likely lead to an eventual divergence of {6,,}.

Remark 3.2. In our notation, one of the key differences between our algorithm and the
GBAA in [59] is that our algorithm is meant to find * that maximizes the mutual information
rate 1(X(6);Y(0)), whereas the GBAA to find ¢} that maximizes the mutual information
I,(X(6);Y(8)) for some arbitrary yet fixed n.

4 A Simulator of I'(X;Y)

As stated in Section [1} albeit rather difficult to compute analytically, I,,(X;Y") can be well-
approximated via Monte Carlo simulations. In this section, we propose a simulator for
I'(X;Y). Needlessly to say, an effective simulator guaranteeing an “accurate” approxima-
tion to I'(X;Y) is crucial to our algorithm. To some extent, our simulator is inspired by



Bernstein’s blocking method [9], which is a well-established tool in proving limit theorems
for mixing sequences; see, e.g., [16].

Now, consider a stationary stochastic process Z = Z*_
tions:

satisfying the following assump-

{@a) There exist strictly positive constants C; < C, such that for all 20,
C1 < plzolz, ") < Co.

(4lb) There exist C' > 0, 0 < A < 1 such that for all n,

Pg(n) = sup |\P(VIU) = P(V)|/P(V) < CA",
UEeB(23"),VEB(Z8°),P(U)>0,P(V)>0

where B(Z7) denotes the o-field generated by {Zj : k =1d,i+1,--- ,5}.

(.c) There exist C' > 0, 0 < p < 1 such that for any two 2°, 2%
m,m >n >0),

T )
& with 22 = 29 - (here

Ip(20]22,,) — p(20]275)] < Cp™.

Remark 4.1. Conditions (#]a)-(d]c) are the same ones used in Section 2 of [23], which are
essential for establishing the main results in [23]. As observed in [23], Conditions ({2la)-
(2lc) imply that Y and (X,Y") both satisfy Conditions (4}a)-(4}c), and moreover, there exist
C >0, 0 < p <1 such that for any two initial states s;, s{,

[p(snlzY, 55) — p(salzy, sg)| < Cp™.

This implies that, as claimed in Section [2, the finite-state channels considered in this paper
are indecomposable.

Now, for 0 < < a < 1/3, define
n?, r=r(n)2n® k==kn)2n/(n*+n"),

where, to avoid notational cumbersomeness, we have omitted rounding operators acting on
n?, n® and n/(n®+n?), which are not necessarily integers. For any j with iqg+ (i —1)r+1 <
j <ir +ip, define

s P ) 1
Wy =WilZi_142) = — Z 1o p(Z5|Z57 40 (5)
PAZ51q/2)
and furthermore
G = Wigri—1yr+1 + -+ + Wigir, Sn = Z Gi- (6)
i=1



Remark 4.2. The rough idea behind the definition of S, is as follows: Note that each (;
only involves all Z; with j € I; = {ig+ (i — 1)r + 1 — [q/2],...,iq + ir}, and for any two
J1 € Iy, jo € I;,, where iy,iy are distinct, we have |j; — jo| > |¢/2]. It then follows from
Condition .b) that for large enough n, all (; are “weakly dependent”, and furthermore, the

arithmetic mean of all (; will converge to the mean of (;, which can be verified to be close
to H'(Z).

Now, we are ready to define our simulator for I'(X;Y).
Definition 4.3.
Gn = gn(X7, V") & H'(Xo|Xy) + S (Y1) (kr) = Su(XT,Y7)/ (kr).

The following lemma, whose proof is somewhat similar to that of Lemma 3.3 in [23], gives
an estimate of the variance of .9,,.

Lemma 4.4. For Z satisfying Conditions {{la), {lb) and {{c),
E[(S, — E[Sn])ﬂ = O(qug)-

Proof. As in the proofs of Lemmas 3.1 and 3.9 of [23], using Condition (da), (D), we can
deduce that for some 0 < A < 1,

B((Sn = BISW)] = BIQ_ G = > BIG)] = KE(G = EG])*] + O(R*X"?).

So, to prove the lemma, it suffices to prove that

E[(G = ElG)?) = O(r®).
Note that

T

E[(G = E[G)*) = ) E(W;, — E[W,])(W;, — E[W,,])] (7)
Ji,j2=1
It follows from Condition .a) that for any j, W; — E[W;] = O(q), and therefore, for any
J1,J2, we have
E((W), — EW,]))(Wj, — E[W3])] = O(¢?). (8)

Furthermore, similarly as in the proof of Part 2 of Lemma 3.1 of [23], one verifies, using

Condition ([a), (4b), that when |j; — ja| > ¢/2],
E[(Wj, = BIW, (W, — E[W,,])] = O(g?An 7217 1a2]), (9)
Combining (7), (8) and (@), we then have
El(G-EG)T=(C >, + >, )EW, - EW,)W, - EW,))

l71—721<la/2]  lj1—d2|>la/2]

= O(rg*).

The proof is then complete.



The following three theorems characterize the performance of our simulator from different
perspectives.

Using similar techniques as in the proof of Theorem 1.1 in [24], the first theorem shows
that on average, our simulator sub-exponentially converges to I'(X;Y).

Theorem 4.5. For some 0 < py < 1, we have
n n 2
Blga(X7, Y1) = I'(X;Y) = O(pg"™).
Proof. Notice that for the Markov chain X, we have
H(X) = H(X3|X;).

So, by Remark , it suffices to prove that for any Z satisfying Conditions .a)—c), we
have

= H'(2) = 0(p"™),

for some 0 < p; < 1.
Note that for any j with ig+ (i — 1)r + 1 < j <'ig + ir, we have

A (2] )
BW; == 5 pld ) a2 hog (237 )
- P(Zi_1qp2))
j—la/2]
= Z P'(% Zj— Lq/ZJ)logp(ZJ| Lq/2 )
Z?—Lq/zJ

Then, as in the proof of Theorem 1.1 of [24], we can prove that for any small € > 0,

le (znl21™ )| = O((1 +€)").

This, together with Condition .C), implies that for some 0 < p; < 1,
EW;) — H'(Z) = 0(p"),
which further implies that for some 0 < p; < 1

_HZ) = E[S,] —kl;rH’(Z) _ Zj(E[WJ]jT— H'(Z)) _ o(p),

E[S,]
kr

O

The following large deviation type lemma gives a sub-exponentially decaying upper bound
on the tail probability of ¢, (X7, Y]") deviating from I'(X;Y).

Theorem 4.6. For any € > 0, there exist some 0 < ~v,6 < 1 such that

n n ’rL6
P(lgn(XT,Y") = I'(X;Y)| 2 €) <



Proof. By Lemma [4.5 and Remark [4.1], it suffices to prove that for any Z satisfying Condi-
tions (4la)-(4lc) and for any € > 0, there exist 0 < 7,6 < 1 such that

P ( Sn — E[S,]

kr
By the Markov inequality, we have

> g) <. (10)

_ t(Sn—E[Sn])/r?
H&—EBAZM@—P(W% M&D>%m>gEk |

etke/r ’ (11)

As in the proof of Lemma 3.9 of [23], applying Conditions ([dla) and (#b), we then have

T2 7»2
HSn=E[Sn))/r*] _ plet Simt (G=ElGD/r? gt(Ce—ElG]) /7
Ele | = FEle e ]
= (1 4+ O(X1M/2)) Bl T GBI/ pletC=BlGD /) (12)

for some 0 < A < 1, where we have used the fact, as explained in Remark [4.2] that for
any two j1 € I, jo € I;,, where 41,4y are distinct, we have [j; — jo| > |¢/2]. A recursive
application of yields that for any 0 <t < 1

E[etSn—ES: D] = plet T G-BlGh/r)
= (1+ O()\q(n)/2))kfl(E[et(crE[cﬂ)/ﬂ])k’ (13)
as n goes to infinity. By Condition .a), we have
1 = E[G] = O(rq), and thus, O((G — E[G])*/r") = O(¢*/1?) = o(1).
It then follows that for any 0 <t < 1,
B[t @FIaD/] = 1 4 o(1)82,
Choosing t = n~(1=%/2_then, by and , we deduce that
— t(Sn—E[Sn])/r?
p(BmESlL ) < B |

kr etke/r
1 4 o(1)e2)" ™"
< (140 ) (1+te +O(1)2)n

= Ofe ).
Noticing that 0 < o < 1/3 (and thus 1/2 —3«/2 > 0), we conclude that for any € > 0, there

exists 0 < 7,0 < 1 such that
n - E n
P (5—[5] > 5) <
kr

_pl/2-3a/2

With a parallel argument, one verifies that for any € > 0, there exists 0 < ~,0 < 1 such that

P (—S" G —8) <y,
kr

which immediately implies . The proof is then complete. O

10



The following theorem states that our simulator is asymptotically unbiased.
Theorem 4.7. With probability 1,
gn(XT, YY) = I'(X3Y),
as n tends to oo.
Proof. 1Tt immediately follows from Theorem and the Borel-Cantelli lemma. [

Remark 4.8. Other than confirming the effectiveness of the proposed simulator g, in Def-
inition [4.3] Theorems and [4.7] are of interest in their own right: For any stationary
process Z satisfying Conditions .a), .b) and .C), the proofs of these theorems reveals
that the sample path of Z can be used to effectively simulate the derivative of H(Z). This can
be viewed as an extension (for a special class of processes) of the Shannon-Millan-Breiman
theorem, which states that the sample path of a stationary and ergodic process can be used
to simulate its entropy rate. For the proposed algorithm in Section [3] an alternative simula-
tor can be defined as follows: g, can be defined in the same way except that (s, (3, -, (, are
taken as independent copies of ;. It can be easily checked that Theorems [4.5] and
also holds for the redefined g,. As a consequence, the convergence results later in this paper
also hold for the redefined g,,.

Remark 4.9. In our notation, the following expression has been proposed in [59] as a
simulator of I'(X;Y):

(")
p(Y7")

’U

(logp(vy))/m + P10 400 bxn vy .

H'(X5| X)) —
p(Xl ’ l/ln)

Extensive numerical experiments conducted in [59] suggest that this simulator converges to
I'(X;Y) almost surely as n tends to infinity, however, there is no rigorous proof for the
convergence.

Remark 4.10. For the purpose of effective computation to avoid accumulating round-off
errors caused by multiplication, W, can be rewritten as

P(Zj—1g2) | P (Zj—igj2141|Zj-19/2)) PN 1yp)
T ZJ la2)) ZJ la/2)+ Z] lar2) 4 j 1“” log p(Z; |Z Lq/QJ)
P(Zja2)  P(Zi-taj21411Zi-1a/2)) PZ1Z5 1))

Here, we remark that it is well known that all p(Z;|Z;~ 1(1/%) (see, e.g., (4.6) and (4.14) in [24])

and p/(Z;|Z!~ Eq/2J) (see, e.g., the displayed equation after (2.5) in [25]) can be effectively
computed in a recursive manner.

Remark 4.11. It is well known that by the Shannon-McMillan-Breiman theorem, the fol-
lowing simulator of I(X;Y),

H(X5|X1) —logp(Y{")/n + log p(XT', Y7") /n, (14)
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converges to I(X;Y) almost surely as n tends to infinity. Bearing the same spirit as the
simulator of I’(X;Y) in Definition [{.3] an alternative simulator of I(X;Y’) can be defined
as follows: For any j with ig + (i — 1)r + 1 < j <'ir + ip, define

W, =W;(Z]

j—|_q/2J) 2 _1ng(Zj|Z§_1 )

—lq/2]
and furthermore "
k(n

Ci = VV%’Q+(2'71)7‘+1 +oe At Wiq—i—ira Sn = Z CZ
i=1

Then, the following expression gives an alternative simulator of I(X;Y):
Gn = gu(XT Y1) £ H(Xo|X0) + S0(07")/ (kr) — Su(X7, Y1)/ (kr).

It can be verified that analogs of Theorems [4.5 and hold for the above alterna-
tive simulator; more precisely, following from parallel arguments, these three theorems still
hold with g, and I'(X;Y") replaced with g, and I(X;Y’), respectively. Note that the sub-
exponential upper bound as in Theorem [4.6], which in general does not hold for the simulator
in , suggests that g, is more effective. Indeed, the alternative simulator g, has been im-
plemented in our numerical simulations (See Section for the computation of I(X;Y’) and
faster convergence of this simulator has been observed.

5 Convergence

Consider the following condition:
(5.a) P(Ne, U2, A,) =0, that is, A,,n € N, only occurs finitely many times,

which will be assumed throughout the convergence analysis in the paper. Particularly, in
this section, assuming (5.a), we will show that {I(X(0,);Y(6,))} converges almost surely.
Obviously, if © = R?, then Assumption (5.a) will be trivially satisfied and the iteration in
(3) can be simply written as

9n+1 =0, + Angnb (en) (1’5>

Note that Assumption (5.a) may not hold true when © is bounded, though some other
conditions, such as Condition (7a), may imply (5.a). Unless specified otherwise, we will
simply assume that © = R in all the proofs in this paper to avoid obscuring the main idea.
The proofs of the same results under Assumption (5.a) follow from parallel arguments only
with an increasing level of notational complexity.

Henceforth, we will write (for the definition of I,,, see (I]))

f(0) = 1(X(0);Y(9)), [fa(0) = L(X(0);Y(0)).
Note that under Assumption (2la), Theorem 1.1 of [24] implies that

f(0) is analytic and each of its derivatives is uniformly bounded over all § € O,

12



a key fact that will be implicitly used throughout the paper. Now, rewrite as
Opi1 = 0n + anf'(0,) + anRn(6,), (16)

where
Ry, (0n) = G (0n) — f/(gn)-
It can be easily verified that

f(Oni1) — /f (On 4+ t(Ons1 — 00)) (Ony1 — O,)dt
_ / P00 Oz — 0u)dt + / O+ t0nss — 0)) — £/ (0)) s — 0,)dt

= an f'(0n)(f'(0n) + R0(00)) + /0 (f'(On + t(Ong1 — 0n)) = '(00)) (Oni1 — On)dt
= anflz(en) + Rnwn): (17>

where
R (02) £ anf'(0n) Ru(0) + /O (f'(On + t(Ong1 = 00)) = '(00)) (Ong1 — 0n)dt.

Lemma 5.1. 3.°°  R,(6,,) converges almost surely.

Proof. Let

Zanf 0,), T — Z/ F O+ (0 — 02)) — F(60))(Bnsr — Or)dt.

It suffices to prove that 77,75 both converge almost surely.
For T7, note that

o0

Ti =3 auf (0.)(9.0(6,) — F'(6,)

n=0

= Z an " (0n) (g (On) = F16(02)) + D anf'(0n)(fr(00) = F'(0)):

It follows from the proof of Theorem 1.1 (more precisely, the last displayed equation in the
proof of Theorem 1.1, coupled with Cauchy’s integral formula) that there exists 0 < pg < 1
such that for all § € ©,

b

[(fr(0) = /(O < p
which immediately implies that

o0

> anl O 1(fro(6a) |<Zan|f g < oo (18)

n=0

13



Then, using and Lemma , one verifies that uniformly over all 6,, € ©,

> B (6. R0 = 30 ( sy ) (19)

n=0

which converges since 2a+b—3b3 > 1. Noting that {a, f'(6,,) R.(0,), B(X]")} is a Martingale
difference sequence and applying Doob’s Martingale convergence theorem (see Theorem 2.8.7
of [54]), we deduce that

Zanf )(900(6,) — £10(6,))

converges with probability 1. The almost sure convergence of T} then follows.
For T, it is easy to check that

/O (f'(On + t(Ons1 — ) — f'(6n)) (01 — 9n)dt’ = O((0n1—00)") = Ola (f'(0n))*)+0(a, Br, (61)),

where the constants in the above O-terms are uniform over all 6,,6,,.;. Similarly as in

deriving and , we have

Y an(frp(8a) = f1(6))° <00, D Elay(gne(6) = f1(6))%] < 00,

and furthermore,

> an(90(0n) = fra(60))°

n=0

converges almost surely. This, together with , further implies that

Zanl Gt (0n) = f(0n)) (f(0n) = f'(00)]

converges almost surely. Recalling that

Rn(‘gn) = gnb(en) - fyllb(en) + f;b(en) - f/(en)a

we conclude that

oo

2 P2
PIAAUSEES
n=0

which further implies that

> [t 0 = 001) = O s —

converges almost surely. The proof is then complete. O

14



We are now ready for the following convergence theorem, whose proof closely follows
that of Lemma 7 in [55], whose general ideas are reminiscent of the standard proof of the
Martingale convergence theorem [54].

Theorem 5.2. With probability 1, we have
lim f'(0,) =0 and lim f(6,) exists .
n—oo n—oo

Proof. Recall that X
f(9n+1) - f(‘gn) = anf/2(9n) + Rn(en)>

a recursive application of which implies

n—1 n—1
F(On) = F(00) + > ai(f'(6) + Y Ril6).
i=0 i=0
Applying Lemma [5.1, we deduce that with probability 1,
> ai(f'(6:))° < oo,
i=0

which, in turn, implies that lim, . f(6,) exists and furthermore there is a subsequence
{0, } such that f'(6,,) converges to 0 as j tends to infinity.
We now prove that

lim f'(6,) = 0.

n—oo
By way of contradiction, suppose otherwise. Then, there exists £ > 0 such that there exist
infinite sequences my, ng, k = 1,2,---, such that

1O <& [f'On)] =26, [f(0:)] > ¢ (20)
for all my +1 < i < ny. It then follows that

e < |f/(9nk) - f,(emk”

_o (Z ai\f'<ei>|> Lo (

nE—1
—O(Zai>+0< ) (21)
i=my
As in the proof of Lemma [5.1] using the decomposition

R (0n) = gup(0n) = ' (On) = gup (6n) = f0(6n) + f () — f'(6n),

we deduce that Y~ a,R,(0,) converges almost surely, and hence |ZZ‘:’“;¢ a;R;(0;)| tends
to 0 as k goes to oo. On the other hand, by , we have

ng—1

Z aiRi(6i>

i:mk

ne—1

Z aiRi(ei)

i=my

ng—1 o)
Y a< ) a(f ()
i=my i=my

15



This implies that as k tends to oo, Z?:kr_nt a; tends to zero, which, together with , further
implies that
e < lim |f,(9nk) - f,(‘gmk” =0,
k—oo
a contradiction. O]

Remark 5.3. Apparently, the fact that {f(6,)} converges almost surely does not necessarily
imply that {6, } converges almost surely. In the following sections, we will prove that, under
some assumptions, {,} does converge almost surely.

6 Some Estimations

In this section, assuming .a), we will derive some estimations that will be used in the later
sections for convergence analysis.
For any 7 € N, let
Aj :CL1+CL2+"'+CLJ'_1,

and for any h > 0 and any n € N, define
t(n,h) £ min{k : a, + apy1 + - +ap_1 > h}.
Now, for any fixed ng € N, recursively define
Ngr1 = t(ng, h).
One then verifies that for £k sufficiently large,

A - Ank = O(h>7 ng = O(kl/(l_a))v (22)

NE+1
where by M = O(N ), we mean that there exist positive constants C4, Cy such that
CiN < M < (CsN.

Now, an iterated application of

0n+1 - en = anf/(en) + aan(en)

yields
k—1 k—1
- - k—1 k—1
= On + (Ax — Ap) f(0n) + Z a; R (0;) + Z ai(f'(6:) = f'(0n))
= gn + Rn,k7 ! !
where - -
Ry = Z a;Ri(0;) + Z ai(f'(0;) — f'(0n)) (23)



Similarly, an iterated application of

f(9n+1) - f(en) = anf/2(9n> + ]%n(en)

vields
00~ 100 = [ £10, 1060 )0~ )
= [ o= bt [0 10 0) - 66 - )
= O~ AP O+ o)+ [ (7100100~ 0) ~ 706~ )

= (Ap — A F2(0) + F'(0) R + / ('O + 1(Ax — A,)) — F(6.))(Ax — A,)dt
= (Ak - An)fa(en) + I:{n,k(en)v (24)

where )

Ruk(0) = F(6) R + / (0 + 1(Ax — A)) — F(6.))(Ac — Adt.  (25)

0
The following lemma introduces a positive random variable, Co, and a constant, 7, which
will be referred to throughout the rest of the paper.

Lemma 6.1. There exists a positive random variable Cy such that for all n and for any
T >0 with 2a + b — 308 — 27 > 1,

k

> aiRi(0;)

i=n

< Con~

sup
k>n

Proof. For any 7 > 0 with 2a + b — 3b3 — 27 > 1, as in the proof of Lemma 5.1, we deduce
that Y .-, i"a;R; converges almost surely. Letting

T, 2 iTa;Ri(6)
=1

17



we then have for any k > n,

k k
. B
=3 (Ti=Tiy)i ™
B ;
=n 1=n+1
k k—1
= ZEW - ZT,-(z' +1)”
= Tk + Z (i+ 1)),
(k77 + Z (i+1)77)supT;
=n""sup Ti,
which immediately implies the lemma. O]

In the following, to avoid notational cumbersomeness, we will use C' to denote a positive
constant, which may not carry the same value upon each of its appearances.

Lemma 6.2. Let 0 < h < 1 and Cy, 7 be as in Lemma then we have

(1) there exists a constant C' > 0 such that
|F' (G| < C(Con™ + | f(6a)]).

(2) there exists a constant C' > 0 such that

Gty — Ol < C(Con™™ + Al f'(82)])-
(3) there exists a constant C' > 0 such that

| B tiny| < C(Con™™ + W2|f(0,)])-
(4) there exists a constant C' > 0 such that

[Bntnm| < C(CTn™*+ Con 7| f'(6a) | + D211 (00)F7).

(5) there exists a constant C' > 0 such that

F(0n) = fOunsy) < —(3/4 = 3Ch/2)h| f'(0)* + CCFn~ " (1 + 1/(2h%)).

18



(6) there exists C' > 0 such that for sufficiently small h

2(f(0n) = f Orinm)) + L Ou)l[Brny — Ol < (C'+1/(217)Cin 7>

(7) for any ' < T, there exists a positive constant C such that for sufficiently small h, we
have

sy — Onl < C1 (f(Oyimy) — f(0n)) + CConT.

Proof. In this proof, for notational simplicity, we will write ¢(n, h) as k.
Note that there exists a positive constant C' such that

/(O] < 17 (0n)] + £/ (0) — f'(6n)]
< |f'(0n)] + Cl0k — 00

k—1 k—1
<1 (0n)] + OZai]f’(Gi)\ + O ZaiRi(@)!,

where we have applied . Applying Lemma , we then have

k—1
[F'(04)] < CCon™™ + | f'(Bn)] +C Y ailf'(6)]-

Applying Gronwall’s lemma [22], we then have for n sufficiently large
' (00)] < (CCon™ + [ f'(8)]) exp(Clan + apir + -+ + ar-1)) < exp(C)(CCon™™ + | f'(62)]),
where we have used the fact that for n large enough

p + Qpi1+ -+ ap1 = h <1

We then have established (1).
It then follows from (1) that for some C'

k—1 k—1
10k — O <D ail £/(0:)| + 1D asRi(6))]
< (A — A)(CCon™™ 4+ C|f'(8,)]) + Con™™,

which immediately implies (2).
Now, by and (2), we have for some C'

k—1
Rkl < Con™ +C)_ al0; — 6,

< Con™™ 4+ C* (A — An)(Con™ + (Ax — A £ (0,))),

which establishes (3).

19



Furthermore, by (25), (2) and (3), we have

’f‘)n,k‘ < ‘f/(en)HRn,k’ + O|9k - 9n|2
< COun " [f'(8u)] + C(Ax = A)?If (0)F + 2C°(Con~" + (Ax — A0)?|f'(60) ),

which establishes (4).

It then follows from (24, (III) and (IV) and that for sufficiently large n

F(60) = f(6h) < (A = A)|f (0)* + | R

=3h/A|f (6,)7 + C(Can~>" + Con 7| f(8)] + B[ f'(6) )
=3h/AIf (0u)]° + C(Cqn ™" + Cin™ "7 /(2h%) + 12| f'(0.) /2 + 12| £ (6.)[7)
=3h/AIf'(0,)° + C(Cn~> (L + 1/(2h%)) + 302 /2| f'(6.) )
—(3/4 = 3Ch/2)h|f'(6,)]> + CCin~(1 + 1/(2h7)),

A VAN VAN VAN

which establishes (5).
It follows from (24)), (3) and (4) that

F(0k) = F(O) = | F/(Ou)|(Ax = An) f'(00)] + R
POk — 0+ Busl + B
> | (0n)|(16k = O] = [Rok]) = Rov
> [ £1(0:)]|0k — 0] — C(C2n™2" + Con ™| f1(00)| + (Ax — A0)2| £/ (62)]%),

which implies that

F(0n) = £(0k) + 1 O)I0k — 0] < C(CERTT + Con™ 7|/ (0a)] + (Ar — A)?1f'(6) )
< C(Con~ (1 +1/(2h%)) + 317 /2 f'(6.) ).

Applying (V), we then have for sufficiently small h,
F(On) = F(O) + S Ou)|6x — 0] < 2C(1+1/(20%))C3n™" + [(0k — [ (6n)),
which can be rewritten as
2(f(0n) = F(01)) + 11 ()]0 — 0] < 20(1 + 1/(21%)CGn ™",

which establishes (6).
We next prove (7). If | f'(6,)] <n~7', applying (II), we deduce that

0, — 0, < CCon™™ +Ch*n™" . (26)
It follows from and (4) that
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which, together with (26]), immediately implies that for some C,
0k — O <07 (F(8) = f(8)) + 07 | (k) = f(Bn)] + CCon™™ + CR*n™T
<07 (f(0) = f(6.)) + C(Con~>" (1 +1/(2h%)))
+ (h+3Ch%/2)|f'(8,)]* + CCon™™ 4+ Ch*n™". (27)
On the other hand, if | f/(6,)| > n~", applying (6), we deduce that
0k — 0l < 211" ()71 ( (O — f(62))) + (C + 1/(202))| f'(6) 7' Con ™

<207 (f(0k — £(0))) + (C + 1/(2h*))Cin T (28)
Combining and ([28)), we then have established (7). O

7 Rate of Convergence with Concavity

In this section, we assume that

(7.a) f(#) is strictly concave with respect to . More precisely, there exists ¢ > 0 such that
for any 6,60, € O,
[l + (1 = t)6y) > ¢,
forall0 <t <1.

(7.b) With probability 1, 6,, converges to the unique global maximum 6* as n tends to oo.

Here, let us note that (7.a), together with Theorem [4.6] implies (Bla). With Assumptions
(7.a) and (7.b), which, as argued in Section [9] can be satisfied for a class of finite-state
channels, we will derive the convergence rate of {6,,}. Again, for notational convenience
only, we assume that © = R in the proofs.
From
Opi1 — O = anf'(0,) + an R, (6,),
trivially we have

An-‘,—l - An - _anf,(en) - aan(Qn)a

where
A, = (0% —0,).
It immediately from the above two conditions that for 6 sufficiently close to 6*
FO)=0(6"=67),  f'(6)=0(l6" ). (29)

So, if #,, is sufficiently close to 6%, we will have
F0.) = O, f'(6a) = O(1A]).

Throughout the paper, by M = O(N ), we mean that there exists a positive random
variable C' such that with probability 1,

M| < CN.
In this section, we will prove that A, is at most of order O(n™").

We first prove the following lemma.
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Lemma 7.1. There exists | € N such that

lim inf n"|A,| < 1C,.

n—00

Proof. Suppose, by way of contradiction, that for any [,
nT| A > 1Cy, (30)

as long as n is sufficiently large. First, pick ng sufficiently large such that is satisfied
and then recursively define

Ng+1 = t(nk, ]’L)
for some 0 < h < 1. We then have, for any feasible k,
9”k+1 = enk + (Ank+1 - A”k)f/(enk) + Rnkmkﬂ'

It then follows from Lemma (3) and that R, ,,., is dominated by |f'(0y,)| as long
as [ is chosen sufficiently large and h is chosen sufficiently small. Noticing that due to the
concavity of f, A, always has the same sign as f'(6,,), then we have

A | S 180 = B/21A,] < Ay, Je72,

Tt
a recursive application of which would yield
A, <A ek
It then follows that for any k
Aponge ™2 > nt A, > 1C,.
This, together with the fact that (see (22)))
ny, = O (kY1)

as k tends to infinity, implies that .
C10 S 07

which is a contradiction. O

Theorem 7.2. .
|A,l =0(n™7).

Proof. Tt is enough to prove that there exists an integer [ such that for all n sufficiently large,

By way of contradiction, suppose otherwise. Then, by Lemma [7.1], for any ! and arbitrarily
large N, we can find kg > mgy > N such that

My A, < 21Co, kI Ay, > 31Co,
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min  n'A, >2C,, max n’A, < 31C;. (31)

mo<n<kg mo<n<kg

Now, for some 0 < h < 1, let my = t(mg, h). Then, for any mg < n < my, it follows from

and
en - 6)mo = (An - Amo)f/(emn)) + Rmo,na |Rmo,n| < C(mETéo + (An - Amo)2|f/(9mo>|)

that }
B0 = Ay = O(m;")Co.

Applying , we then deduce that for sufficiently small h
InTA, = miA | S nTIA, — Al + (T —mb) A,
< O(m{)O0(mg")Co + o(mfy)2lmg ™ C,
where we have used the fact that
n" =0(mg), n"—mj=o(m]).
It then follows that, with [ large enough and h small enough, we have
In"A, — mi A, | < 1Co.
In particular, we have
|(mo + 1) Apyrr — miA | < 1Co and [mTA,,, —miA,,| < ICy,

which further implies that }
mgAmO > ZOO and my < ]{?0,

respectively.
Now, for some 0 < h < 1, we have

(9m1 = Hmo + (Am1 - Amo)f/(gmo) + Rmo,ml’

and 3
| Ring,ma | < C(mg™Co+ (Amy — A (Omo)])-

As in the proof of Lemma [7.1] if [ is chosen large enough, then |f'(6,,,)| will dominate
| Ring.my |- Again, due to the concavity of f, A,,, always has the same sign as f’(6,,,), then
for sufficiently small h > 0, we have

’Am1’ < |Am0| - h/2’Am0"
Then, for mg sufficiently large such that
mi <mg/(1—h/2),

we have )
m71—|Am1| < mI|Amo|(1 - h/2> < mZJ—'Amol < 2l007

which is a contradiction to .
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8 Rate of Convergence without Concavity

In this section, assuming ([5la) and
(8.a) with probability 1, 6, € @ for all n, where @) is a compact subset of ©,

we derive the rate of convergence of our algorithm. Again, for notational convenience only,
we assume that © = R.

As one of the main results in real algebraic geometry, the Lojasiewicz inequality [10],
among many other applications, has been widely applied to the convergence analysis of a
broad class of dynamical systems. In this section, we will first use the “function” version of
the Lojasiewicz inequality (Lemma to prove that {f(6,)} converges almost surely and
derive the convergence rate, which can be further used to derive the convergence rate of {6,,}.
Then, using the “variable” version of the Lojasiewicz inequality (Lemma , the rate of
convergence can be refined. The above-mentioned framework is essentially due to Tadic [55],
however, a comprehensive adaptation to our settings has been done in this section.

Following [55], we state the “function” version of the Lojasiewicz inequality as below.

Lemma 8.1. For any compact set () C © and real number z € f(Q), there exist real numbers
do.- € (0,1), po.. € (1,2] and Mg, € [1,00) such that

|£(0) — 2| < Mq..|f'(0)["<-
for all 0 € Q satisfying |f(0) — 2| < dg.».

From now on, we will set f = lim, o f(,) and write p = {1 - Define

~ ~

A, 2 f— f(6,).
We first prove the following lemma.
Lemma 8.2. There exists a positive integer | such that for all n sufficiently large,
A, > —ICk.
Proof. Suppose, by way of contradiction, that for any [, there exists some ny,
nt"A,, < —ICH. (32)
Then, by Lemma[6.2] (5), we have, for some 0 < h < 1,
F(Ona) = FOutnaiy) < —(3/4 = 3Ch/2IF (6,2 + CCong (1+1/(2h2)),
which implies for h sufficiently small,

~ ~

Boyn) = By < —(3/4 = 3Ch/2)h] /(8 + CCang™ (1 + 1/20%)
/2060 + CCng™ (1 4+ 1/(202)).

VANRRVAN
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Choosing [ sufficiently large, then by Lemma and , we deduce that for n large enough,
—h/2|f () * + CCing ™™ < —~h /4| f'(0u,) I,

and therefore R X
Aif(no,h) - Ano < _h/4‘f/<0no)|2' (33>

We then have X A i i
At(no,h) < Ano < _lcgnam— < —ngt(’I’Lo, h)—l“'.

Henceforth, recursively define
N1 = t(nk, h)
It then follows that for any k,
A, <A, < —ICkn" <0,

which is a contradiction to the fact that almost surely

lim A, =0.

k—oo

In the remainder of this section, define

7 = min(p7, u(1 — a)/(2 — p)).
Lemma 8.3. There exists a positive integer | such that

liminf n" A, < ICK

n—o0

almost surely.

Proof. Suppose, by way of contradiction, that for any [, we have
n'A, > ICH, (34)

for all n sufficiently large. By Lemma (5), for any 0 < h < 1, we have for ny large
enough,

F(0ng) = f(Ouuoay) < —(3/4 = 3Ch/2)h| f'(0n,)* + CCing ™ (1 + 1/(2%)),

which implies that for h sufficiently small

~

Ao,y = Bng < =(3/4=3Ch/2)h|f (6n,)° + CCing (1 4 1/(2h%))

<
< —h/2|f (0ny)* + CCing* (1 + 1/(207)).

Choosing [ sufficiently large, then by Lemma and , we deduce that sufficiently large
n?

—h/2|f (0n,)? + CCing™™ < —h/4If'(0n,) P,
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and therefore

At(ﬂoﬁ) - Ano < _h/4|f/<9no)|2' (35)
Now, recursively define
Neg+1 = t(?’Lk, h)

An iterated application of yields for some constant Cf,

~

Anpiy — Ay, < —C1hAYE

MNk+1

We then have two cases:
Case p = 2: For this case, we have,

An.. <(1-Cih)A,,

Nk+1 —

Recursively, we deduce that

~ ~

A, <AL (1= Cih)F < A, e,
which implies that for any k,
Anon —C1hk > nMTAnk > lC#

This, however, will yield Cy < 0 when we take k to co, which is a contradiction.
Case p < 2: For this case, it follows from

~

A, —A

k Nk+1

A A A, —A
kiduz k;du:uZC}l
A u2/m A A%{cﬂ AZ/m ’

Angyy Angia Mk

> C hAQ/ K

that

which implies that for some positive constant Co
A—2/pt+l A —2/p+1
AL AL > Coh,
Recursively, we deduce that
A2 > A2/ 4 ok,
and furthermore

nk( 2+p) /“A( 2+u)/u >n( 2+p) /“A 2/’“‘+1—|—Cn —2+p) /“kh

It then follows from and that

o 2t (=2+m/e > ( 2+p) /“A( 2/ > O(kn,, 2*“)/“) > O (kT 2w/ (zatDutdy,

Now, one verifies that this gives us an contradiction if we take k,[ to co, as long as

7 < u(l—=a)/(2—p), equivalently 7(—2 4 u)/(—a+ 1)u+1 > 0.
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Lemma 8.4. There exist an integer | such that for all n sufficiently large,
n"A, <I1C2.

Proof. By way of contradiction, suppose otherwise. Then, by Lemma 8.3 for any [ and
arbitrarily large N, we can find ky > mg > N such that

mEAp, < 20C2, kiA, > 31C2,
min  n'A, >21C2,  max n'A, < 31C2. (36)
mo<n<kg mo<n<kg

For some 0 < h < 1, let m; = t(mg, h). For any my < n < my, as in the proof of

Theorem [8.2] we derive R R
An - Amo < _h/4|f,(9mo)|27 (37)

which, together with Theorem and , implies that
F'(0my)* < 4/hC30(mg ™) + C30(my "),
which, together with , further implies that for some C' > 0,
1A, — Ayl < ChIf (B2 + CC2mg? < C20(mg™) + C20(my"™) + CC3mg™".
It then follows that for sufficiently small A
" A, —miA,| <nT|A, — A+ (07 —m))A,,

= O(mg) (A = Ag) + 0(m§) A,

<IC,
where we have used the fact that

n" =0(my), n" —mj=o(my).
In particular, we have
|(mo 4+ 1) Ay — miA,,| < 1Co and [miA,,, —miA,, | <I1C2,

which further implies that R 3
mgAme > 1CZ and my < ko,

respectively.
Setting n = m; and rewriting , we have for some constant 7,

Ay — Ay < —CLRA,

We then consider two cases:
Case p = 2: For this case, we have for some positive constant Cf,

A, < (1=Cih)A,,.
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Then for mg large enough,
miA,, < (1—Cih)miA,, = (1 - Cih)my(1+ o(1)A,,, < 21C3,

which yields a contradiction.
Case < 2: For this case, as in the proof of Lemma [8.3] we have for some positive
constant Cl,

AZ2HHL > AZ2hitl oo,
mi — mo
It then follows from and that for [ sufficiently large

Agn—lﬂu)/u > (2[@3)(_2+“)/“m5“+1 + Cyh > (2lC~’§)(_2+")/“m1—“+1,

which implies that X B
m] A, <21C3,

a contradiction.

O
The following theorem characterizes the rate of convergence of {f(6,)}.
Theorem 8.5. With probability 1, we have
A, =0(n™).
Proof. It immediately follows from Lemmas [8.3] and [8.4] O

In the rest of this section, assuming
(8b) pr > (1—a),

we prove {6,} converges almost surely. Here, let us note that (8.b) can always be satisfied
if a, b, B are appropriately chosen such that 7 is sufficiently large.
The following theorem characterizes the rate of convergence of {6, }.

Theorem 8.6. Assume that (8.b). Then, we have

sup |0 — 0,| = O(n=F~1=/2)y,
k>n

Proof. In this proof, we set
=7+ (1-a))/2

For some 0 < h < 1, starting from a fixed ng, recursively define
Ng+1 = t(nk, ]’L)
Then, to prove the theorem, it suffices to prove that

sup |6, — On,,| = O(n;fﬂ(l_“)m). (38)

k>m
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Now, applying Lemma (7), we deduce that for some C' > 0
|9ni+1 - gml < CTLZ,(f(enH»l) - f(9n1>) + Oégnz_Tl

It then follows that for any m < k,

k—1
‘enk - enm| < Z ‘em-u - Hm
i=m

/

k—1 k—1
S Cég Z ni_T/ + CZ(U<07%) - u<0m+1))n:

k—1 k
<CC3Y n T +C Y (] =l )ulOn)] + Cnjfu(B, )] + Cn Ju(Bh,)]-
i=m i=m-+1
Applying , we deduce that
k—1 k—1
Sonm =3 0@ = om0,
k ) I
> (] =) [u(On)] = Y O((i = 1)) = Om/ ),
i=m-+1 i=m

npeu(B,,)| = O(m™ ==/ 1) — O (7' =7/ (1),
g |u(0,,)] = O(k™/A-0f=7/0-a)) — (k' =D/0=a)),
We then immediately conclude that

|0’I’Lk - en'm - O(ng':l—,_%))7

which immediately implies .

The following “variable” version of the Lojasiewicz inequality will be used to refine the

rates of convergence of {6,} and {f(6,)}.

Lemma 8.7. For each 6 € ©, there exist real numbers 69 € (0,1), g € (1,2], My € [1,00)

such that
[f(0') = F(O)] < Mollf'(6)]1"
for all 0" € O satisfying ||6' — 0| < dy.

Theorem implies that with probability 1, {6,} converges. From now on, let 0 =

lim,, o 0, and set p = pz. Then, with this redefined i, going through exactly the same

arguments as in the proof of Theorems and we have the following two theorems.
Theorem 8.8. For the above redefined u, Theorems 8.5 holds.
Theorem 8.9. For the above redefined u, assume (8.b). Then, we have

10, — ] = O(n~ ==/,
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9 Capacity-Achieving Distributions of a Special Class
of Channels

In this section, we restrict our attention to a special class of input-restricted finite-state
channels with certain parameterization and we prove that for such channels operating at
high SNR regime, the capacity will only be achieved at the interior of the parameter space
and our algorithm converges almost surely.

More specifically, recalling that X,Y denote the input, output processes of the channel
over finite alphabets X', ), respectively, we consider a class of parameterized memoryless
channels such that

(9.a) the channel only has one state; in other words, at any time slot, the channel is charac-
terized by the conditional probability p(y|x).

9.b) for some mixing finite-type constraint £ C X2, X € Il.
g yp

(9.c) the channel is parameterized by ¢ > 0 such that for each x and y, p(y|z)(e) is an
analytic function of € > 0, which is not identically 0.

(9.d) there is a one-to-one (not necessarily onto) mapping ® : X — Y, such that for any
v e X, p(®(x))(0) = 1

(9.e) X is parameterized as in [59], that is,

0 = (p(Xl = wl,Xg = U)Q) . (wl,wQ) ¢ F)

Under the above assumptions, € can be regarded as a parameter that quantifies noise, and
®(x) is the noiseless output corresponding to input z. The regime of “small £” corresponds
to high SNR. Note that the output process Y = Y (X, e) depends on the input process X and
the parameter value ¢; we will often suppress the notational dependence on ¢ or X, when
it is clear from the context. Prominent examples of such families include input-restricted
versions of the binary symmetric channel with crossover probability €, and the binary erasure
channel with erasure probability ¢.

General SNR regime. By using an asymptotic formula of 7(X;Y"), we show that for
the above-mentioned channels, the capacity-achieving X must be primitive.

Assume that X has period e with period classes Dy, Ds, ..., D,. Then, by the classical
Perron-Frobenius theory, after necessary reindexing, its transition probability matrix I can
be written as

Dy Dy Dy --- D,
D, 0O B 0 --- 0
Do 0 0 By --- 0
: S S PO (39)
D..11 0O 0 0 --- B.;
D, B, 0 o .- 0
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where we used the period classes to index the sub-blocks. In the following, let B denote the
set of all entry indices of II corresponding to some By, that is,

B={(i,j):i € Dy,j € Dpy1, for k=1,--- ;e =1} U{(i,5) : i € De,j € D1}.
Now, consider an analytic perturbation I1(d) of II, § > 0, where
(9.f) 11(0) = II;
(9.g) for some (i,7) € B, I1;;(9) is not identically 0;
(9.h) for any 6 > 0, II(6) is still a stochastic matrix.

In other words, some non-B-entries in Il are analytically perturbed; as a result, Y is per-
turbed from Y(0) to Y(d). The following theorem describes the asymptotic behavior of
H(Y) under such a perturbation.

Theorem 9.1. Under the aboved-mentioned perturbation asin (9.f)-(9.f), there exist Cy, Cy >
0 such that
C16log1/5 < H(Y(8)) — H(Y (0)) < Cy5'/2.

Proof. The proof is postponed to Appendix [A] ]

Remark 9.2. It follows from Condition (9.a) that H(Y|X) is linear with respect to p.
Theorem [0.1] together with this fact, implies that there exist C;, Cy such that

Ci6log 1/6 < I(X(6); Y (8)) — 1(X(0);Y(0)) < Cos'/?,

which implies that, for any irreducible but not primitive X, any perturbation of X as in
(9.)-(9.h) will strictly increase the mutual information. So, we conclude that the capacity-
achieving X must be primitive, and thus Condition .a) holds.

High SNR regime. At the high SNR regime, that is, when ¢ is close to 0, it has been
established in [28] that there exists é > 0 such that

(9.4) I(X;Y), when restricted on X € Ilgg, is strictly concave with respect to 6 € ©.
(9.j) the capacity of the channel can be uniquely achieved within ITx,.
As a consequence, we have the following theorem.

Theorem 9.3. For the channel as in (9.a)-(9.d) operating at the high SNR regime and
sufficiently small €, under the iteration in (@, {60,,} converges almost surely and its limit
corresponds to the capacity-achieving distribution.

Proof. Note that Condition (9.a) and Theorem imply Conditions (7}a) and (7b); and
Condition(9.b) implies that the global maximum 6* indeed corresponds to the capacity-
achieving distribution. The theorem then immediately follows. ]
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Example 9.4. Consider the binary symmetric channel with crossover probability ¢ > 0.
Let X be a binary input Markov chain with the transition probability matrix

[1I7r H (40)

where 0 < m < 1. Apparently, X is supported on the so-called (1, 00)-RLL constraint [39],
which simply means that the string “11” is forbidden. Let Y denote the corresponding output
process. Assume that X is parameterized by 6 = (p(00), p(01),p(10)), where p(10) = 1 is in
fact a constant. It can be checked that Conditions (9.a)-(9.d) are all satisfied, so when ¢ is
sufficiently small, Conditions (9.i)-(9.j) are satisfied and thus Theorem [9.3| holds.

On the other hand, it has been shown that for the output process Y, as ¢ — 0,

(2 —m)
14+

HY)=H(X)+ elog(1/e) + O(e), (41)
where the O(¢e)-term is analytic with respect to p (see Theorem 2.18 of [2§]). It then follows
that

(2 —m)

H(X|Y) = H(X) + HY|X) = H(Y) = H(e) = ——

clog(1/2) + O(c),
where H(e) = elogl/e+(1—¢)log1/(1—¢). One can readily verify that —7(2—m)/(1+7) is
strictly convex with respect to 6, which implies the strict convexity (rather than concavity)
of H(XY) when ¢ is small enough. So, the concavity conjecture in [59] is not true in general,
and thus the conditions guaranteeing the convergence of the GBAA are not satisfied.

10 Numerical Simulations

Extensive numerical simulations of the algorithm have been conducted for a number of
practical channels, (typically) fast convergence of {f(6,)} and {6,,} have been observed.

Example 10.1. Consider a binary symmetric channel with crossover probability ¢ > 0 as
in Example [9.4] denote by BSC(e). Let X be a binary input Markov chain supported on
the so-called (1, 00)-RLL constraint [39] and assume the transition probability matrix of X
takes the following form:
l—7m m
e (42)

where 0 < 7w < 1. The capacity of such a channel has been computed using the GBAA
in [59]. For any fixed ¢ > 0, setting §# = 7, our algorithm is observed to yield a sequence
{6,,} convergent to a limit 6*. As shown in Figure , computations employing our algorithm
yield essentially the same curve of the channel capacity C' (as a function of €) as the GBAA;
the curve of 6* is also plotted against ¢ in Figure

Example 10.2. Consider a binary erasure channel with erasure probability ¢ > 0, denoted
by BEC(g). Again, let X be a binary input Markov chain supported on the (1, 00)-RLL
constraint and assume the transition probability matrix of X takes the same form as in .
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0.1 0.2 03 0.4 0.5 & 0.0 01 0.2 0.3 0.4 05 &

C 0*

0.415

0.410

0.400

0.395

~
0.1 0.2 03 0.4 0.5 0.6 07 & 0.1 0.2 0.3 04 0.5 0.6 0.7 &

Figure 2: BEC(e): capacity C' and capacity-achieving = versus

Such a channel has been examined in [37] and the authors show that I(X;Y') is concave
with respect to m, which implies that, when setting § = 7, our algorithm yields an almost
surely convergent sequence {6, } with a limit 6*, which corresponds to the capacity achieving
distribution. Indeed, the convergence of our algorithm has been observed [37], and the
channel capacity C' and the limit * are plotted as functions of ¢ in Figure

Example 10.3. The classical Gilbert-Elliott channel is a special kind of finite-state channel
with two channel states, which, independent from the binary channel inputs, will evolve
according to a Markovian law. For the Gilbert-Elliott channel without any input constraint,
it has been shown [43] that the capacity-achieving input is an i.i.d. Bernoulli(1/2) process.
For testing purpose, we have implemented our algorithm for such Gilbert-Elliot channels
and fast convergence of our algorithm to the capacity and its achieving distribution has been
observed.

Example 10.4. The classical trapdoor channel was introduced by David Blackwell [13] as a
simple two-state channel whose behavior can be described as follows: At time 0, the channel
starts with a ball, labeled “0” or “1”. Then, at each subsequent time slot: 1) a ball labeled
“0” or “1” is inserted into the channel by the transmitter; 2) and the receiver receives one
of the two balls in the channel with equal probability; 3) and the ball that does not exit the
channel remains inside for the next channel use.
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Figure 3: POST(«) Channel: capacity C versus « (the solid curve represents the real capac-
ity, while the dashed one is by our algorithm)

Apparently the above-mentioned trapdoor channel can be interpreted as a finite-state
channel as follows: At each time slot, the state of the trapdoor channel is the label of the
ball that is in the channel before the transmitter inserts a new ball. At time ¢, letting
Si—1 € {0,1} be the channel state, and X; € {0,1} be channel input (the label of the ball
that is inserted) and Y; be the corresponding output (the label of the ball that is received),
the channel then can be characterized by the transition probabilities tabulated below:

Tt | St—1 p(yt = 0|$t, St—l) p(yt = 1|$t, St—l)
0 0 1 0
0 1 0.5 0.5
1 0 0.5 0.5
1 1 0 1

Computations employing our algorithm yields 0.4100 as a local maximum of I(X;Y") over
all binary Markov chains X with states “0” and “1”, and 0.5000 as a local maximum over
all Markov chains X with states “00”, “01”7, “10” and “11”. Here, we remark that when the
Markovian restriction on the channel input is lifted, the capacity of the trapdoor channel is
lower bounded [I] by 0.5 bits per channel use, and upper bounded [40] by 0.6610 bits per
channel use.

Example 10.5. For any 0 < o < 1, the so-called POST(«) channels were first introduced
in [60], which are simple finite-state channels where the state of the channel is the previous
output. More precisely, the binary inputs {X;};>; and the binary outputs {Y;};>1 of the
POST(a) channel are related in the following way: if X; = Y; 1, then Y; = X, else V; = X;®
Z;, where Z; ~ Bernoulli(a). It has been shown that for such a channel, the feedback does
not increase the capacity, which can be explicitly computed as log,(1+(1—a)a™a). As shown
in Figure[3| when plotted against «, the capacity curve by our algorithm essentially coincides
with the real capacity curve, and fast convergence of our algorithm has been observed for
such channels.

Remark 10.6. While fast convergence of our algorithm has been typically observed in most
of channels we have examined, there are some issues for the algorithm and its implementa-
tions:
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e When the strict concavity of I(X;Y’) is absent, the algorithm may deliver a rather
slow convergence. For instance, for the binary symmetric channel as in Example [10.1]
operating at the low SNR regime (meaning ¢ is close to 0.5), compared to the high SNR
regime (meaning ¢ is close to 0), the behavior of our algorithm is somewhat erratic and
very low convergence has been observed.

e While the rate of convergence of our algorithm can be proven to be independent of
choice of parameters, the speed of convergence in practice is affected by choices of
the algorithm parameters, such as the starting point, 6y, the step sizes, a,, and other
parameters, a, b, a, 3.

e Our algorithm is randomized in nature and its convergence is in the almost sure sense.
So, the “capacity” computed using the algorithm can only be, at best, interpreted
as “close” to the real capacity with high probability, which, will be of discounted
significance when a definite value (or bounds) of the real capacity is needed.

e To compute the capacity of a finite-state channel with finite-type input constraints
but without the Markovian assumption on the channel input, one can concatenate our
algorithms implemented with Markov inputs of increasing orders. It is not surpris-
ing, however, that for some channels, the capacity achieving distribution can only be
approximated by Markov chains with prohibitively large order, which may render the
implementation/execution of our algorithm infeasible. In this regard, we have observed
that our algorithm implemented for the trapdoor channel as in Example with
4-state Markov chains converges considerably slower than that with 2-state Markov
chains.

Appendices
A Proof of Theorem

First of all, we define

0 (Xz(6)7X2+1(5)) € B forallie {17 e, N — ]_}
Z(0)=2Z(X7(0) =<1 (X;(9),X;11(d)) & B for exactly one i € {1,--- ,n—1}
2 (X;(0),Xi1+1(0)) ¢ B for more than one i € {1,--- ,n — 1}

Next, applying the Birch bound [11], we derive the following key inequality for this proof:

HORA O 0), X0(0). 20) _ oy - HOTIX00). Z0) | HZW) | HEK0) yo

n—m n n n

for any m < n.
The lower bound part. We first prove that there exists C'; > 0 such that

H(Y(0)) = H(Y(0)) + C1dlog1/4,

35



which immediately implies the lower bound part of the theorem. In this part, we set
n = /logd and m = n/2. (44)
By definition, we have
H(Y 1 (9)YT"(8), Xo(8), Z(8))/(n = m) = > (20, Z = 0)H (Y, (8)[Y{™(8), Xo(), Z(8) = 0)/(n — m)
+ Y0’ (20, 2 = DH (Y, (0)]Y"(8), Xo(8), Z(6) = 1)/ (n —m)
0
+ >0’ (20, Z = 2)H(Y,,, (0)]Y"(8), Xo(8), Z(6) = 2)/(n —m).
é;+%+ﬂ

where p°(z9, Z = 0) means P(Xy(0) = o, Z(§) = 0).
We next give estimates for the each of three terms defined as above.
For T3, notice that nd < 1 for sufficiently small § and then

&

_<— 262
=1 nCe

> P20, Z = 2) < n*(Cod)” + n’(Co6)* + - -

Zo

for some Cy > 0. It then follows that

Ty= 1'(20, 2 = 2)H (Y, (8)[Y{"(8), Xo(8), Z(8) = 2)/(n —m)
<Y (w0, Z = 2)H(Y,1.1(5))/(n — m)

< (w0, Z = 2) log ||

zo

= 0(n?*3?). (45)

For T, one verifies that for any xg, there exist constants C7,Cy > 0, 0 < A} < Ay < 1
such that
CindAT < (Yo, Z = 1) < Cond\y.

Similarly, for any xg, there exist C3,Cy > 0, and the same 0 < A\; < Ay < 1 as above such
that
Cam AT < p°(y|wo, Z = 1) < CymAY.

It then follows that for any x,
CsoN5 /AT < p° (gl Xo, Z = 1) < Ced A5 /AT,
which, together with , implies that

H (Y ,1(8)[Y]"(6), Xo(8), Z(6) = 1) = O(log 1/6) + O(nlog As) + O(mlog \y).
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This, together with the fact )
p(zo, Z = 1) = O(nd),

implies that

~

Ty = O(dlog1/d) + O(ndlog A2) + O(mdlog \y). (46)
For T}, notice that it can be rewritten as
Ti = Py} w0, Z = 0)log p’ (Y, |47, 20, Z = 0)/(n — m).
One then verifies that
1P’ (Y}, w0, Z = 0) — p°(y7, w0, Z = 0)|s5=0| = O(nd)p°(yy, xo, Z = 0),
which implies that

ZPO(y?’IO’ 7 — 0) logp‘s(yfnﬂly{",xo, 7 = ()) _Zp5(y?’xo, J = O) logp5(ygl+l|y71",xo, /= 0) _ O(n5)
n—m n—m

When fixing zq and assuming Z = 0, the analyticity argument in [24] can be used to prove
that

> Pt w0, Z = 0)log p’ (Y41 0", 0, Z = 0)/(n — m)

exponentially converges to an analytic function of 4. It then follows that for some 0 < p < 1
Ty = H(Y(0)) + O(p™) + O(9). (47)
Combining , and , we then have
H(Y i (9)YT", Xo(8), Z(8))/(n —m) = H(Y(0)) + O(8log 1/5).
The upper bound part. We then prove that there exists Cy > 0,
H(Y(9)) < H(Y/(0)) + C20"/2,
which immediately implies the upper bound part of the theorem. For this part, setting

n =012 and m = 0. (48)
Using a parallel argument as in the lower bound part, we can still derive , and

and then
H(Y?|Xo(6), Z(8)/n = H(Y )50 + O(6").
It can verified that

p(Z(8) =1) = 0(nd), p(Z(5) =2) = O(n*s*),

which, together with the straightforward observation that H(X(d))/n = O (1/n), implies

that
2

H(Z()) =— Zp(Z((S) =1)logp(Z(§) = i) = O(ndlogd) + O(ndlogn),
and consequently -

H(Z(9)) _ O(dlogd) + O(d1logn).

The upper bound part then follows from all the above estimates and .
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